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Abstract. This paper defines the basis of a new hierarchical framework
for segmentation algorithms based on energy minimization schemes. This
new framework is based on two formal tools. First, a combinatorial pyra-
mid encode efficiently a hierarchy of partitions. Secondly, discrete geo-
metric estimators measure precisely some important geometric param-
eters of the regions. These measures combined with photometrical and
topological features of the partition allows to design energy terms based
on discrete measures. Our segmentation framework exploits these ener-
gies to build a pyramid of image partitions with a minimization scheme.
Some experiments illustrating our framework are shown and discussed.

1 Introduction

The convergence of energy minimization and hierarchical segmentation algo-
rithms provides a rich framework for image segmentation. This framework is
based on an objective criterion, called energy, whose minimization defines a
salient partition according to a given problem . The energy of a partition is
generally decomposed by summation over each region as a weighted sum of two
terms E(R) = Ejmg(R) + vE,cy(R) where Ejp,, may be understood as a fit to
the data within the region while E,., corresponds to a regularization term. The
parameter v defines the respective weights of the two terms. The Mumford-Shah
energy is a classical instance of this approach [m] Such equation may also be in-
terpreted within the Minimum Description Length (MDL) framework [, where
the two energies Fj,g and E,.4 represent respectively the encoding costs of the
photometry and the geometry of a region.

Several methods have been proposed in order obtain a partition minimizing
an energy. These methods include the level set approach ], graph cuts [E] and
the methods based on a region merging scheme [E,E,H,ﬂ]. The definition of a
meaningful segmentation using an energy minimization framework and a merge
scheme supposes first to define a merge strategy. If the parameter v is fixed,
a near optimal strategy consists to merge at each step the two regions, the
merging of which induces the greatest decrease of the energy until any merge
would increase the energy. The obtained partition is said to be 2 normal at the



2 Martin Braure de Calignonf, Luc Brunf, and Jacques-Olivier Lachaudf

scale v [@,H] An alternative strategy [H] consists to merge at each step the two
regions whose union would belong to the 2 normal partition of lowest scale. This
reduction framework avoids the need to select a vector of v parameters encoding
a priori the different scales of interest. However, previous works [@,ﬁ,ﬂ] where
based on a sequence of merge operations combined with a stopping criterion
(number of regions, maximal value of v...). Guigues et. al. [[]] encode explicitly
the hierarchy of partitions using a reduction scheme similar to [ﬁ] but uses the
hierarchy in order to build for any value of v, the optimal partition which may be
defined from the hierarchy. Moreover, instead of starting from the grid of pixels
like [ﬂ], their initial partition is an over partition of the image, which presents
two fundamental advantages. First, the initial over segmented partition allows
to compute reliable statistics on regions. Secondly, it restricts the set of possible
partitions and thus reduces the risk to be trapped into a local minima.

The second problem that should be addressed by a segmentation algorithm is
the correct design of the energy terms. For instance, the classical Mumford-Shah
energy simply combines the squared error of each region together with the total
length of the partition boundaries. However, as shown by several authors [ﬂ],
more complex models (both geometrical and photometrical) may handle finer
definitions of salient partitions. Their design requires to fit geometrical models
onto regions. An efficient access to the set of boundaries of each region and to
their geometry is thus compulsory. However, classical hierarchical segmentation
frameworks are not adequate for this task. Adaptive pyramids based on graph [E]
do not present a 1-1 correspondence between region adjacencies and geometri-
cal boundaries: reconstructing the geometry of a region is then tricky. Dual
graphs [E] behave better for this task but the explicit encoding of all reduced
graphs restricts the number of merge steps.

This paper provides a new framework that addresses the design of new energy
terms based on geometrical and photometrical features. The stack of successively
reduced partitions is encoded using a combinatorial pyramid [E] A very fine
granularity for the hierarchy is then achieved since regions are merged two by
two and a new level of the pyramid is created for each merging operation. Geo-
metrical features are computed on each partition of the hierarchy using discrete
geometric estimators of normal and length. This framework offers then a com-
pact and efficient encoding of the hierarchy together with an efficient access to
the geometrical and topological properties of the partition. It came thus as a
natural complement to methods searching for optimal partitions. The paper is
structured as follows. We present in Section E the combinatorial pyramid model.
The application of this model to compute geometrical features on regions using
discrete geometric estimators is presented in Section E We then present in Sec-
tion E one energy based on discrete estimators together with some experiments.

