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Abstract

Zhu [15] introduced circular-perfect graphs as a superclass of the well-known perfect

graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding

function χ(G) ≤ ω(G)+1. Perfect graphs have been recently characterized as those graphs

without odd holes and odd antiholes as induced subgraphs [4]; in particular, perfect graphs

are closed under complementation [7]. In contrary, circular-perfect graphs are not closed

under complementation and the list of forbidden subgraphs is unknown.

We study strongly circular-perfect graphs: a circular-perfect graph is strongly circular-

perfect if its complement is circular-perfect as well. This subclass entails perfect graphs,

odd holes, and odd antiholes. As main result, we fully characterize the triangle-free strongly

circular-perfect graphs, and prove that, for this graph class, both the stable set problem and

the recognition problem can be solved in polynomial time.

Moreover, we address the characterization of strongly circular-perfect graphs by means

of forbidden subgraphs. Results from [9] suggest that formulating a corresponding conjec-

ture for circular-perfect graphs is difficult; it is even unknown which triangle-free graphs

are minimal circular-imperfect. We present the complete list of all triangle-free minimal

not strongly circular-perfect graphs.
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1 Introduction

Coloring the vertices of a graph is an important concept with a large variety of

applications. Let G = (V, E) be a graph with vertex set V and edge set E, then a

k-coloring of G is a mapping f : V → {1, . . . , k} with f(u) 6= f(v) if uv ∈ E,

i.e., adjacent vertices receive different colors. The minimum k for which G admits

a k-coloring is called the chromatic number χ(G); calculating χ(G) is NP-hard in

general. In a set of k pairwise adjacent vertices, called clique Kk, all k vertices have

to be colored differently. Thus the size of a largest clique in G, the clique number

ω(G), is a trivial lower bound on χ(G); this bound is hard to evaluate as well.

Berge [2] proposed to call a graph G perfect if each induced subgraph G′ ⊆ G
admits an ω(G′)-coloring. Perfect graphs have been recently characterized as those

graphs without chordless odd cycles C2k+1 with k ≥ 2, termed odd holes, and

their complements C2k+1, the odd antiholes, as induced subgraphs (Strong Perfect

Graph Theorem [4]). (The complement G of a graph G has the same vertex set as

G and two vertices are adjacent in G if and only if they are non-adjacent in G.) In

particular, the class of perfect graphs is closed under complementation [7]. Perfect

graphs turned out to be an interesting and important class with a rich structure,

see [10] for a recent survey. For instance, both parameters ω(G) and χ(G) can be

determined in polynomial time if G is perfect [5].

1.1 Strongly circular-perfect graphs

As a generalization of perfect graphs, Zhu [15] introduced recently the class of

circular-perfect graphs based on the following more general coloring concept. For

integers k ≥ 2d, a (k, d)-circular coloring of a graph G = (V, E) with at least

one edge is a mapping f : V → {0, . . . , k − 1} with |f(u) − f(v)| ≥ d mod k
if uv ∈ E. The circular chromatic number χc(G) is the minimum k

d
taken over all

(k, d)-circular colorings of G; we have χc(G) ≤ χ(G) since every (k, 1)-circular

coloring is a usual k-coloring of G. (Note that χc(G) is sometimes called the star

chromatic number [3,13].) The circular chromatic number of a stable set is set to

be 1.

In order to obtain a lower bound on χc(G), we generalize cliques as follows: Let

Kk/d with k ≥ 2d denote the graph with the k vertices 0, . . . , k− 1 and edges ij iff

d ≤ |i − j| ≤ k − d. Such graphs Kk/d are called circular cliques (or sometimes

antiwebs [11,14]) and are said to be prime if gcd(k, d) = 1. Circular cliques include

all cliques Kt = Kt/1, all odd antiholes C2t+1 = K(2t+1)/2, and all odd holes

C2t+1 = K(2t+1)/t, see Figure 1. The circular clique number is defined as ωc(G) =

1 Email: {sylvain.coulonges, arnaud.pecher}@labri.fr
2 Email: wagler@imo.math.uni-magdeburg.de
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max{k
d

: Kk/d ⊆ G, gcd(k, d) = 1}, and we immediately obtain that ω(G) ≤
ωc(G). (Note: in this paper, we always denote an induced subgraph G′ of G by

G′ ⊆ G.)
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Fig. 1. The circular cliques on nine vertices

Every circular clique Kk/d clearly admits a (k, d)-circular coloring (simply take

the vertex numbers as colors, as in Figure 1), but no (k′, d′)-circular coloring with
k′

d′
< k

d
by [3]. Thus we obtain, for any graph G, the following chain of inequalities:

ω(G) ≤ ωc(G) ≤ χc(G) ≤ χ(G). (1)

A graph G is called circular-perfect if, for each induced subgraph G′ ⊆ G, circular

clique number ωc(G
′) and circular chromatic number χc(G

′) coincide. Obviously,

every perfect graph has this property by (1) as ω(G′) equals χ(G′). Moreover, any

circular clique is circular-perfect as well [15,1]. Thus circular-perfect graphs con-

stitute a proper superclass of perfect graphs.

