
HAL Id: hal-00308135
https://hal.science/hal-00308135

Submitted on 29 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bridge Between the Asynchronous Message Passing
Model and Local Computations in Graphs

Jérémie Chalopin, Yves Métivier

To cite this version:
Jérémie Chalopin, Yves Métivier. A Bridge Between the Asynchronous Message Passing Model and
Local Computations in Graphs. International Symposium on Mathematical Foundations of Computer
Science (MFCS 2005), Aug 2005, Poland. pp.212–223. �hal-00308135�

https://hal.science/hal-00308135
https://hal.archives-ouvertes.fr

A Bridge between the Asynchronous Message

Passing Model and Local Computations in
Graphs (Extended Abstract)

Jérémie Chalopin and Yves Métivier

{chalopin,metivier}@labri.fr
LaBRI Université Bordeaux 1, ENSEIRB,

351 cours de la Libération
33405 Talence, France

1 Introduction

A distributed system is a collection of processes that can interact. Three major
process interaction models in distributed systems have principally been con-
sidered: - the message passing model, - the shared memory model, - the local
computation model. In each model the processes are represented by vertices of
a graph and the interactions are represented by edges. In the message pass-
ing model and the shared memory model, processes interact by communication
primitives: messages can be sent along edges or atomic read/write operations
can be performed on registers associated with edges. In the local computation
model interactions are defined by labelled graph rewriting rules; supports of rules
are edges or stars. These models (and their sub-models) reflect different system
architectures, different levels of synchronization and different levels of abstrac-
tion. Understanding the power of various models, the role of structural network
properties and the role of the initial knowledge enhances our understanding of
basic distributed algorithms. This is done with some typical problems in dis-
tributed computing: election, naming, spanning tree construction, termination
detection, network topology recognition, consensus, mutual exclusion. Further-
more, solutions to these problems constitute primitive building blocks for many
other distributed algorithms. A survey may be found in [FR03], this survey
presents some links with several parameters of the models including synchrony,
communication media and randomization. An important goal in the study of
these models is to understand some relationships between them. This paper is
a contribution to this goal; more precisely we establish a bridge between tools
and results presented in [YK96] for the message passing model and tools and
results presented in [Ang80,BCG+96,Maz97,CM04,CMZ04,Cha05] for the local
computation model.

In the message passing model studied by Yamashita and Kameda in [YK96],
basic events are: send events, receive events, internal events and transmission
events. They have obtained characterizations of graphs permitting a leader elec-
tion algorithm, a spanning tree construction algorithm and a topology recogni-
tion algorithm. For this, they introduced the concept of view. The view from a

vertex v of a graph G is an infinite labelled tree rooted in v obtained by consid-
ering all labelled walks in G starting from v. The characterizations use also the
notion of symmetricity. The symmetricity of a graph depends on the number of
vertices that have the same view. The local computation model has been studied
intensively since the pioneer work of Angluin [Ang80]. A basic event changes the
state attached to one vertex or the states of a group of neighbouring vertices. The
new state depends on the state of one neighbour or depends on the states of a
group of neighbours (some examples are presented in [RFH72,BV99,BCG+96]).
Characterizations of graphs, for the existence of an election algorithm, have been
obtained using classical combinatorial material like the notions of fibration and
of covering: special morphisms which ensure isomorphism of neighbourhoods of
vertices or arcs. Some effective characterizations of computability of relations in
anonymous networks using fibrations and views are given in [BV01]. The new
state of a vertex must depend on the previous state and on the states of the
in-neighbours.

The Election Problem and the Naming Problem. The election problem is
one of the paradigms of the theory of distributed computing. It was first posed
by LeLann [LeL77]. A distributed algorithm solves the election problem if it
always terminates and in the final configuration exactly one process is marked
as elected and all the other processes are non-elected. Moreover, it is supposed
that once a process becomes elected or non-elected then it remains in such a state
until the end of the algorithm. Election algorithms constitute a building block of
many other distributed algorithms. The naming problem is another important
problem in the theory of distributed computing. The aim of a naming algorithm
is to arrive at a final configuration where all processes have unique identities.
Being able to give dynamically and in a distributed way unique identities to all
processes is very important since many distributed algorithms work correctly
only under the assumption that all processes can be unambiguously identified.
The enumeration problem is a variant of the naming problem. The aim of a
distributed enumeration algorithm is to assign to each network vertex a unique
integer in such a way that this yields a bijection between the set V (G) of vertices
and {1, 2, . . . , |V (G)|}.