2 Combinatorial Pyramids

This paper is based on combinatorial maps [@] A combinatorial map may be
seen as a planar graph encoding explicitly the orientation of edges around a
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Fig.1. A dual of a combinatorial map (a) encoding a 3 x 3 grid with the
contracted combinatorial map (b) obtained by the contraction of the con-
traction kernel (CK) K; = «*(1,2,10,11,12,6). The reduced combinatorial
map (c) is obtained by the removal of the empty self loops defined by the
RKESL K3 = a*(4) and the removal kernel of empty double edges (RKEDE)
K3 = a*(13,14,15,19,18,22) U {24, —16, 17, —20, 21, —23, 3, —5}.

given vertex. To do so, each edge of a planar graph is split into two half-edges
called darts (e.g. darts 16 and —24 in Fig. flc). Since each edge connects two
vertices, each dart belongs to only one vertex. A combinatorial map is formally
defined by a triplet G = (D, 0, &) where D represents the set of darts and o is a
permutation on D whose cycles correspond to the sequence of darts encountered
when turning counter-clockwise around each vertex. Finally « is an involution
on D which maps each of the two darts of one edge to the other one (e.g. & maps
16 to —24 and —24 to 16 in Fig Elc) The cycles of o and o containing a dart d
will be respectively denoted by a*(d) and o*(d).

Given a combinatorial map G = (D, 0,a), its dual map is defined by G =
(D, p, ) with ¢ = 0 o . The cycles of permutation ¢ encode the faces of the
combinatorial map and may be interpreted as the sequence of darts encountered
when turning clockwise around a face. The cycle of ¢ containing a dart d will
be denoted by ¢*(d).

2.1 Combinatorial map encoding of a planar sampling grid

Combinatorial maps can also code the low level geometry of image pixels. Indeed,
Fig. Ela describes a dual combinatorial map Gy = (Do, o, ) encoding a 3 x 3
4-connected planar sampling grid. The ¢, a and o cycles of each dart may
be respectively understood as elements of dimensions 0, 1 and 2 and formally
associated to a 2D cellular complex [E] More precisely, each ag cycle may be
associated to a linel (sometimes also called crack or surfel) between two pixels.
Each of the two darts of an «g cycle corresponds to an orientation along the
linel. For example, the cycle afj(1) = (1, —1) is associated to the linel encoding
the right border of the top left pixel of the 3 x 3 grid (Fig. a). Darts 1 and
—1 define respectively a bottom to top and top to bottom orientation along the
linel.
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2.2 Construction of Combinatorial Pyramids

A combinatorial pyramid is defined by an initial combinatorial map successively
reduced by a sequence of contraction or removal operations. Contraction opera-
tions are encoded by contraction kernels (CK). These kernels, defined as a forest
of the current combinatorial map, may however create redundant edges such as
empty-self loops and double edges. Empty self loops (edge o (4) in Fig. f[b) may
be interpreted as region inner boundaries and are removed by a removal kernel of
empty self loops (RKESL) after the contraction step. The remaining redundant
edges, called double edges, belong to degree 2 vertices in G (e.g. ©1(13), pi(14),
©*(15)) in Fig. [b) and are removed using a removal kernel of empty double edge
(RKEDE) which contains all darts incident to a degree 2 dual vertex. Further
details about the construction scheme of a combinatorial pyramid may be found
in i)

As mentioned in Section @7 if the initial combinatorial map encodes a pla-
nar sampling grid, the geometrical embedding of each initial dart corresponds
to an oriented linel. Moreover, each dart of a reduced map that is not a self
loop encodes a connected boundary between two regions. The embedding of the
boundary associated to such a dart may be retrieved from the embedding of
the darts of the initial map Gy. Let us consider the reduced combinatorial map
G; = (D;, 04, ;) defined at level i and one dart d € D; which is not a self loop.
The sequence d; ..., d, of initial darts encoding the embedding of the dart d is
obtained from the receptive field of d ] within Gy using the following relation:

di=d ,dj41 =00 opo(a(d;)) (1)
N———’
m; times

where Gy = (Do, o, ap) is the dual of the initial combinatorial map and m; is
the smallest integer g such that ¢ (ag(d;)) survives at level i or belongs to some
former RKEDE. The dart d,, is the first dart defined by Eq. ([]) which survives
up to level ¢. This dart also satisfies ag(d,) = «;(d) by construction of the
receptive fields. Note that the tests performed on ¢f(ao(d;)), ¢ € {1,...,m;} to
determine if it is equal to dj4q or d, are performed in constant time using the
implicit encoding of combinatorial pyramids [@}