Another natural extension of perfect graphs was introduced by Gyárfás [6] as fol-

lows: A family G of graphs is called χ-bound with χ-binding function b if χ(G′) ≤
b(ω(G′)) holds for all induced subgraphs G′ of G ∈ G. Thus, this concept uses

functions in ω(G) as upper bound on χ(G). Since it is known for any graph G that

ω(G) = ⌊ωc(G)⌋ by [15] and χ(G) = ⌈χc(G)⌉ by [13], we obtain that circular

perfect graphs G satisfy the following Vizing-like property

ω(G) ≤ χ(G) ≤ ω(G) + 1. (2)

Thus, the class of circular-perfect graphs is χ-bound with the smallest non-trivial χ-

binding function. In particular, this χ-binding function is best possible for a proper

superclass of perfect graphs implying that circular-perfect graphs admit coloring

properties almost as nice as perfect graphs. In contrary to perfect graphs, circular-

perfect graphs are not closed under complementation and the list of forbidden sub-

graphs is unknown.

In this paper, we study strongly circular-perfect graphs: a circular-perfect graph is

strongly circular-perfect if its complement is circular-perfect as well. We address
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the problem of finding the minimal not strongly circular-perfect graphs and provide

complete answers in the triangle-free case.

1.2 Summary of results

We first address the problem which circular cliques occur in strongly circular-

perfect graphs, see Section 2. For that we fully characterize which circular cliques

have a circular-perfect complement (Theorem 3).

Section 3 deals with triangle-free strongly circular-perfect graphs. A graph G is

said to be an interlaced odd hole if and only if the vertex set of G admits a suitable

partition ((Ai)1≤i≤2p+1, (Bi)1≤i≤2p+1) into 2p + 1 (with p ≥ 2) non-empty sets

A1, . . . , A2p+1 and 2p + 1 possibly empty sets B1, . . . , B2p+1 such that

(1) ∀1 ≤ i ≤ 2p + 1, |Ai| > 1 implies |Ai−1| = |Ai+1| = 1, (indices modulo

2p + 1),

(2) ∀1 ≤ i ≤ 2p + 1, Bi 6= ∅ implies |Ai| = 1,

and the edge set of G is equal to ∪i=1,...,2p+1(Ei ∪E ′
i), where Ei (resp. E ′

i) denotes

the set of all edges between Ai and Ai+1 (resp. between Ai and Bi); see Figure 1.2

for an example (the sets of vertices in Bi are grey).

Fig. 2. An interlaced odd hole

We prove that a graph G is triangle-free strongly circular-perfect if and only if G
is bipartite or an interlaced odd hole (Theorem 15). We use this characterization

of triangle-free strongly circular-perfect graphs to exhibit that both the stable set

problem and the recognition problem can be solved in polynomial time for such

graphs (see Theorem 15 and Algorithm 1).

In Section 4, we finally address, motivated by the Strong Perfect Graph Theorem,

the problem of finding all forbidden subgraphs for the class of strongly circular-

perfect graphs. Results in [9] indicate that even formulating an appropriate conjec-

ture for circular-perfect graphs is difficult, e.g., it is unknown which triangle-free
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graphs are not circular-perfect. We present the complete list of all triangle-free

graphs which are minimal not strongly circular-perfect (Theorem 22).

2 Circular cliques in strongly circular-perfect graphs

In this section, we solve the problem which prime circular cliques occur as induced

subgraphs of a strongly circular-perfect graph. As the class of strongly circular-

perfect graphs is closed under complementation, this is equivalent to ask which

circular cliques have a circular-perfect complement.

The complement of a circular clique is called a web and we denote by Cω−1
n the

web Kn/ω, that is the graph with vertices 0, . . . , n − 1 and edges ij such that i and

j differ by at most ω − 1 (mod n), and i 6= j. In particular, the maximum clique

size of Cω−1
n is ω.

For that, we use the following result on claw-free graphs (note that webs are claw-

free as the neighborhood of any node splits into two cliques).

Lemma 1 [9] A claw-free graph does not contain any prime antiwebs different

from cliques, odd antiholes, and odd holes.

This immediately implies for circular clique numbers of claw-free graphs:

Corollary 2 Let G be a claw-free graph.

(1) If ω(G) = 2, then ωc(G) = 2 follows iff G is perfect and ωc(G) = 2 + 1
k

iff G
is imperfect and C2k+1 is the shortest odd hole in G.

(2) If ω(G) ≥ 3, then ωc(G) = max{ω(G), k′ + 1
2
} where C2k′+1 is the longest

odd antihole in G.

This enables us to completely characterize the circular-(im)perfection of webs as

follows (note that the proof of assertion (3) is given in [9]).

Theorem 3 The web Ck
n is

(1) circular-perfect if k = 1 or n ≤ 2(k + 1) + 1,

(2) circular-perfect if k = 2 and n ≡ 0 (mod 3),
(3) minimal circular-imperfect if k = 2 and n ≡ 1 (mod 3),
(4) circular-imperfect if k = 2 and n ≡ 2 (mod 3),
(5) circular-imperfect if k ≥ 3 and n ≥ 2(k + 2).