The Main Results. In Section 3 we introduce a new labelled directed graph
which encodes a network in which processes communicate by asynchronous mes-
sage passing with a symmetric port numbering. The basic events (send, receive,
internal, transmission) are encoded by local computations on arcs. From this
directed graph, we deduce necessary conditions for the existence of an election
(and a naming) algorithm on a network (Proposition 4). The conditions are also
sufficient (Theorem 1): we give a naming (and an election) algorithm in Sec-
tion 5 (Algorithm 1). This algorithm is totally asynchronous (the Yamashita
and Kameda algorithm needs a pseudo-synchronization). Furthermore, our al-
gorithm does not need the FIFO property of channels (i.e., it does not require
that messages are received in the same order as they have been sent). The size of
the buffer does not interfere in the impossibility proof for the election. Moreover,
we present a fully polynomial algorithm. Given a graph G with n vertices and m

edges, in Yamashita and Kameda algorithm the size of each message can be 2n

whereas in our algorithm the size is bounded by O(m log n) and the number of
messages is O(m2n). Another consequence of this bridge between these models is
a direct characterization of graphs having a symmetricity equal to 1 in the sense
of Yamashita and Kameda using the notion of covering. The same techniques
can be applied to some other problems such as spanning tree computation or the
topology recognition problem. We can note also that our algorithm may elect
even if the necessary condition is not verified: in this case an interesting problem
is the study of the probability of this event.

2 Preliminaries

The notations used here are essentially standard. The definitions and main prop-
erties are presented in [BV02]. We consider finite, undirected, connected graphs
having possibly self-loops and multiple edges, G = (V (G), E(G), Ends), where
V (G) denotes the set of vertices, E(G) denotes the set of edges and Ends is a map
assigning to every edge two vertices: its ends. A symmetric digraph (V, A, s, t) is
a digraph endowed with a symmetry, that is, an involution Sym : A → A such
that for every a ∈ A : s(a) = t(Sym(a)). Labelled graphs will be designated
by bold letters like G, H, ... If G = (G, λ) is a labelled graph then G denotes
the underlying graph and λ denotes the labelling function. The labelling may
encode any initial process knowledge. Examples of such knowledge include: (a
bound on) the number of processes, (a bound on) the diameter of the graph,
the topology, identities or partial identities, distinguished vertices. The notion
of fibration and of of covering are fundamental in this work.

Definition 1. A fibration between the digraphs D and D′ is a morphism ϕ from
D to D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v
and ϕ(a) = a′.

The arc a is called the lifting of a′ at v, D is called the total digraph and
D′ the base of ϕ. We shall also say that D is fibred (over D′). In the sequel
directed graphs are always strongly connected and total digraphs non empty
thus fibrations will be always surjective.

Definition 2. An opfibration between the digraphs D and D′ is a morphism
ϕ from D to D′ such that for each arc a′ of A(D′) and for each vertex v of
V (D) such that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such
that s(a) = v and ϕ(a) = a′. A covering projection is a fibration that is also an
opfibration.

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via
ϕ. Covering projections verify:

Proposition 1. A covering projection ϕ : D → D′ with a connected base and
a nonempty covering is surjective; moreover, all the fibres have the same cardi-
nality. This cardinality is called the number of sheets of the covering.

