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ENHANCED TIME-STRETCHING USING ORDER-2 SINUSOIDAL MODELING

In this article, we introduce a 2-level sinusoidal model and demon strate its aptitude for a challenging digital audio effect: time-stretching without audible artifacts. More precisely, sinusoidal modeling is used at the two levels of the new sound model. We consider the frequency and amplitude parameters of the partials of the classic sinusoidal model as (control) signals, that we propose to model again using a sinusoidal model. This way, higher-level musical structures such as the vibrato and tremolo in the original sound are captured in the "partials of partials" of this order-2 sinusoidal model. We propose then a new time-stretching method, based on this new hierarchical model, which preserves not only the pitch of the original sound, but also its natural vibrato and tremolo.

INTRODUCTION

Spectral models provide general representations of sound in which many audio effects can be performed in a very natural and musi cally expressive way. Based on additive synthesis, they contain a deterministic part consisting of a -often huge -number of partials, which are pseudo-sinusoidal tracks for which frequencies and am plitudes evolve slowly with time. The spectral modeling parame ters of this deterministic part consist of the evolutions in time of the controls of the partials, thus leading to a large amount of data.

We have already shown in [START_REF] Marchand | Compression of Sinusoidal Modeling Parameters[END_REF] that the redundancy in the evo lutions of these parameters can be used to reduce these data [START_REF] Marchand | Compression of Sinusoidal Modeling Parameters[END_REF] and that the re-analysis of spectral parameters can help us in extracting higher-level musical parameters such as the pitch [START_REF] Marchand | An Efficient Pitch-Tracking Algorithm Using a Combination of Fourier Transforms[END_REF].

In this article, we introduce a new 2-level sound model of great interest for digital audio effects. The first level of this new model is the well-known sinusoidal model, leading to partials whose param eters -frequencies and amplitudes -continuously evolve slowly with time. For the second level, we consider these parameters as (control) signals, that we propose to model again using a sinu soidal model. This way, higher-level musical structures such as the vibrato and tremolo in the original sound are captured in the "partials of partials" of this order-2 sinusoidal model.

We then demonstrate a straightforward application of this new model to digital audio effects: time-stretching. We chose to fo cus on this effect, although many others can be performed in this model. More precisely, we show how the new order-2 hierarchical model allows us to enhance the quality of this challenging audio effect, by preserving the natural vibrato and tremolo together with the pitch of the sounds while stretching them. We are specially interested in transforming the deterministic part -no noise or tran sients for now -of pseudo-harmonic instrumental sounds as well as the human voice.

After a brief introduction in Section 2 to the basic sinusoidal model and a survey of the existing time-stretching methods based on this model in Section 3, we introduce in Section 4 the new hierarchical model and we present in Section 5 a new method for time-stretching while preserving not only the pitch of the original sound, but also its natural microscopic variations such as its vibrato and tremolo.

SINUSOIDAL MODELING

Model and Parameters

Additive synthesis is the original spectrum modeling technique. It is rooted in Fourier's theorem, which states that any periodic func tion can be modeled as a sum of sinusoids at various amplitudes and harmonic frequencies. For stationary pseudo-periodic sounds, these amplitudes and frequencies continuously evolve slowly with time, controlling a set of pseudo-sinusoidal oscillators commonly called partials. This is the well-known McAulay-Quatieri repre sentation [START_REF] Mcaulay | Speech Analysis/Synthesis Based on a Sinusoidal Representation[END_REF]. The audio signal a can be calculated from the addi tive parameters using Equations ( 1) and ( 2), where P is the number of partials and the functions fp, ap, and φp are the instantaneous frequency, amplitude, and phase of the p-th partial, respectively. The P pairs (fp, ap) are the parameters of the additive model and represent points in the frequency-amplitude plane at time t. This representation is used in many analysis / synthesis programs such as Lemur [START_REF] Fitz | Sinusoidal Modeling and Manipulation Using Lemur[END_REF], SMS [START_REF] Serra | Musical Signal Processing, chapter Musi cal Sound Modeling with Sinusoids plus Noise[END_REF], or InSpect [START_REF] Marchand | InSpect and Re-Spect: Spectral Modeling, Analysis and Real-Time Synthe sis Software Tools for Researchers and Composers[END_REF].