Proof. For that, we prove the following sequence of claims.

Claim 4 Any web Ck
n with k = 1 or n ≤ 2(k + 1) + 1 is circular-perfect.
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The webs C1
n are obviously all circular-perfect. Moreover, Ck

n is perfect if n ≤
2(k + 1) and an odd antihole if n = 2(k + 1) + 1, thus Ck

n is circular-perfect if

n ≤ 2(k + 1) + 1. ✸

Thus Claim 4 verifies already assertion (1). In the sequel, we have to consider webs

Ck
n with k ≥ 2 and n ≥ 2(k + 2) only. In [9] it is shown that the webs C2

3α+1 are

minimal circular-imperfect for α ≥ 3; this already ensures assertion (3). In order

to show circular-perfection for the webs C2
3α with α ≥ 3 and circular-imperfection

for all remaining webs, we need the following.

Claim 5 Ck
n with k ≥ 2, n ≥ 2(k + 2) is circular-perfect only if ω(Ck

n) = χ(Ck
n).

We have ω(Ck
n) ≥ 3 and Corollary 2(2) implies ωc(C

k
n) = max{k + 1, k′ + 1

2
}

taken over all odd antiholes Ck′−1
2k′+1 in Ck

n. As C l
n′ ⊂ Ck

n holds only if l < k due to

Trotter [12], we obtain that k +1 > k′ + 1
2

for any odd antihole Ck′−1
2k′+1 in Ck

n. Thus,

ω(Ck
n) = k + 1 = ωc(C

k
n) holds, implying the assertion by ⌈χc(C

k
n)⌉ = χ(Ck

n). ✸

Claim 6 For a web Ck
n with n ≥ 2(k + 2), we have ω(Ck

n) < χ(Ck
n) if and only if

(k + 1)6 | n.

For any non-complete web Ck
n, it is well-known that χ(Ck

n) = ⌈n
α
⌉ holds where

α = α(Ck
n) = ⌊ n

k+1
⌋. Assuming n = α(k + 1) + r with r < k + 1 we obtain

χ(Ck
n) =

⌈

n

α

⌉

=

⌈

α(k + 1) + r

α

⌉

= k + 1 +
⌈

r

α

⌉

implying k + 1 = ω(Ck
n) < χ(Ck

n) whenever r > 0, i.e., whenever (k + 1)6 | n. ✸

Combining Claim 5 and Claim 6 proves assertion (4); the only possible circular-

perfect webs Ck
n satisfy (k + 1)|n. This is obviously true for the webs C2

3α. In

order to show their circular-perfection, we have to ensure that none of them con-

tains a minimal circular-imperfect induced subgraph. By ω(C2
3α) = 3 = χ(C2

3α),
every induced subgraph G′ of C2

3α is clearly 3-colorable. Thus, ω(G′) = 3 im-

plies ωc(G
′) = χc(G

′). The next claim also excludes the occurrence of minimal

circular-imperfect induced subgraphs with less clique number:

Claim 7 No web C2
n contains a (minimal) circular-imperfect graph with clique

number 2 as induced subgraph.

Suppose G′ ⊂ C2
n is triangle-free. Then G′ does not admit any vertex of degree 3

(since every vertex of C2
n together with three of its neighbors contains a triangle).

The assertion follows since all graphs with maximal degree 2 are collections of

paths and cycles, and are thus circular-perfect. ✸

Hence, assertion (2) is true. For the last assertion (5), it is left to show that every

web Ck
n with k ≥ 3 and (k + 1)|n contains a circular-imperfect induced subgraph.
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Claim 8 Any web Ck
α(k+1) with k, α ≥ 3 is circular-imperfect.

We show that all those webs Ck
α(k+1) contain a circular-imperfect web as induced

subgraph. Claim 6 implies that Ck−1
αk−1 is circular-imperfect as k6 | (αk − 1). We

show C2
3α−1 ⊆ Ck

α(k+1) if α < k and Ck−1
αk−1 ⊆ Ck

α(k+1) if α ≥ k with the help of the

following result of Trotter [12]:

Ck′

n′ ⊆ Ck
n if and only if

k′

k
n ≤ n′ ≤

k′ + 1

k + 1
n

Hence, we have C2
3α−1 ⊆ Ck

α(k+1) for α < k since

2

k
α(k + 1) = 2α +

2α

k
≤ 3α − 1 ≤

3

k + 1
α(k + 1) = 3α

holds: the first inequality is satisfied by 2α
k

< 2 ≤ α − 1 if α < k and α ≥ 3; the

second one is trivial. Moreover, Ck−1
αk−1 ⊆ Ck

α(k+1) follows for α ≥ k since

k − 1

k
α(k + 1) = α(k − 1) +

α(k − 1)

k
≤ αk − 1 ≤

k

k + 1
α(k + 1) = αk

holds: the first inequality is satisfied since
α(k−1)

k
≤ α − 1 is true due to α ≥ k; the

second inequality obviously holds again. ✸

Thus, a web Ck
n with k ≥ 3 and n > 2(k+1)+1 is circular-imperfect: if (k+1)6 | n

by Claim 6 and if (k + 1)|n by Claim 8, finally verifying assertion (5). ✷

Corollary 9 The induced prime circular cliques of a strongly circular-perfect graph

are cliques, odd antiholes and odd holes.