A digraph D is covering prime if there is no digraph D′ not isomorphic to D such
that D is a covering of D′ (i.e., D is a covering of D′ implies that D is isomorphic
to D′). Let D and D′ be two digraphs such that D is a surjective covering of
D′ via ϕ. If D′ has no self-loop then for each arc a ∈ A(D) : ϕ(s(a)) 6= ϕ(t(a)).
Finally the following property is a direct consequence of the definitions and it is
fundamental in the sequel of this paper :

Proposition 2. Let D and D′ be two digraphs such that D′ has no self-loop
and D is a surjective covering of D′ via ϕ. If a1 6= a2 and a1, a2 ∈ ϕ−1(a′)
(a′ ∈ A(D′)) then Ends(a1) ∩ Ends(a2) = ∅.

The notions of fibrations and of coverings extend to labelled digraphs in an
obvious way: the morphisms must preserve the labelling. Examples of coverings
are given in Figures 1 and 2.

Local Computations on Arcs. In this paper we consider labelled digraphs
and we assume that local computations modify only labels of vertices. Digraph
relabelling systems on arcs and more generally local computations on arcs satisfy
the following constraints, that arise naturally when describing distributed com-
putations with decentralized control: -(C1) they do not change the underlying
digraph but only the labelling of vertices, the final labelling being the result of
the computation (relabelling relations), -(C2) they are local, that is, each rela-
belling step changes only the label of the source and the label of the target of an
arc, -(C3) they are locally generated, that is, the applicability of a relabelling rule
on an arc only depends on the label of the arc, the labels of the source and of the
target (locally generated relabelling relation). The relabelling is performed until
no more transformation is possible, i.e., until a normal form is obtained. Let R
be a locally generated relabelling relation, R∗ stands for the reflexive-transitive
closure of R . The labelled digraph D is R-irreducible (or just irreducible if R
is fixed) if there is no D1 such that D R D1.

3 From Asynchronous Message Passing to Local
Computations on Arcs

The model. Our model follows standard models for distributed systems given in
[AW98,Tel00]. The communication model is a point-to-point communication net-
work which is represented as a simple connected undirected graph where vertices
represent processes and two vertices are linked by an edge if the corresponding
processes have a direct communication link. Processes communicate by message
passing, and each process knows from which channel it receives a message or it
sends a message. An edge between two vertices v1 and v2 represents a channel
connecting a port i of v1 to a port j of v2. We consider the asynchronous message
passing model: processes cannot access a global clock and a message sent from
a process to a neighbour arrives within some finite but unpredictable time.

From Undirected Labelled Graphs to Labelled Digraphs. A first ap-
proximation of a network, with knowledge about the structure of the underlying

graph, is a simple labelled graph G = (V (G), E(G)). We associate to this undi-

rected labelled graph a labelled digraph
←→
G = (V (

←→
G), A(

←→
G)) defined in the

following way. (This construction is illustrated in Figure 1 and in Figure 2).

G

Dir(G)

H

1 1

11

(
↔

G, κG, NumG)

1

1

(
↔

H, κH , NumH)

↔

ϕ

ϕ

Fig. 1. We adopt the following notation conventions for vertices of (
↔

G, κG, NumG)

and (
↔

H, κH , NumH). A black-circle vertex corresponds to the label process,

a square vertex corresponds to the label send, a diamond vertex corresponds
to the label transmission, and a square-dot vertex corresponds to the label

receive. The digraph (
↔

G, κG, NumG) is a covering of (
↔

H, κH , NumH) and the
port numbering is symmetric. Thus there is no election algorithm for G.

Let u and v be two vertices of G such that u and v are neighbours, we asso-
ciate to the edge {u, v} the set V{u,v} of 6 vertices denoted {outbuf(u, v), t(u, v),
inbuf(u, v), outbuf(v, u), t(v, u), inbuf(v, u)}, and the set A{u,v} of 8 arcs de-
fined by: {(u, outbuf(u, v)), (outbuf(u, v), t(u, v)), (t(u, v), inbuf(u, v)),
(inbuf(u, v), v), (v, outbuf(v, u)), (outbuf(v, u), t(v, u)), (t(v, u), inbuf(v, u)),
(inbuf(v, u), u)}.

Finally, V (
←→
G) = V (G) ∪ (

⋃

{u,v}∈E(G)

V{u,v}) and A(
←→
G) =

⋃

{u,v}∈E(G)

A{u,v}.