P � a(t) = ap(t) cos(φp(t)) (1) 
p=1 � t φp(t) = φp(0) + 2π fp(u) du (2) 
0

Analysis Procedure

In order to faithfully imitate or transform existing sounds, this model requires an analysis method in order to extract the param eters of the partials from sounds which were usually recorded in the temporal model, that is audio signal amplitude as a function of time. The accuracy of the analysis method is extremely important since the perceived quality of the resulting spectral sounds depends mainly on it. Moreover, the main interest of an accurate analysis method, providing precise parameters for the model, is to allow ever deeper musical transformations on sound by minimizing de formations due to analysis artifacts.

The analysis method we use is made of two steps: spectral peaks are first extracted from the sound using a short-time spectral
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It is extremely important to note that, during the sinusoidal analysis, we also keep the first coefficient of the Fourier transform as an amplitude track (of frequency 0 Hz, that is the DC compo nent) in order to have the global envelope of the analyzed signal. This is of little interest for zero-mean sounds -this envelope being always very close to 0 (zero). But that will be very important for Sections 4 and 5.

Extraction of Spectral Peaks

First, a short-time Fourier analysis produces a series of short-term spectra taken on successive temporal windows on the original sig nal. Information about the local maxima in magnitude (so-called peaks) is then extracted from these short-term spectra using the derivative algorithm we proposed in [START_REF] Desainte-Catherine | High Precision Fourier Analysis of Sounds Using Signal Deriva tives[END_REF], in order to provide the model with accurate spectral parameters (frequency, amplitude, and phase).

As for the practical side of this analysis, we used an analysis window of 2048 samples, moving by steps of H = 512 samples. These settings were used to preserve a good computation speed and memory usage in our software implementation. However, in the near future, this should be improved to gain better resolution. The test sound used for the figures of this article was a 16-bit, 44100-Hz mono recording of an alto saxophone playing at a fun damental frequency around 370 Hz with vibrato and tremolo.

Tracking of Partials

Since the Fourier analysis above delivers a short-time spectral rep resentation of the analyzed sound, we consider local maxima in the magnitude spectrum (so-called peaks, see above) to be the in stantaneous representation of partials. We have then to link peaks of successive frames to recover the continuous evolution of the partials. For this purpose, we use the enhanced partial-tracking al gorithm we proposed in [START_REF] Mathieu Lagrange | Enhanced Partial Tracking Using Lin ear Prediction[END_REF][START_REF] Mathieu Lagrange | Using Linear Prediction to Enhance the Tracking of Partials[END_REF]. This algorithm improves the classic McAulay-Quatieri algorithm [START_REF] Mcaulay | Speech Analysis/Synthesis Based on a Sinusoidal Representation[END_REF] by using linear prediction in order to forecast, from their past, the future evolutions of the trajectories of the partials.

As for the practical side of this analysis, the maximal fre quency difference between two successive frames for each partial was set to Δ = 10 Hz. Partials whose amplitude was always below 0.001 or length was smaller than 0.1 s were considered as noise, since we are interested only in reliable -long and strong -partials.

Resampling the Parameters

In the remainder, we consider the frequency f , amplitude a, and phase φ parameters of the model as continuous signals. These parameters are measured at the center of each analysis frame. As a consequence, the corresponding signals get sampled at the analysis stage with a sampling period equals to the hop size of the analysis window (512 samples of the original sound -at 44100 Hz -here, see above). Since we need to know their values at each sound sample at the synthesis stage, we must be able to upsample these parameters (by a factor 512 in the example above).

More precisely, let us consider some signal s. We can recon struct its continuous-time function s(t) from its sampled (discrete time) version s[i], where ∀i, s[i] = s(iTs), Ts being the sampling period -that is the inverse of the sampling frequency Fs. For that purpose, we convolve the discrete signal by a reconstructor -a windowed sinc function -using an algorithm similar to the one proposed by Smith in [START_REF] Smith | A Flexible Sampling-Rate Conversion Method[END_REF][START_REF] Smith | Digital Audio Resampling Home Page[END_REF], except that we chose to use the Hann window instead of the family of Kaiser windows.