Corollary 10 A circular clique is strongly circular-perfect if and only if it is a

clique, an odd antihole, an odd hole, a stable set, or of the form K3k/3 with k ≥ 3.

We end this section with two lemmas discussing the adjacency of odd (anti)holes in

strongly circular-perfect graphs and the behaviour under multiplying vertices. We

call an induced subgraph G′ ⊆ G dominating (resp. antidominating) if every vertex

in G − G′ has at least one neighbor (resp. non-neighbor) in G′.

Lemma 11 Every odd hole or odd antihole in a strongly circular-perfect graph is

dominating as well as antidominating.

Proof. We know from [9] that no vertex of a circular-perfect graph G is totally

joined to any odd hole or odd antihole C in G, thus C is antidominating. If G is

strongly circular-perfect, then the same applies to G and C is also dominating. ✷

Let Gv,S be the graph obtained by multiplication of a vertex v in G by a stable set S
(i.e., v is replaced by |S| vertices having exactly the same neighbors as v in G) and
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let Gv+w be the graph obtained by adding a node w to G, whose only neighbour is

v.

Lemma 12

(i) Gv,S is circular-perfect if and only if G is circular-perfect;

(ii) Gv+w is circular-perfect if and only if G is circular-perfect.

Proof. Notice that both graphs Gv,S and Gv+w contain G as an induced subgraph,

so we only have to prove the if part of both assertions. Hence assume that G is

circular-perfect.

The |S| copies of the vertex v in Gv,S are pairwise non-adjacent and have the same

neighbors. Thus, Gv,S cannot contain any new circular cliques and ωc(Gv,S) =
ωc(G) follows. Furthermore, all copies of v can receive the same color, namely the

previous color of v, implying χc(Gv,S) = χc(G). The same is obviously true for

all induced subgraphs. Hence, as multiplication of vertices does neither change the

circular clique nor the circular chromatic number, the graph Gv,S is circular-perfect.

If G is a stable set then Gv+w is perfect and therefore circular-perfect. If G is not

a stable set then adding the leaf w does neither change the circular clique number

nor the circular chromatic number. Therefore Gv+w is circular-perfect. ✷

3 Triangle-free strongly circular-perfect graphs

The aim of this section is to fully characterize the triangle-free strongly circular-

perfect graphs and to address stable set and recognition problem for these graphs.

Corollary 9 implies that the only prime circular cliques in a triangle-free strongly

circular-perfect graph are cliques and odd holes; we first consider shortest odd holes

in triangle-free strongly circular-perfect graphs.

Lemma 13 Every vertex outside a shortest odd hole O of a triangle-free graph has

at most two neighbours in O. Furthermore, if x has two such neighbours y1 and y2

then y2 has a common neighbour with y1 in O.

Proof. Let x be a vertex outside a shortest odd hole O. W.l.o.g. assume that the

vertices of O are labelled in the canonical cyclic order as {1, . . . , 2p + 1} and let

x1 < . . . < xk be the neighbours of x in O. For every 2 ≤ i ≤ k, let ri =
xi − xi−1 − 1 and let r1 = x1 + 2p + 1 − xk − 1 (see Fig. 2a). We have

2p + 1 = |O|= k +
∑

i=1,...,k

ri (3)
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Since G is triangle-free, we have ri > 0, ∀1 ≤ i ≤ k. As |O| = 2p + 1 is odd, Eq.

(3) implies that there exists j such that rj is even. As O is a shortest odd hole, this

implies that rj = |O| − 1 or rj = |O| − 3. As all ri are positive, Eq. (3) implies

k = 1 (resp. k = 2) if rj = |O| − 1 (see Fig. 2c) (resp. rj = |O| − 3 (see Fig. 2b)).

✷

r1 = 1, r2 = 0, r3 = 1, r4 = 3 r1 = 1, r2 = 6 r1 = 8

Fig. 2a Fig. 2b Fig. 2c

Lemma 14 Let G be a strongly circular-perfect graph with a shortest odd hole O.

Then every edge is incident to the odd hole O.

Proof. Suppose that there is an edge xy which is not incident to O. Let 2p+1 be the

size of O. Then the subgraph H induced by O and the vertices x and y is a strongly

circular-perfect graph, with stability number at most p + 1. Since x has at most 2

neighbours in O, the vertex x does not see at least one maximum stable set of O.

Thus H has stability number p+1. Due to Theorem 3, this implies that the circular

clique number of H is p + 1. As H is circular-perfect, we have χc(H) = p + 1.

Since χ(H) is the upper integer part of χc(H), the graph H is (p + 1)-colorable.