2.3 Embedding of region boundaries

Let us consider the dart 16 in Fig. fle. This dart encodes the border between
the background and the first row of the 3 x 3 grid encoded by the o3 cycle
05(16) = (16,7, 8) of G3. The sequence of initial darts encoding the boundary of
the dart 16 is retrieved using Eq. ([[) and is equal to: 16.15.14.13.24 (Fig. [[b). We
have for example 15 = o (ao(16)) = ¢o(—16) (Fig. flc). Since each initial dart is
associated to an oriented linel, one may associate a sequence of Freeman’s code
to each sequence of initial darts (Fig. b) and thus to each dart of a reduced
combinatorial map G;. The sequence of Freeman’s codes associated to a dart d
is denoted sy and is called the segment associated to d. for example, the segment
associated to the dart 16 is equal to s16 = 1.2.2.2.3.
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Fig. 2. The central white region 0*(1) (a) contains several subregions. Its bound-
ary is thus split into several connected components connected by bridges in G
(b). These edges correspond to self loops in G (c).

3 Discrete geometry over a partition

As mentioned in Section ], each edge (d,a;(d)) of a partition G that is not
a self loop encodes a connected boundary between two regions. The edge is
called separating. On the other hand, a self loop corresponds to a bridge in
the dual combinatorial map and is characterized by «;(d) € o7 (d) (e.g. edge
(3,-3) or (5,—5) in Fig. Pbc). Such edges, called fictive, either connect the
outer boundary to some inner boundary (e.g. edge (3, —3) in Fig. E) or connect
two inner boundaries (edge (5, —5) in Fig. ) [L0.

Each separating edge is embedded as a 4-connected digital path, included in
the interpixel digital plane (Section f.3 and [[(]). When estimating the geometry
of the boundary of the region, fictive edges do not play any role. More precisely
the concatenation of only the separating edges defines also a set of 4-connected
digital loops. Each of these loops is either the outer boundary of the region or
one of its inner boundaries [E] Given an initial dart d belonging to a separating
edge, Algorithm [ extracts a boundary between region o*(d) and its complement,
(setting Lin = 0*(d)) or between regions o*(d) and o*(d’) and their complement
(setting Li, = o*(d) U o*(d’)). Its principle is to follow the boundary with o
except it skips fictive edges and edges in-between o*(d) and o*(d’). This method
for tracking a boundary is easily understood on Fig. Eb, where for instance the
algorithm tracks from dart 1, then 2 = (1), 3 is skipped since —3 € o*(1), then
8 = 0(—3) and terminates on 1 = ¢(8) again. Extracting all the boundaries of a
region is done in a similar way. All these algorithms can be implemented with a
complexity linear with the number of boundary linels.

3.1 Geometry with digital straight segments

We may now examine how geometric quantities can be estimated on a closed 4-
connected digital contour C', which is some boundary of a region or two adjacent
regions (computed as in the previous paragraph). The literature is abundant on
this topic and we restrict ourselves to pure discrete geometry tools based on
digital straight segment (DSS) recognition. Several equivalent definitions of DSS
exist together with several classes of algorithms to recognize them on digital
curves (see for instance [[[J for a recent survey). We chose here to present briefly
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Algorithm 1 Algorithm to visit all the linels of the digital boundary encircling
region(s) specified by their darts L;, and containing the dart d.

1 Function Map::boundary( dart d, darts L;, ) : Freeman chain
Ensure: Return a sequence of Freeman’s codes that is a 4-connected loop.
Require: d & Liy,
2 list C — 0, dart b«—d
repeat
C.append(s)
b —ao(b)
while a(b) € L do {Skip fictive or interior edges}
b —p(b)
end while
until b =d
return C

the arithmetic point of view of digital lines, which leads to rather simple and
efficient algorithms [[[4).