In theory, we consider the impulse train made of the samples of the discrete signal where they are known -at times multiple of the sampling period -and 0 (zero) elsewhere. The continuous version of the signal s is reconstructed simply by convolving this impulse train by the ideal reconstructor, the sinc(tFs) function, using the sinus cardinal function defined by: sinc(x) = sin(πx) , for x = 0 and sinc(0) = 1

) πx

In practice, the ideal reconstructor cannot be used because of its infinite time support, and we need instead a reconstructor of fi nite support. In the remainder of this Section, let us denote by N this finite size expressed in samples. This size allows us to tune the trade-off of reconstruction quality versus computation time in the resampling process. We obtain this practical reconstructor by mul tiplying the ideal reconstructor by some window of finite support. We chose a symmetric Hann window of odd size N = 2k + 1 (k being some positive integer), defined by:

1 wN (n) = (1 -cos (2πn/(N -1))) (4) 2
for n in the [0; N -1] range, and 0 (zero) elsewhere. The practical reconstructor is then given by:

r(t) = w 2k+1 (k + tFs) • sinc(tFs) (5) 
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[i] = 2s[0] -s[-i]
). This ensures the continuity of both the signal and its first derivative. However, this is not the best way for extrapolating the signal. For the amplitudes (of the audio sigout from / to zero. However this will smooth the attack and this Time zero-padding technique cannot be used for other kinds of signals (b) Raw Synthesis 0 nal a, of the partials ap, etc.), extrapolating the signal with 0 (zero) values seems to be a natural choice, since those signals fade in and such as the frequencies fp or the phases φp of the partials. For this reason, we use the extrapolation by the Burg method as proposed in [START_REF] Kauppinen | A Method for Long Extrapolation of Audio Signals[END_REF][START_REF] Kauppinen | Audio Signal Extrapola tion -Theory and Applications[END_REF] for sound signals and generalized in [START_REF] Mathieu Lagrange | Enhanced Partial Tracking Using Lin ear Prediction[END_REF][START_REF] Mathieu Lagrange | Using Linear Prediction to Enhance the Tracking of Partials[END_REF] for partials.

Once we have the continuous s(t) function, upsampling by a factor u (u ≥ 1) the signal s is straightforward since we can 0 Time F compute this function at any time, all the more at multiples of the new sampling period Ts/u. Upsampling is like considering the s(t/u) function. Downsampling s by a factor d (d ≥ 1) is slightly more complicated, since high frequencies have to be filtered out in order to respect the Nyquist condition. This is done by replacing s by Fs/d in the sinc function of the reconstructor.

In the remainder, we will often upsample parameters by in tegral upsampling factors. More precisely, the analysis is done frame by frame, with more than one sample between to frames. In order to get the values of the parameters at each sound sam ple, the evolutions of these parameters have to be upsampled by a factor corresponding to the hop size H used for the frames at the analysis stage.

SYNTHESIS AND TIME-STRETCHING

Once we have a sinusoidal model and an accurate analysis method for this model, we need a synthesis algorithm. Most synthesis methods can also be used to perform time-stretching. Let us now denote by Ts the sampling period of the sound to be synthesized.

Resampling the Frequency

The easiest way is to incrementally recompute the phase of each partial p at each sound sample by a discrete approximation of Equation ( 2), for k being any (positive) sample index: φp((k + 1)Ts) = φp(kTs) + 2πfp(kTs)Ts [START_REF] Marchand | InSpect and Re-Spect: Spectral Modeling, Analysis and Real-Time Synthe sis Software Tools for Researchers and Composers[END_REF] so that the relations between phases and frequencies are main tained, and then compute the complete sound by using Equation [START_REF] Marchand | Compression of Sinusoidal Modeling Parameters[END_REF].

f
Since we need, for each partial p, the values of its frequency p and amplitude ap at each sound sample, we have to upsample these parameters using the technique described in Section 2.