Hence H admits a covering with at most p + 1 cliques Q1, . . . Qp+1. Let Qx (resp.

Qy) be the clique containing x (resp. y). Then at least one of Qx and Qy meets O
in two consecutive vertices, and has therefore at least 3 vertices. This implies that

one of x and y belongs to a triangle: a contradiction. ✷

We are now prepared to prove the following characterization:

Theorem 15 A triangle-free graph G is strongly circular-perfect if and only if G
is bipartite or an interlaced odd hole.

Proof. Only if. Let G be a triangle-free strongly circular-perfect graph. If G is

perfect then G is bipartite and we have nothing to prove. If G is not perfect, then

G contains an induced odd hole or antihole by the Strong Perfect Graph Theorem.

Since G is triangle-free, this means that G contains at least one induced odd hole

O. Let 2k + 1 be the size of this shortest odd hole.

The proof is by induction on the number of vertices: let H(p, n) be the hypothesis

”Every triangle-free strongly circular-perfect graph with a shortest odd hole of size
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2p + 1 and at most n vertices is an interlaced odd hole”.

Let n be the number of vertices of G: we have n ≥ 2p+1. H(p, 2p+1) is obviously

true, hence assume that n > 2p + 1 and that H(p, n − 1) is true.

There exists a vertex x outside the shortest odd hole O. By induction hypothesis,

G − x is an interlaced odd hole and there exists a suitable partition of G − x into

2p+1 non-empty sets A1, . . . , A2p+1 and 2p+1 possibly empty sets B1, . . . , B2p+1,

i.e.,

(1) ∀1 ≤ i ≤ 2p + 1, |Ai| > 1 implies |Ai−1| = |Ai+1| = 1, (with indices modulo

2p + 1),

(2) ∀1 ≤ i ≤ 2p + 1, Bi 6= ∅ implies |Ai| = 1,

and the edge set of G − x is equal to ∪i=1,...,2p+1(Ei ∪ E ′
i), where Ei (resp. E ′

i)

denotes the set of all edges between Ai and Ai+1 (resp. between Ai and Bi).

By Lemma 14 and Lemma 13, x is of degree 1 or 2.

If x is of degree 1 then the neighbour y of x belongs to O due to Lemma 14 again.

Since y belongs to an odd hole of G − x, there exits a set Aj such that y ∈ Aj .

For every 1 ≤ i ≤ 2p + 1 with i 6= j, let B′
i = Bi and let B′

j = Bj ∪ {x}. Then

obviously A1, . . . , A2p+1 and B′
1, . . . , B

′
2p+1 is a suitable partition of G. Thus G is

an interlaced odd hole.

If x is of degree 2 then the neighbours y1 and y2 of x belong to O due to Lemma 14.

By Lemma 13, there exists an index j such that y1 belongs to Aj−1 and y2 belongs

to Aj+1 (or vice-versa). If Aj−1 has at least two vertices, then there exists a shortest

odd hole such that xy1 is not incident to it, a contradiction to Lemma 14. Hence

|Aj−1| = |Aj+1| = 1. Let O′ be the shortest odd hole (O ∪ x) \ Aj . If Bj 6= ∅ then

there are no edges between Bj and O′: a contradiction to Lemma 11 . Thus Bj = ∅.

For every 1 ≤ i ≤ 2p + 1 with i 6= j, let A′
i = Ai and let A′

j = Aj ∪ {x}. Then

obviously A′
1, . . . , A

′
2p+1 and B1, . . . , B2p+1 is a suitable partition of G. Thus G is

an interlaced odd hole. ✸

If.

Let G be a bipartite graph or an interlaced odd hole. If G is bipartite then G is

perfect and therefore strongly circular-perfect. If G is an interlaced odd hole, then

G is circular-perfect due to Lemma 12.

It remains to show that G is circular-perfect as well. The proof is by contradiction:

assume that G is not circular-perfect and take an induced subgraph H of G such

that H is a minimal circular-imperfect graph. We have ωc(H) < χc(H).

Notice that H is not perfect as H is circular-imperfect. Since H is an induced
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subgraph of G this implies that H is an interlaced odd hole and is not an odd hole.

H admits a suitable partition into 2p + 1 non-empty sets A1, . . . , A2p+1 and 2p + 1
possibly empty sets B1, . . . , B2p+1.

Claim 16 We have ωc(H) = α(H).

By construction, 2p+1 is the size of every odd hole of H . As H is triangle-free, H
is claw-free and the prime induced circular-cliques of H are stable sets, cliques, odd

holes and odd antiholes due to Lemma 1. Thus ωc(H) = max{p + 1/2, ω(H) =
α(H)}. As H is not an odd hole, there exists a set Ai with at least 2 vertices or a

non-empty set Bi, and in both cases, α(H) ≥ p + 1. Therefore ωc(H) = α(H) as

required. ✸

Claim 17 H does not have any vertex of degree 1.