The set of points (z, y) of the digital plane verifying u < ax—by < p+|a|+1b|,
with a, b and p integer numbers, is called the standard line with slope a/b and
shift p. A standard line is always 4-connected. A sequence of consecutive points
C;.; indexed from i to j of the digital curve C'is a digital straight segment (DSS)
iff there exists a standard line (a,b, ) containing them. The one with smallest
a + b determines its characteristics, in particular its slope a/b. Any DSS Z thus
defines an angle 6(Z) between its carrying standard line and the x-axis (in [0; 27]
since a DSS is oriented), called the direction of Z.

The predicate “C; ; is ¢ DSS” is denoted by S(7, j). Incremental algorithms
exist to recognize a digital straight segment on a curve and to extract its char-
acteristics [[LJ]. Therefore deciding S(i,j 4+ 1) or S(i — 1,5) from S(i,;) are
O(1) operations. Any DSS C; ; is called a mazimal segment iff —S(i,j + 1) and
—S(i—1, 7). Maximal segments are thus the inextensible DSS of the curve (Fig. B,
left). Note that the set of all maximal segments of a curve can be computed in
time linear with the number of curve points [[L4).

3.2 Tangent, normal and length estimation

Several tangent estimators based on DSS recognition have been proposed. We
propose to use the A-Maximal Segment Tangent estimator (\-MST) to approach
the tangent direction at any point of the digital curve @] It was indeed shown
to give good approximations even at coarse scale, to be rather independent from
rotations and to be asymptotically convergent.

Fig.E, right, gives the essential idea of this tangent estimator. Given a point,
the direction 6; of every maximal segment containing it is evaluated. The rela-
tive position e; of the point within the maximal segment is also computed. The
A-MST tangent direction 6 is some weighted combination of the preceding pa-
rameters: § = (D=, A(€i)0i)/(3-; Aei)). In our experiments, the mapping A was
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Fig. 3. Left: every maximal segment along this contour is drawn as its rectan-
gular bounding box. Right: A-Maximal Segment tangent estimation at a given
point.

defined as the triangle function taking base value 0 at 0 and 1, and peak value
1 at . For further details, see [Lq].

The experimental average number of maximal segments per linel is between
3 and 4. Therefore computing the A-MST direction is not costly and is a O(1)
operation on average. This technique of tangent estimation is easily extended
to any real curvilinear abscissa along the digital contour. The tangent is thus
defined at any linel, taking half integer abscissas.

The estimation of the normal vector at Cj, is then simply the vector n(k) =
(—sin(B(k)), cos(B(k))). The elementary length I(k,k + 1) of a linel Cypyy is
defined as | cos(A(k + 0.5))| for horizontal linels and |sin(d(k + 0.5))| for vertical
linels. It corresponds to an estimation of the length of a unit displacement along
the digital curve. The length of C' is estimated by simple summation of the
elementary length of its linels. This method of length evaluation was reported to
give very good experimental results [L6]. If C* is boundary(b, o* (b)) as returned

by Algoritﬁril I, then its length is L(b;G) = Z‘kc:bl‘ I(k,k + 1;C). The total
perimeter Per(R(c*(b)); G) of the region o*(b) is the sum of the length of each
of its boundaries.

4 Energy of a partition and pyramidal segmentation

The geometrical features (normal, perimeter, polygonalization) defined in Sec-
tion E may be computed on each region of a partition in order to provide dif-
ferent measures of its geometrical characteristics. Such measures may then be
incorporated into a hierarchical segmentation algorithm based on an energy min-
imization scheme (Section m) Such energy balances two terms: the goodness of
fit term and a regularization term which penalizes unlikely or complex models.
The energy of a partition encoded by the map G is simply called the energy of
the combinatorial map G and is formally defined as follows: Let G = (D, 0, «)
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(b) ()

Fig. 4. Influence of length penalization: (a) image Girl, (b) one level of the pyra-
mid with {(k, k4 1) = 1, (c) same level of a pyramid built using discrete length
estimators. All the boundaries of the pyramid which contains (c) are superim-
posed on (d). The darkest boundaries are those who survive at the highest levels.