Then, in order to perform time-stretching by a factor k (k > 0) during the synthesis, the frequency fp and amplitude ap of each partial can simply be resampled according to this k factor prior to the synthesis algorithm itself, to match the targeted length.

Since this technique does not take the measured values of the phase into account, except φp(0) at the time origin, the resulting sound has not the same shape as the original sound (see Figure 2 

The McAulay-Quatieri Method

To be consistent with other articles on this topic (see for example [START_REF] Girin | Comparing the Order of a Polynomial Phase Model for the Synthesis of Quasi-Harmonic Audio Signals[END_REF]), let us introduce the following notations for the phase and frequency of partial p measured at the center of frame number k:

θ k = φp(kHTs) (7) 
ω k = 2πfp(kHTs) (8) 
where H is the number of samples between two consecutive frames.

For simplicity sake, we will consider only one partial and omit the partial subscript.

The McAulay-Quatieri model [START_REF] Mcaulay | Speech Analysis/Synthesis Based on a Sinusoidal Representation[END_REF] for phase reconstruction of each signal partial between the k-th and (k+1)-th synthesis frames consists of an order-3 polynomial, given by:

k θ(n) = θ k + ω n + αn 2 + βn 3 (9) 
where θ k and ω k respectively denote the phase and frequency of the partial measured at the junction of synthesis frames k and k +1 (which is chosen as the local origin n = 0). Assuming 1. continuity of the phases and frequencies -which are the derivatives of the phases -at frame junctions, 2. unwrapping of the phase with a "maximally smooth" con straint on the phase model leads to the model parameters α and β, given by:

� α � = � 3/N 2 -1/N � • � θ k+1 -θ k -ω k N + 2πM � β -2/N 3 1/N 2 ω k+1 -ω k ( 10 
)
where N is the size of the synthesis frame (equals to the analysis hop size, so here N = H), and M is the "phase unwrapping" integral factor given by:

M = e 1 (θ k -θ k+1 ) + (ω k + ω k+1 ) N (11) 2π 2 DAFX-3
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where e[x] denotes the nearest integer from x. Since the phase, measured at the analysis stage, is known modulo 2π, the unwrap ping factor M is used to find the real value of this phase, incre mentally: if θ k has been unwrapped (at the previous frame), then the unwrapped version of θ k+1 is θ k+1 + 2πM .

This phase model is a piecewise-polynomial model of order 3. Polynomial phase models of different orders have also been proposed (see [START_REF] Girin | Comparing the Order of a Polynomial Phase Model for the Synthesis of Quasi-Harmonic Audio Signals[END_REF]).

This model can also be used for time-stretching during the syn thesis (see for example [START_REF] Quatieri | Shape Invariant Time-Scale and Pitch Modification of Speech[END_REF][START_REF] Di | Waveform Preserving Time Stretch ing and Pitch Shifting for Sinusoidal Models of Sound[END_REF]). For a stretching factor k (k > 0), the unwrapped phase must be multiplied by k (then re-wrapped), together with the size of the synthesis frame which becomes kN .

Resampling the Unwrapped Phase

We show here that it is possible to consider the (unwrapped) phase of each partial as a continuous function. More precisely, we first unwrap the phase of each partial, from frame to frame, by consid ering the unwrapping factor M (see above). Then, we can upsam ple the unwrapped phase by a factor H in order to get the value of the phase at each sound sample, using the technique presented in Section 2. Then the amplitude of the partial is upsampled in the same way, and the complete sound can be computed using Equa tion (1), as it was for the technique presented in Section 3.1. The phase-resampling technique proposed here, and more pre cisely the underlying continuous phase model, has to be tested in the near future with both synthetic and natural sound examples. Phase modeling is a very interesting research topic. As with the McAulay-Quatieri method described above, phase models are of ten polynomial (see [START_REF] Girin | Comparing the Order of a Polynomial Phase Model for the Synthesis of Quasi-Harmonic Audio Signals[END_REF]). However, in this article we will model the amplitude and frequency parameters of the sinusoidal model using the same sinusoidal model (see Section 4 below). Thus, the amplitude and frequency parameters will be sums of sinusoids (more precisely cosine functions, see model Equation ( 1)), the first one being of frequency zero thus leading to a constant term. Since the frequency is the derivative of the phase (see model Equation ( 2)), the phase will be a linear term plus a sum of sinusoids. A similar model for the phase is presented in [START_REF] Girin | Long Term Modeling of Phase Trajectories within the Speech Sinusoidal Model Framework[END_REF] for speech signals.