The arc (u, outbuf(u, v)) is denoted out(u, v), receiver(out(u, v)) is the ver-
tex v, and the arc (inbuf(v, u), u) is denoted by in(v, u).

If G = (G, λ) then
←→
G = (

←→
G , λ←→

G
) where λ←→

G
(v) = λ(v) for each v ∈ V (G).

In the sequel we consider digraphs obtained by this construction; in general
networks are anonymous: vertices have no name. Nevertheless we need to mem-

orize the meaning (semantic) of vertices thus we label vertices of
←→
G with a la-

belling function κ, the set of labels is: {process, send, receive, transmission},

- if a vertex x of V (
←→
G) corresponds to a vertex u of V (G) then κ(x) = process,

- if a vertex x of V (
←→
G) corresponds to a vertex of the form outbuf(u, v) then

κ(x) = send, - if a vertex x of V (
←→
G) corresponds to a vertex of the form

inbuf(u, v) then κ(x) = receive, - if a vertex x of V (
←→
G) corresponds to a ver-

tex of the form t(u, v) then κ(x) = transmission. Using a new label neutral, κ

is extended to (V (
←→
G), A(

←→
G)). We denote by E the map which associates to a

labelled graph G the labelled digraph E(G) = (
←→
G , κ) described above.

Two adjacent vertices of E(G) = (
←→
G , κ) have different labels thus if the

digraph E(G) = (
←→
G , κ) is a covering of a digraph D then D has no self-loop.

G′

Dir(G′)

H ′

2 1

12

1 2

21

1

22

1 2

11

2

(
↔

G′, κG′ , NumG′)

1

2 2

1

(
↔

H ′, κH′ , NumH′)

↔

ϕ′

ϕ′

Fig. 2. With the notation conventions of Figure 1, we deduce from the covering relation
and the symmetry of the port numbering that there is no election algorithm
for the graph G′. With the same argument the same result is obtained for any
ring.

Remark 1. By the insertion of special vertices in arcs and the labelling of ver-

tices, we define a transformation E ′ such that (
←→
G , κ) can be obtained directly

from Dir(G), i.e., E ′(Dir(G)) = (
←→
G , κ). Furthermore if Dir(G) is a covering

of a labelled digraph D then (
←→
G , κ) is a covering of E ′(D).

Port Numbering and Symmetric Port Numbering. We can notice, that

for a digraph E(G) = (
←→
G , κ), if we consider a vertex x labelled process then

deg+(x) = deg−(x). Each process knows from which channel it receives a mes-
sage or it sends a message, that is, each process assigns numbers to its ports.
Thus we consider a labelling Num of arcs of E(G) coming into or going out
of vertices labelled process such that for each vertex x labelled process the
restriction of Num assigns to each outgoing arc a unique integer of [1, deg+(x)]
and assigns to each arc coming into a unique integer of [1, deg−(x)], such a la-
belling is a local enumeration of arcs incident to process vertices and it is called
a port numbering. In a message passing system the communication is done over
communication channels. A channel provides a bidirectional connection between
two processes. Finally, the topology is encoded by an undirected graph G where
an edge corresponds to a channel. Let v be a vertex of G, the port numbering

for the vertex v is defined by an enumeration of edges incident to the vertex

v, this enumeration induces an enumeration of the arcs of (
←→
G , κ). This enu-

meration is symmetric, i.e., Num verifies for each arc of the form out(u, v) :
Num(out(u, v)) = Num(in(v, u)); this condition is called the symmetry of the
port numbering (or equivalently of Num). Such a port numbering is said sym-
metric. Again, using the special label neutral, Num is considered as a labelling

function of E(G). The graph (
←→
G , κ, Num) is denoted by H(G). The hypothesis

of the symmetry of the port numbering is done in [YK96] and it corresponds to
the complete port awareness model in [BCG+96].