be a combinatorial map with a geometrical embedding in the digital grid and an
input image I over this grid. Let D, be the set of o-cycles of D. The energy of
the combinatorial map G is

EG) = Y E(@"(d) (2) E(0"(d)= Emg(o"(d) + vEeg(0™(d)) (3)
o*(d)eD,

Eq. @) indicates that the global energy is decomposable over each region.
This property helps in defining fast algorithms for region decimation. Eq. (E)
balances the two energies, one dependent on the image (the image energy Eimg),
the other dependent only on the model (the regularization energy Fircg).

The parameter v is often interpreted as a scale parameter, since it privileges
the goodness of fit for low values (and over-segmentation) and a priori most
likely regions for high values (and under-segmentation).

The image energy used within our experiments is defined as follows:

Bimg(o™(d)) = =0 Y D IClitk,k+1)+ > 11, y) = o (a)ll”
Crecd (z,y)ER(c*(d))
(4)

where [(k, k 4+ 1) denotes the length estimate of a lignel at point k&, I(z,y)
denotes the color of the pixel (z,y) and ||D I(Cy)|| the norm of the differential
of I at point k. This last measure is equal to the norm of the gradient for grey
level images. The term pi,+(4) represents the mean color of the region encoded by
*(d). The second sum of the above expression denotes thus the squared error
of the region. Finally, the term § represents the respective weight of the gradient
and squared error energies.

The regularization energy is defined from the estimate of the perimeter of
the region as Eyeg(0*(d)) = Per(R(0*(d)); G)(Section B.9). Given two possible
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merge operations inducing the same variation of the image energy, this choice
for the regularization term favors the one which induces the simplest partition
with the lowest overall length of contours. The advantage of using discrete length
estimators compared to a basic count of the lignels is to make the segmentation
process more independent on the alignment of components wrt some axes.

We tested the influence of length penalization on the classical Girl test image
(Fig. [). Two pyramids have been built on an initial partition encoded by a
combinatorial map G. This partition is defined by a watershed algorithm applied
on the gradient of the Girl test image. The parameter v is fixed to 1.3 during
the construction of both pyramids. Fig. E(b) represent one level of the first
pyramid built using a fixed length estimate equal to 1 for all lignels. Fig. @(c)7
represents the same level within the second pyramid built using the discrete
length estimator defined in Section B.4 As shown by Fig. [|(c) the more accurate
measure of the length given by the discrete length estimator provides smoothest
boundaries.

Pyramidal segmentation algorithm

Our energy minimisation method starts with an initial partition coded by a
map, and merges at each step the two adjacent regions, the merging of which
induces the greatest decrease (or the smallest increase) of the combinatorial map
energy. This process may be interpreted as a gradient descent which continues
when a local minima is reached in order to seek for other minima. Note that
our framework is not devoted to a specific strategy for energy minimization.
Many alternative optimization heuristics could be used (e.g. the scale-climbing
of Guigues et. al. [ﬂ]) The proposed approach is however sufficient to compare
the respective advantages of different energies. Let us additionally note that
using our strategy or the scale climbing of Guigues et al., only two regions are
merged between two consecutive levels of the pyramid. This merge strategy does
not induce a high memory cost due to the implicit encoding of the combinatorial
pyramid [E] An explicit construction of all the reduced graphs using graph or
dual graph pyramids would require a huge amount of memory with a lot of
redundancy between graphs.

5 Conclusion

We have presented a new framework for segmenting images with a pyramidal
bottom-up approach using an energy-minimizing scheme. Our framework com-
bines combinatorial pyramids, which can represent in the same structure all the
levels of a hierarchy, and discrete geometric estimators, which provide precise ge-
ometric measurements and allow the definition of new regularization and image
energy terms. A greedy algorithm for computing the hierarchy was also provided
and some examples of segmentation were exhibited and discussed.

Our first experiments show that, the length estimation can have a great
influence on the regularization of the segmentation. Discrete geometric esti-
mators provides some smoothest boundaries. However, they are useless if the
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over-segmentation gives irregular regions. In futur works, we want to tackle this
problem by using a smoothest over-segmentation.
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