Series of tests for several polynomial phase models can be found in [START_REF] Girin | Comparing the Order of a Polynomial Phase Model for the Synthesis of Quasi-Harmonic Audio Signals[END_REF], the McAulay-Quatieri method described above be ing the order-3 polynomial of this study. Among these tests, the third synthetic example shows sinusoidal evolutions for the fre quencies (vibrato). The vibrato (sinusoidal variation of the funda mental frequency) is tested with and without tremolo (sinusoidal variation of the amplitude). It is clear that these sinusoidal evo lutions cannot be perfectly approximated by polynomials of finite degrees like the order-3 polynomial phase model of the McAulay-Quatieri method. But provided that the frequency of a sinusoidal evolution remains below the Nyquist frequency, this evolution can be -in theory -perfectly reconstructed using the sinus cardinal reconstructor (see Equation ( 3)). That is the reason why we could expect an improvement in quality when using the resampling tech nique.

In [START_REF] Girin | Comparing the Order of a Polynomial Phase Model for the Synthesis of Quasi-Harmonic Audio Signals[END_REF], the signal-to-noise ratio (SNR) measures the energy ratio between the original signal and the residual part (noise) ob tained by subtracting the resynthesis from the original. The greater is the SNR, the more accurate is the phase model for the consid ered example. For the third -vibrato + tremolo -example, the SNR for the McAulay-Quatieri method is 76.21. For the phase resampling method using Equation ( 5) with k = 32, we compute a SNR of only 21.04, but with k = 256 the SNR is then 76.61 and thus outperforms all the polynomial phase models listed in [START_REF] Girin | Comparing the Order of a Polynomial Phase Model for the Synthesis of Quasi-Harmonic Audio Signals[END_REF]. The SNR is a growing function of k, and quality is at the expense of computation time. However, large values of k are needed only for the phase. Indeed, the resampling of the amplitude parameter is not problematic: by resampling only the amplitude with k = 32 and using the ideal phase, the SNR would have been 110.32. The problem is with the imprecision on the reconstructed phase, be cause of its linear term. Although the error remains very small in percentage, the large values of the unwrapped phase at the end of the partials lead to error in the magnitude of π. The synthesized signal is then from time to time put out of phase from the original one, thus the SNR is poor, but the perceived quality is still high. The SNR is indeed an imperfect perceptual metric.

Preserving the Vibrato

The previously presented time-stretching methods work well on really stationary sounds, but slight variations such as vibrato or tremolo are not properly conserved (see Figure 3). More precisely, their rate is changing with the stretching factor, leading to unnatu ral sound artifacts. To solve this problem, Arfib and Delprat sug gested in [START_REF] Arfib | Alteration of the Vibrato of a Recorded Voice[END_REF][START_REF] Arfib | Selective Transforma tions of Sounds Using Time-Frequency Representations: An Application to the Vibrato Modification[END_REF] the use of a hybrid method. They start by doing an analysis of the sound in order to obtain the frequency of each partial and then find its mean frequency curve -the frequency en velope -by using a low-pass FIR filter. Subtracting this frequency envelope from the frequency of the partial, they extract the vibrato (the modulation). Those two parts (envelope and modulation, illus trated for the amplitude instead of the frequency of the partial on Figures 4(a) and 4(b)) will then be stretched independently. From there, they find the mean frequency for the vibrato and then syn thesize a new vibrato of the same frequency and of appropriate length. Adding this newly created vibrato to the resampled fre quency envelope, they obtain the desired result: a stretching with vibrato conservation. 6 and7).

However good, this method did not seem satisfactory to us. In deed, the resulting vibrato was synthetic and not very well defined. We wanted a more accurate vibrato, one that would be very close to the original, both in shape, rate, and depth, implying variations in frequency and amplitude, so that it would sound more natural.