Basic Instructions. As in [YK96] (see also [Tel00] pp. 45-46), we assume that
each process, depending on its state, either changes its state, or receives a mes-
sage via a port or sends a message via a port. Let Inst be this set of instructions.
This model is equivalent to the model of local computations on arcs with respect
to the initial labelling as it is depicted in the following remark.

Remark 2. Let G be a labelled graph, let H(G) = (
←→
G , κ, Num) be the labelled

digraph obtained from G. The labelled digraph H(G) enables to encode the
following events using local computations on arcs: - an internal event “a process
changes its state” can be encoded by a relabelling rule concerning a vertex
labelled process, - a send event “the process x sends a message via the port
i” can be encoded by a relabelling rule concerning an arc of the form (x, y)
with κ(x) = process, κ(y) = send and Num((x, y)) = i, - a receive event “the
process y receives a message via the port i” can be encoded by a relabelling
rule concerning an arc of the form (x, y) with κ(x) = receive, κ(y) = process
and Num((x, y)) = i, - an event concerning the transmission control can be
encoded by a relabelling rule concerning an arc of the form (x, y) or (y, z) with
κ(x) = send, κ(y) = transmission and κ(z) = receive.

The Election and the Naming Problems. Consider a network G with a
symmetric port numbering Num. An algorithm A is an election algorithm for

(
←→
G , κ, Num) if each execution of A on G with the port numbering Num suc-

cessfully elects a process. We are particularly interested in characterizing the
networks that admit an election algorithm whatever the symmetric port num-
bering is. We say that an algorithm A is an election algorithm for a graph
G if for each symmetric port numbering Num, A is an election algorithm for

(
←→
G , κ, Num). We will use the same conventions for the naming problem.

4 A Necessary Condition for the Election Problem and
the Naming Problem

First, we present a fundamental lemma which connects coverings and locally
generated relabelling relations on arcs. It is the natural extension of the Lifting
Lemma [Ang80] and it is a direct consequence of Proposition 2.

Lemma 1 (Lifting Lemma). Let R be a locally generated relabelling relation
on arcs and let D1 be a covering of the digraph D′1 via the morphism γ; we

assume that D′1 has no self-loop. If D′1 R
∗ D′2 then there exists D2 such that

D1 R∗ D2 and D2 is a covering of D′2 via γ.

As a direct consequence of this lemma and of Proposition 1, if D2 is a proper
covering of D′2, each label that appears in D′2 appears at least twice in D2 and
therefore, we have the following result.

Proposition 3. Let G be an undirected labelled graph. Let Num be a port num-

bering of G. If the labelled digraph (
←→
G , κ, Num) is not covering prime then there

is no election algorithm and no naming algorithm for the graph G with Num as
port numbering using Inst as set of basic instructions.

The election algorithm must work whatever the symmetric port numbering

is. Let (
←→
G , κ) be a covering of (

←→
G ′, κ′), and let Num be a local enumeration of

arcs incident to vertices labelled process in the graph (
←→
G ′, κ′). The labelling

Num induces a port numbering of (
←→
G , κ) which is not necessarily symmetric

(see the example in Figure 3).

K

B3

Fig. 3. There exists exactly one digraph B3 such that Dir(K) is a covering of B3 :
it is the 3-bouquet (the digraph with one node and three self-loops [BV02]).
Thus E ′(Dir(K)) is a covering of E ′(B3) (Remark 1). It is easy to verify that no
lifting of a local enumeration of arcs of E ′(B3) gives a symmetric port numbering
of E ′(Dir(K)). Thus Dir(K) is symmetric covering prime although it is not
covering prime (see Definition 4). It follows from Theorem 1 that a naming
algorithm exists for the graph K.

Before the next propositions we need two definitions [BV02]:

Definition 3. Let D1 and D2 be two symmetric labelled digraphs, let Sym1

and Sym2 be symmetric relations of D1 and D2, D1 is a covering of D2 modulo
Sym1 and Sym2 if there exists a morphism ϕ such that D1 is a covering of D2

via ϕ and ϕ ◦ Sym1 = Sym2 ◦ ϕ.