Assume that H has a vertex x of degree 1 and let y be the neighbour of x: the

removal of y yields a bipartite graph. Hence H \ {x, y} has a covering Q with

α(H \{x, y}) cliques. Notice that if S is any maximum stable set of H \{x, y} then

S∪{x} is a stable set of H . Hence α(H) > α(H \{x, y}). Therefore Q∪{{x, y}}
is a covering with at most α(H) cliques of H . Thus

α(H) = ωc(H) ≤ χc(H) ≤ χ(H) ≤ α(H)

yields ωc(H) = χc(H), a contradiction. ✸

Claim 18 For every 1 ≤ i ≤ 2p + 1, the set Ai is a singleton.

The proof is similar to the proof of Claim 17. Assume that there is a set Qi with at

least two vertices {x, x′}. The vertex x has two neighbours y and z. The removal

of the set of vertices {x, y, z} yields a bipartite graph. Hence H \ {x, y, z} has a

covering Q with α(H \ {x, y, z}) cliques. We have α(H) > α(H \ {x, y, z}).

Notice that x′ is isolated in H \ {x, y, z}. Hence {x′} ∈ Q. Thus (Q \ {{x′}}) ∪
{{x′, y}, {x, z}} is a covering with at most α(H) cliques of H . Since H − x is

strongly circular-perfect, this implies that H is strongly circular-perfect, a contra-

diction. ✸

Therefore, every set Bi is empty due to Claim 17 and every set Ai is a singleton

due to Claim 18. Thus H is an odd hole, a final contradiction. ✷

In order to treat the stable set problem for triangle-free strongly circular-perfect

graphs, we show that they belong to a subclass of the well-known t-perfect graphs

for which a maximum weight stable set can be found in polynomial time [5]. A

graph is almost-bipartite if it has a vertex v such that G − v is bipartite; such

graphs are t-perfect (see [5]).
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Lemma 19 Interlaced odd holes are almost-bipartite.

Proof. Let G be an interlaced odd hole and ((Ai)1≤i≤2p+1, (Bi)1≤i≤2p+1) be a suit-

able partition of G. Obviously at least one of the sets Ai is a singleton {v} and

G − v is bipartite, as v belongs to all odd holes of G. ✷

As bipartite graphs are almost-bipartite, Lemma 19 and Theorem 15 imply:

Corollary 20 In a triangle-free strongly circular-perfect graph, a maximum weight

stable set can be found in polynomial time.

Remark. Interlaced odd holes are also near-bipartite (for every vertex v, G−N(v)
is bipartite), nearly-bipartite planar (a planar graph such that at most two faces

are bounded by an odd number of edges), series-parallel (it does not contain a

subdivision of K4), strongly t-perfect (it does not contain a subdivision of K4 such

that all four circuits corresponding to triangles in K4 are odd).

It is an open question whether there exists a polynomial time algorithm to recognize

strongly circular-perfect graphs (resp. circular-perfect graphs). However, it is easy

to derive such an algorithm for triangle-free strongly circular-perfect graphs from

our characterization (see Algorithm 1).

Theorem 21 Algorithm 1 works correct in polynomial time.

Sketch of the proof.

1-3 Recognizing a bipartite graph in polynomial time is a standard exercise.

4 The graph is not bipartite. If it is triangle-free without an odd hole then it is

perfect, and therefore bipartite, a contradiction. Hence the graph has a triangle

or a shortest odd hole. In both cases, there exists a shortest odd cycle O which

can be exhibited in polynomial time [8].

5-7 If a shortest odd cycle has size 3 then the graph is not triangle-free.

8-11 The graph is triangle-free. With every vertex oi of the shortest odd hole O, we

define the set Bi as the set of neighbours of oi of degree 1, and Ai as the union

of oi and vertices of degree two with neighbours oi−1 and oi+1.

12- Notice that if the graph is an interlaced odd hole, then the sets Ai and Bi should

be a suitable partition of the vertex set of the graph. This is tested in the remaining

part of the algorithm. ✷

4 Triangle-free minimal strongly circular-imperfect graphs

By the Strong Perfect Graph Theorem, triangle-free minimal imperfect graphs are

odd holes. We prove a similar result for strongly circular-perfectness: triangle-free

strongly circular-imperfect graphs are some odd holes with at most 2 extra-vertices.
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Require: a graph G
Ensure: boolean true if and only if G is triangle-free circular-perfect.

1: if G is bipartite then

2: return TRUE

3: end if

4: compute a shortest odd cycle O = (o1, . . . , o2p+1). (Note that a triangle is an

odd cycle and that computing a shortest odd cycle is much easier than finding

out a shortest odd hole).

From now on, indices are modulo 2p + 1.