MODELING THE PARAMETERS

On Figure 1, we see that partials issued from a sinusoidal anal ysis can contain sinusoidal-like components. In musical terms, these oscillations in both frequency and amplitude of a sound are respectively the vibrato and tremolo. Thus, our idea was to re analyze those partials to extract the sinusoids from the sinusoidal parameters (this idea of re-analyzing the evolutions of the sinu soidal parameters appears for example in [START_REF] Marchand | Compression of Sinusoidal Modeling Parameters[END_REF]). For that purpose, the same technique as presented in Section 2 was used to perform the analysis, simply considering the frequencies and amplitudes of the partials of a sound as regular signals.

In this article, we will denote by "order 0" the level corre sponding to the sound signal in the temporal model, that is its am plitude as a function of time -a(t) in Equation [START_REF] Marchand | Compression of Sinusoidal Modeling Parameters[END_REF]. Then, the classic sinusoidal modeling is the order 1: we obtain partials from the order-0 signal. Re-analyzing those partials, and modeling them again with sinusoidal modeling, leads us to "partials of partials", as illustrated in Figures 5, 6, and7. This sinusoidal modeling of the parameters of the order-1 sinusoidal model constitutes another level in our hierarchical sinusoidal model: the order 2. In this ar ticle, we will stop at the order 2 since we are interested in simple microscopic sound structures such as the vibrato and tremolo, al though further levels could help for macroscopic or higher-level musical sound structures.

On Figure 5 we can see the frequency of the second partial of the saxophone sound (plain) as well as the frequencies of the as sociated order-2 partials (dashed). We can clearly see the vibrato around 5 Hz and the corresponding order-2 partial. Since this vi brato is not perfectly sinusoidal, other order-2 partials (harmonics) are also present. Figure 6 shows the frequency of the order-2 par tials of the amplitude of the second partial of the saxophone. This time, we can clearly see the tremolo, with the same frequency as the one of the vibrato. Figure 7 shows the amplitude of the order-2 partials of the amplitude of the second partial of the saxophone. The order-2 partial with the greatest amplitude is the DC compo nent (corresponding to a frequency of 0 Hz, see Section 2), and is very close to the envelope as defined by Arfib and Delprat (see Sec tion 3.4 and Figure 4(a)). However, our version of this envelope is not as good as it should be, because of the main drawback of sinu soidal modeling: the fast variations, such as the attack and decay, are smoothed. The depth of the tremolo can be read on the ampli tude of the next order-2 partial. The partial-tracking algorithm is not perfect, and failed around the frame 25 (the order-2 partial was wrongly split into two parts). The amplitudes of the other order-2 partials are very low, because the shape of the tremolo is nearly a perfect sinusoid.

However the settings for the order-2 sinusoidal analysis had to be changed. Indeed, for the order-1 analysis, we considered the "interesting" frequencies to be audible, between 20 and 20000 Hz.

Here, the frequencies we are looking for are around 5 or 10 Hz only, and not audible. Hence, the analysis window having to be large enough to contain at least 2 periods of the sinusoids we are looking for, we chose a window size of 64 samples at the sampling frequency of the (order-1) partials, that is 44100/512 ≈ 86. [START_REF] Kauppinen | Audio Signal Extrapola tion -Theory and Applications[END_REF] Hz. This allows us to take up sinusoids down to a frequency of 2.69 Hz, thus sufficient to take a regular vibrato or tremolo into account.

′

The analysis window was moved by steps of H = 1 sample. The maximal frequency difference between two successive frames for each order-2 partial in the partial-tracking algorithm was set to ′ Δ = 0.2 Hz. Partials whose amplitude was always below 0.0001 or length was smaller than 0.2 s were considered as noise.