Definition 4. Let D1 be a symmetric digraph, D1 is symmetric covering prime
if whenever there exists a symmetric relation Sym1 of D1, a symmetric digraph
D2 with a symmetric relation Sym2 of D2 such that D1 is a covering of D2

modulo Sym1 and Sym2 then D1 is isomorphic to D2.

From these definitions, there exists a symmetric port numbering Num of G such

that (
←→
G , κ, Num) is not covering prime if and only if Dir(G) is not symmetric

covering prime. Finally:

Proposition 4. Let G be an undirected graph. If the labelled digraph Dir(G) is
not symmetric covering prime then there is no election algorithm and no naming
algorithm for the graph G using Inst as set of basic instructions.

As immediate consequences of this result we deduce two classical results:
there exists no deterministic election algorithm in an anonymous network of
two processes that communicate by asynchronous message passing ([Tel00] p.
316) and more generally there exists no deterministic algorithm for election in
an anonymous ring of known size ([Tel00] Theorem 9.5 p. 317) (sketches of the
proofs are given in Figure 1 and in Figure 2).

5 A Mazurkiewicz-like Algorithm

The aim of this section is to prove the main result of this work:

Theorem 1. Let G be a graph. There exist an election algorithm and a naming
algorithm for G if and only if Dir(G) is symmetric covering prime.

The necessary part is Proposition 4, the following algorithm proves the other
part. In [Maz97] Mazurkiewicz presents a distributed enumeration algorithm for
non-ambiguous graphs (see also [GMM04]). The computation model in [Maz97]
allows relabelling of all vertices in balls of radius 1. In the following we adapt
Mazurkiewicz algorithm to graphs with port numbering and using Inst as set of
basic instructions. We shall denote our algorithmM.

Description of M. We first give a general description of the algorithm M
applied to a labelled graph G equipped with a port numbering Num. We as-
sume that G is connected. Let G = (G, λ) and consider a vertex v0 of G, and
the set {v1, ..., vd} of neighbours of v0. During the computation, each vertex
v0 will be labelled by a pair of the form (λ(v0), c(v0)), where c(v0) is a triple
(n(v0), N(v0), M(v0)) representing the following information obtained during the
computation (formal definitions are given below): n(v0) ∈ N is the number of the
vertex v0 computed by the algorithm, N(v0) ∈ N is the local view of v0, this view
can be either empty or it is a set of the form: {((n(vi), ps,i, pr,i), λ(vi))|1 ≤ i ≤ d},
M(v0) ⊆ L×N×N is the mailbox of v0 containing the whole information received
by v0 at previous computation steps. Let (((n(vi), ps,i, pr,i), λ(vi))1 ≤ i ≤ d) be
the local view of v0. For each i, (n(vi), ps,i, pr,i)) encodes a neighbour vi of v0,
where: n(vi) is the number of vi, vi has sent its number to v0 via the port ps,i,
and v0 has received this message via the port pr,i. Each vertex v gets information
from its neighbours via messages and then attempts to calculate its own number
n(v), which will be an integer between 1 and |V (G)|. If a vertex v discovers the
existence of another vertex u with the same number, then it compares its own
label and its own local view with the label and the local view of u. If the label of

u or the local view of u is “stronger”, then v chooses another number. Each new
number, with its local view, is broadcasted again over the network. At the end
of the computation, it is not guaranteed that every vertex has a unique number,

unless the graph (
←→
G , κ, Num) is covering prime. However, all vertices with the

same number will have the same label and the same local view.

Algorithm 1: The algorithmM.