5: if p=1 then

6: return FALSE

7: end if

8: for i ∈ 1 . . . 2p + 1 do

9: Bi := {v|deg(v) = 1, |voi ∈ E(G)}
10: Ai := {v|voi−1 ∈ E(G), voi+1 ∈ E(G)} ∪ {oi}
11: end for

12: for i ∈ 1 . . . 2p + 1 do

13: if (|Ai| > 1 and (|Ai+1| > 1 or |Ai−1| > 1)) or (Bi 6= ∅ and |Ai| > 1) then

14: return FALSE

15: end if

16: end for

17: V := ∅; E := ∅
18: for i ∈ 1 . . . 2p + 1 do

19: V := V ∪ Ai ∪ Bi

20: Ei := Ai × Ai+1; E ′
i := Ai × Bi; E := E ∪ Ei ∪ E ′

i

21: end for

22: if V 6= V (G) or E 6= E(G) then

23: return FALSE

24: end if

25: return TRUE

Algorithm 1: A polynomial time recognition algorithm for triangle-free strongly

circular-perfect graphs

To be more precise, let us say that a graph G is an extended odd hole if it admits a

proper partition into an induced odd hole O = {o1, . . . , o2p+1} and a pair of vertices

{x, y} which is connected to O in one of the following ways:

(a) {o1x, xy, o4y}
(b) {o1x, xy, o2y}
(c) {o1x, o3x, xy, o4y}
(d) {o1x, o3x, xy, o2y}
(e) {o1x, o3x, xy, o2y, o4y}
(f) {o1x, o3x, o2y, o4y}

Theorem 22 A triangle-free graph G is minimal strongly circular-imperfect if and
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only if G is either the disjoint union of an odd hole and a singleton or an extended

odd hole.

Proof. Only if. Let G be a triangle-free minimal strongly circular-imperfect graph.

If G does not have any induced odd hole then G is perfect, a contradiction. Let

O be a shortest induced odd hole of G. Notice that O ( G. Let {o1, . . . , o2p+1}
be a labeling of the vertices of O the usual way (oioi+1 is an edge of O for every

1 ≤ i ≤ 2p + 1, and indices modulo 2p + 1).

Claim 23 If there is a vertex x of degree 0 then G is the disjoint union of O and

the singleton x.

If x is of degree 0 then x /∈ O. By Lemma 11, the induced subgraph O ∪ {x} is

strongly circular-imperfect, hence G = O ∪ {x}. ✸

Claim 24 If there is a unique vertex x of G outside O then G is the disjoint union

of O and the singleton x.

If x is not isolated, G is an interlaced odd hole by Lemma 13, a contradiction. ✸

Thus, we may assume from now on, that G has at least two vertices outside O. We

have to prove that G is an extended odd hole.

Claim 25 Every vertex of G is of degree at least 2.

By Claim 23, every vertex is of degree at least 1. If there exists a vertex v in G
of degree 1, then obviously v /∈ O. Notice that G′ = G − v is triangle-free

strongly circular-perfect. Hence by Theorem 15, G′ is bipartite or an interlaced

odd hole. The case G′ bipartite is excluded, otherwise G would be also bipartite.

Let ((Ai)i=1..2p+1, (Bi)i=1..2p+1) be a suitable partition of G′. The neighbour w of

v belongs obviously to O (if not, O ∪ {v} would be a proper induced strongly

circular-imperfect graph). Thus there exists an index i such that w ∈ Ai. If Ai

is of size 1 then G is an interlaced odd hole, a contradiction. Hence there exists

t ∈ Ai \ {w}. Thus ((O \ {w}) ∪ {t}) ∪ {v} is a proper induced subgraph of G
which is the disjoint union of an odd hole and a singleton, and is therefore strongly

circular-imperfect, a final contradiction. ✸

Claim 26 If G has at least 3 vertices outside O then G \ O is a stable set and for

every vertex v of G outside O, there exists an index f(v) such that NG(v) ∩ O =
{of(v), of(v)+2} (with indices modulo 2p + 1).

Assume that there is an edge ab which is not incident to O and let c be a third

vertex outside O. Then G − c is an interlaced odd hole with the edge ab which is

not incident to the odd hole O, a contradiction to Lemma 14. Hence G \ O is a

stable set. Let v be a vertex of G outside O. Let w be another vertex of G outside

O. Since G − w is an interlaced odd hole and v /∈ O, this implies with Claim 25
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that v has exactly two neighbours on O, and that there exists an index f(v) such

that NG(v) ∩ O = {of(v), of(v)+2} (with indices modulo 2p + 1). ✸

Claim 27 There are exactly two vertices of G outside O.

Assume that there are at least 3 vertices outside O. Hence Claim 26 applies: for

every v /∈ O, let f(v) be the index such that NG(v) ∩ O = {of(v), of(v)+2} (with

indices modulo 2p + 1).

For every 1 ≤ i ≤ 2p + 1, let Ai be the set of vertices {oi} ∪ {v| v /∈ O, f(v) =
i − 1}. Notice that the edge set of G is precisely ∪i=1,...,2p+1Ei, where Ei denotes

the set of all edges between Ai and Ai+1. Every set Ai is obviously non-empty. If

there exists i such that Ai and Ai+1 are both of size at least 2, then let ai ∈ Ai \{oi}
and let ai+1 ∈ Ai+1 \ {oi+1}. Since there are at least 3 vertices outside O, there is

also a vertex z outside O, distinct of ai and ai+1. Then G − z is an interlaced odd

hole, with a shortest odd hole O′ = (O \ {oi}) ∪ {ai} and an edge oiai+1 which

is not incident to O′: a contradiction with Lemma 14. Hence ∀1 ≤ i ≤ 2p + 1,

|Ai| > 1 implies |Ai−1| = |Ai+1| = 1, (with indices modulo 2p + 1).