Moreover, to obtain a correct analysis, we usually need extra samples before and after the signal itself. For example, if we center our first analysis window on the first sample, then the first half of this window should be filled with some extrapolated samples. The same problem as the one we faced at the end of Section 2 occurs, hence we used the same solution: extrapolation using the Burg method. Figure 5: Frequencies of the order-2 partials (dashed) for the fre-Figure 7: Amplitudes of the order-2 partials (dashed) for the am quency of the second partial (plain) of the saxophone.

plitude of the second partial (plain) of the saxophone. of the second, but that the evolution of this tremolo was slowed down, as the global envelope was stretched. However, the drawback of this method is the drawback of sinusoidal modeling in general, that is the smoothing of sudden changes such as the attack.

CONCLUSIONS AND FUTURE WORK

In this article, in the context of sinusoidal modeling, we have con sidered the frequency, amplitude, and phase parameters of the par tials as continuous signals. By considering these signals and not their piecewise-polynomial approximation as it is generally done, 

ENHANCED TIME-STRETCHING

The synthesis within the order-2 model consists of two levels. First, the frequency and amplitude parameters of the (order-1) partials are reconstructed -resynthesized -from the order-2 pa rameters (phase and amplitude only) using the synthesis technique presented in Section 3.3. This method is shape-invariant, and thus the vibrato and tremolo are kept as close to the original as possi ble. We obtain partial trajectories almost identical to the original, except for the transients though.

Second, the (order-0) audio signal is synthesized from these synthetic order-1 partials (using their frequency and amplitude) by the technique described in Section 3.1. Note that this technique is not shape-invariant, but for now we can only use the frequencies and amplitudes, not the phases, of the synthetic partials to generate the result. However, as mentioned before, this makes almost no audible difference for most sounds.

Using the classic (order-1) sinusoidal parameters, the timestretching operation would consist in resampling these parameters to the desired length. This was explained in Section 3, and we concluded that vibrato and tremolo were not conserved. We use the same technique for our enhanced time-stretching, however ap plied to order-2 partials (i.e. partials of partials) instead of order-1 we were able for example to resample them and re-analyze them with the same kind of methods and models that those used for au dio signals.

This unified approach lead us to a 2-level sinusoidal model of great interest for digital audio effects, such as time-stretching while preserving not only the pitch but also higher-order sound structures such as the vibrato and tremolo of musical sounds.

Of course, the results presented here are still preliminary. They were computed using a software we developed in Common Lisp. This is a high-level language allowing a level of abstraction neces sary to handle easily complex data structures. This software is still in early stages of development, thus no public release is available yet. However, some sound examples -including the saxophone used for the figures of this article -are available online 1 .

In the near future, we will study the possibility of preserv ing the shape of the signal (order 0) together with the shape of the vibrato and tremolo (order 1). We will investigate hierarchical models of orders greater than 2, allowing us to deal with higherlevel musical sound structures. We also intend to take into account transients and noise in the basic sinusoidal model.

Figure 1 :

 1 Figure 1: Frequencies (a) and amplitudes (b) of the partials of an alto saxophone as functions of time (during approximately 2.9 s).

  (b)), although this makes no audible difference for most sounds.

  (c) Shape-Invariant Synthesis

Figure 2 :

 2 Figure 2: Raw (b) versus shape-invariant (c) synthesis methods. The latter is very close to the original signal (a).

Figure 3 :

 3 Figure 3: Normal time-stretching (order 1) of the saxophone sound, by a factor 2. The frequencies (a) and amplitudes (b) of the partials are shown at the middle of the resulting sound. The rates of the vibrato and tremolo have changed (see Figure 1).

Figure 4 :

 4 Figure 4: Envelope (a) plus modulation (b) decomposition of the amplitude of the second partial of the saxophone. The envelope is the low-pass filtered version of the amplitude of the partial. The modulation is obtained by subtracting this envelope from the orig inal amplitude (plain curve of the Figures6 and 7).

Figure 8

 8 Figure 8 is an example of this enhanced time-stretching on

Figure 8 :

 8 Figure 8: Enhanced time-stretching (order 2) of the saxophone sound, by a factor 2. The amplitudes of the partials are shown at the middle of the resulting sound. The shape and rate of the tremolo are preserved (see Figure 1(b) for a comparison).

Figure 6 :

 6 Figure 6: Frequencies of the order-2 partials (dashed) for the am
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