Var : n(v0) : integer init 0 ;
N(v0) : set of local view init ∅;
N : set of local view ;
M(v0) : mailbox init ∅;
M, Ma : mailbox;
λ(v0), ca, l : element of L;
i, x, p, q, na : integer;

I0 : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1;
M(v0) := {(λ(v0), 1, ∅)};
for i := 1 to deg(v0) do send< (n(v0), M(v0)), i > via port i ;

end

R0 : {A message < mes= (na, Ma) , p > has arrived at v0 from port q}
begin

M := M(v0);
M(v0) := M(v0) ∪Ma;
if ((x, p, q) /∈ N(v0) for some x) then

N(v0) := N(v0) ∪ {(na, p, q)};

if ((x, p, q) ∈ N(v0) for some x < na) then
N(v0) := (N(v0) \ {(x, p, q)}) ∪ {(na, p, q)};

if (n(v0) = 0) or (n(v0) > 0 and there exists (l, n(v0), N) ∈M(v0)
such that (λ(v0) <L l) or ((λ(v0) = l) and (N(v0) ≺ N)))) then

n(v0) := 1 + max{n ∈ N | (l, n, N) ∈M(v0) for some l, N};
M(v0) := M(v0) ∪ {(λ(v0), n(v0), N(v0))};

if (M(v0) 6= M)) then
for (i := 1 to deg(v0)) do send < (n(v0), M(v0)), i > via port i;

end

An Order on Local Views. We assume for the rest of this paper that the
set of labels L is totally ordered by <L. Consider a vertex v such that the local
view N(v) ∈ N is the set {(n1, ps,1, pr,1), (n2, ps,2, pr,2), . . . , (nd, ps,d, pr,d)}. We
assume that for each i < d, (ni+1, ps,i+1, pr,i+1) <Lex (ni, ps,i, pr,i) where <Lex

denotes the usual lexical order. We say that ((n1, ps,1, pr,1), (n2, ps,2, pr,2), . . . ,
. . . (nd, ps,d, pr,d)) is the ordered representation N>(v0) of the local view of v0.
Let N> be the set of such ordered tuples. We define a total order ≺ on N> using
the alphabetical order that induces naturally a total order on N . This order can
also be defined on N as follows: N1 ≺ N2 if the maximal element for the lexical

order <Lex of the symmetric difference N14N2 = N1 ∪N2 \N1∩N2 belongs to
N2. If N(u) ≺ N(v), then we say that the local view N(v) of v is stronger than
the one of u.

The Final Labelling. Let G = (G, λ) be a connected labelled graph with the
port numbering Num. If v is a vertex of G then the label of v after a run ρ ofM
is denoted (λ(v), cρ(v)) with cρ(v) = (nρ(v), Nρ(v), Mρ(v)) and (λ, cρ) denotes
the final labelling. FinallyM verifies:

Proposition 5. Any run ρ ofM on G = (G, λ), a connected labelled graph with
the port numbering Num, terminates and yields a final labelling (λ, cρ) verifying
the following conditions for all vertices v, v′ of G:

1. there exists an integer k ≤ V (G) such that {nρ(v) | v ∈ V (G)} = [1, k].
2. Mρ(v) = Mρ(v

′).
3. (λ(v), nρ(v), Nρ(v)) ∈Mρ(v

′).
4. Let (l, n, N) ∈ Mρ(v

′). Then λ(v) = l, nρ(v) = n and Nρ(v) = N for some
vertex v if and only if there is no triple (l′, n, N ′) ∈ Mρ(v

′) with l <L l′ or
(l = l′ and N ≺ N ′).

5. nρ(v) = nρ(v
′) implies (λ(v) = λ(v′) and N(v) = N(v′)).

Consider a graph G that is symmetric covering prime. For each port number-

ing Num, the graph (
←→
G , κ, Num) is covering prime and then from Proposition

5, at the end of the computation, each vertex v ∈ V (G) has a unique number
n(v). Moreover, once a vertex gets a number n(v) = |V (G)|, it knows that all the
vertices have a unique identifier, it can take the label elected and broadcast the
information. Theorem 1 follows from Proposition 5 and the impossibility results
of the previous section.