Therefore G is an interlaced odd hole and is circular-perfect: a contradiction. Hence

there are exactly two 2 vertices outside O. ✸

From now on, assume that x and y are the two distinct vertices of G outside O.

Since G − y (resp. G − x) is an interlaced odd hole and x /∈ O (resp. y /∈ O),

this implies that there exists an index f(x) (resp. f(y)) such that NG(x) ∩ O =
{of(x), of(x)+2} or NG(x) ∩ O = {of(x)} (resp. NG(y) ∩ O = {of(y), of(y)+2} or

NG(y) ∩ O = {of(y)} ) (with indices modulo 2p + 1).

Claim 28 If x is not adjacent to y then G is an extended odd hole of type f .

Due to Claim 25, we have NG(x) ∩ O = {of(x), of(x)+2} and NG(y) ∩ O =
{of(y), of(y)+2}. Notice that if f(x) 6= f(y) ± 1 (mod 2p + 1) then G is an in-

terlaced odd hole, a contradiction. Hence f(x) = f(y)± 1 (mod 2p + 1) and G is

an extended odd hole of type f . ✸

In the following, we assume that x is adjacent to y. We have to prove that G is an

extended odd hole of type a, b, c, d or e.

Claim 29 If NG(x)∩O = {of(x), of(x)+2} and NG(y)∩O = {of(y), of(y)+2} then

G is an extended odd hole of type e.

Let z = of(y)+1. Notice that O′ = (O\{z})∪{y} is an induced odd hole of G− z.

If z 6= of(x) or of(x)+2 then x is a vertex of G − z outside O′ with 3 neighbours in

O′. Hence G − z is not an interlaced odd hole, a contradiction as it is not bipartite.

Thus f(x) = f(y) ± 1 and G is an extended odd hole of type e. ✸
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Claim 30 If (NG(x)∩O = {of(x), of(x)+2} and NG(y)∩O = {of(y)}) or (NG(y)∩
O = {of(y), of(y)+2} and NG(x) ∩O = {of(x)}) then G is an extended odd hole of

type c or d.

Assume w.l.o.g. that NG(x) ∩ O = {of(x), of(x)+2} and NG(y) ∩ O = {of(y)}. Let

z = of(x)+1. Notice that O′ = (O \ {z}) ∪ {x} is an induced odd hole of G − z.

If z = of(y) then G is an extended odd hole of type d. If z 6= f(y) then y has

two neighbours in O′, and one of them is x. Since G − z is an interlaced odd hole,

this implies that of(y) is at distance 2 in O′ from x. Hence f(y) = f(x) + 3 of

f(y) = f(x) − 1. In both cases, G is an extended odd hole of type c. ✸

Claim 31 If NG(x)∩O = {of(x)} and NG(y)∩O = {of(y)} then G is an extended

odd hole of type a or b.

Assume w.l.o.g. that f(x) ≥ f(y). The case f(x) = f(y) is excluded as G is

triangle-free. If f(x) − f(y) is even, notice that

{x, y, of(y), of(y)+1, . . . , of(x)} induces an odd hole. If f(x) = f(y) + 2p then

f(x) = 1, f(y) = 2p + 1 and G is an extended odd hole of type b. If f(x) <
f(y)+2p then the subgraph G\{of(x)+1} is an interlaced odd hole. Hence f(x)+2
is adjacent to the odd hole {x, y, f(y), f(y) + 1, . . . , f(x)}. Thus (f(x) + 2) +1 =
f(y) (mod 2p + 1). This implies that G is an extended odd hole of type a as

f(y) = f(x) + 3 (mod 2p + 1). If f(x) − f(y) is odd, notice that {x, y} ∪
{1, 2 . . . , of(y)}∪{of(x), of(x)+1, . . . , 2p+1} induces an odd hole. If f(x) = f(y)+1
then G is an extended odd hole of type b. If f(x) > f(y) + 1 then the subgraph

G \ {of(y)+1} is an interlaced odd hole. Hence of(y)+2 is adjacent to the odd hole

{x, y}∪{1, 2 . . . , of(y)}∪{of(x), of(x)+1, . . . , 2p+1}. Thus (f(y)+2)+1 = f(x)
(mod 2p + 1). This implies that G is an extended odd hole of type a as f(x) =
f(y) + 3 (mod 2p + 1). ✸

If. The disjoint union of an odd hole and a singleton is strongly circular-imperfect

due to Lemma 11. If G is an extended odd hole, then G is strongly circular-

imperfect as no extended odd hole is an interlaced odd hole. Let v be a vertex

of G. It is straightforward to check that G− v is bipartite or an interlaced odd hole,

and therefore strongly circular-perfect, whatever the type (a, b, c, d, e or f ) of G is.

✷
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