Remark 3. The proof of this proposition uses increasing properties and invari-
ant properties as in [Maz97]. In particular, the number n(v) (resp. the mailbox
M(v)) can only increase for the order ≤ (resp. for ⊆) during the computa-
tion. Consequently, if a message m1 = (n1(v), M1(v), p) has been sent before
m2 = (n2(v), M2(v), p) by a vertex v to a node w is such that m2 arrives be-
fore m1, then when the message m1 is read by w, M1(v) (M2(v) ⊆ M(w)
and n1(v) ≤ n2(v). Consequently, this message does not modify the state of the
vertex w and can be considered as ignored by the vertex w. We can therefore
deduce that Algorithm 1 does not require ordering of messages, that is, it does
not require that messages are received in the same order that they have been
sent.
Remark 4. Note that not all the elements of M(v) are useful during the whole
computation. In fact, for all (n, l1, N1), (n, l2, N2) ∈ M(v), if l1 <L l2 or l1 = l2
and N1 ≺ N2, we can remove (n, l1, N1) from M(v). Consequently, if we remove
all such elements of M(v), we get for each number n exactly one element in M(v).
If we can encode the labels l of L with O(log |V (G)|) bits, then the size of the
mailbox of v is O(|E(G)| log |V (G)|) and therefore, the size of the messages is also
O(|E(G)| log |V (G)|). Moreover, we can show that the total number of messages
sent during the computation is O(|E(G)|2|V (G)|) and therefore the amount of
information sent all over the network during the computation is polynomial in
the size of the network.

References

[Ang80] D. Angluin. Local and global properties in networks of processors. In Pro-

ceedings of the 12th Symposium on Theory of Computing, pages 82–93, 1980.
[AW98] H. Attiya and J. Welch. Distributed computing: fundamentals, simulations,

and advanced topics. McGraw-Hill, 1998.
[BCG+96] P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna.

Symmetry breaking in anonymous networks: Characterizations. In Proc.

4th Israeli Symposium on Theory of Computing and Systems, pages 16–26.
IEEE Press, 1996.

[BV99] P. Boldi and S. Vigna. Computing anonymously with arbitrary knowledge.
In Proceedings of the 18th ACM Symposium on principles of distributed com-

puting, pages 181–188. ACM Press, 1999.
[BV01] Paolo Boldi and Sebastiano Vigna. An effective characterization of com-

putability in anonymous networks. In Jennifer L. Welch, editor, Distributed

Computing. 15th International Conference, DISC 2001, volume 2180 of Lec-

ture Notes in Computer Science, pages 33–47. Springer-Verlag, 2001.
[BV02] P. Boldi and S. Vigna. Fibrations of graphs. Discrete Math., 243:21–66,

2002.
[Cha05] J. Chalopin. Election and local computations on closed unlabelled edges

(extended abstract). In Proc.of SOFSEM 2005, number 3381 in LNCS, pages
81–90, 2005.

[CM04] J. Chalopin and Y. Métivier. Election and local computations on edges
(extended abstract). In Proc. of Foundations of Software Science and Com-

putation Structures, FOSSACS’04, number 2987 in LNCS, pages 90–104,
2004.

[CMZ04] J. Chalopin, Y. Métivier, and W. Zielonka. Election, naming and cellular
edge local computations (extended abstract). In Proc. of International con-

ference on graph transformation, ICGT’04, number 3256 in LNCS, pages
242–256, 2004.

[FR03] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed
computing. Distributed computing, 16:121–163, 2003.

[GMM04] E. Godard, Y. Métivier, and A. Muscholl. Characterization of Classes of
Graphs Recognizable by Local Computations. Theory of Computing Sys-

tems, (37):249–293, 2004.
[LeL77] G. LeLann. Distributed systems: Towards a formal approach. In B. Gilchrist,

editor, Information processing’77, pages 155–160. North-Holland, 1977.
[Maz97] A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61:233–

239, 1997.
[RFH72] P. Rosenstiehl, J.-R. Fiksel, and A. Holliger. Intelligent graphs. In R. Read,

editor, Graph theory and computing, pages 219–265. Academic Press (New
York), 1972.

[Tel00] G. Tel. Introduction to distributed algorithms. Cambridge University Press,
2000.

[YK96] M. Yamashita and T. Kameda. Computing on anonymous networks: Part
i - characterizing the solvable cases. IEEE Transactions on parallel and

distributed systems, 7(1):69–89, 1996.

