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ABSTRACT

In this paper we present a technique for detecting the pitch o
sound using a series of two forward Fourier transforms. Veéeans
enhanced version of the Fourier transform for a better acgyas
well as a tracking strategy among pitch candidates for aeased
robustness. This efficient technique allows us to precietiout
the pitches of harmonic sounds such as the voice or classicaiu
instruments, but also of more complex sounds like ripplede®

1. INTRODUCTION

Determining the evolutions with time of the pitch of soundais
important problem. This is indeed extremely useful for collihg

synthesizers from this pitch information and absolutelgessary
for pitch-synchronous algorithms such as PSOLA technigflies

to the classic dodecaphonic musical scale. With these sidhis
the MIDI pitch, where 69 corresponds to tAg note, 70 toA#3,
etc.

2.1. Harmonic Sounds

For an harmonic sound, the perceived pitch corresponds iteda k
of greatest common divisolg¢d of the frequencies of the har-
monics, that is the fundamental. The fundamental coincidés
the frequency of the first harmonic. But this first harmonig/ha
missing, or “virtual”.

2.2. About Noise

For a narrow-band noise, the pitch corresponds to the frexyuef
the middle of the band. For a rippled noise, the pitch cooedp

Various methods have been proposed for the determination oft0 the gcdof the peaks in the spectral envelope, even if the first

the pitch as a function of time (pitch tracking). They usdeit
the autocorrelation factor [2], other physical [3, 4] or gestric
[5] criteria, least-square fitting [6], pattern recognitifY] or even
neural networks [8]. Arfib and Delprat use in [9] the inverseTF
of the sound spectrum modulus limited to the positive freqye
In this article, we propose a new composition of two Fourians-
forms, thus introducing the “Fourier of Fourier” transfoafngreat
interest for pitch extraction.

After a brief introduction to sounds and their pitches int®ec
2, we introduce in Section 3 our new transform. This tramafal-
lows us to extract accurate pitch candidates. We presemdatidh
4 an efficient and accurate pitch-tracking algorithm basethcs
transform. We show how to choose the right pitch candidatstmo
of the time in order to reach an acceptable level of robustrigis
nally, we give some results — in terms of performance, acgyra
and robustness — in Section 5.

2. SOUNDS AND PITCHES

Pitch is not a physical parameter, but a perceptive one. eTiser
a close link with frequency, but this relation is rather coemp
For a single sinusoid, Equation 1 gives the relation betvwtben
frequencyF and the pitchP in the harmonic scale:

P(F) = Pt Olog, () @

ref
whereP,ef andFes are, respectively, the pitch and the correspond-
ing frequency of a tone of reference. In the remainder offihfser
we will use the value®¢; = 69 andFef = 440 Hz. The constant
O s the division of the octave. An usual valueds= 12, leading

peak is missing.

3. “FOURIER OF FOURIER” TRANSFORM

In our FT" analysis method [10, 11], we proposed to take advan-
tage of two Fourier transforms computed in parallel. Theltew
analysis precision [12] has recently been used for accyitth
detection [13]. We show here that the use of two Fourier trans
forms in sequence is of great interest too.

More precisely, we consider the magnitude spectrum of the
Fourier transform of the magnitude spectrum — limited tatpas
frequencies — of the Fourier transform of the signal. Let es d
note by “Fourier of Fourier transform” this combination béttwo
Fourier transforms. Note that this transform is not the samhe
well-known “cepstrum”, which is the (inverse) Fourier tséorm
of the logarithm of the spectrum resulting from the Fourians-
form.

This transform is well-suited for pitch-tracking, thatds tom-
puting the fundamental frequency of the sound, even if itigsing
or “virtual”. For example, if we consider an harmonic souiid,
Fourier transform has a series of peaks in its magnitudetrspec
corresponding to the harmonics of the sound, at frequectisg
to multiples of the fundamental frequen&y Some harmonics
may be missing, even the fundamental itself. Anyway, theriéou
of Fourier transform of an harmonic sound shows a seriesakge
and the first and most prominent one corresponds to the funda-
mental frequencyF of the harmonic sound, and its amplitude is
the sum of the amplitudes of the harmonics of the sound. Eigjur
illustrates this.

In the spectrum resulting from the first Fourier transform)F
the index of a birigt is related to the analyzed frequentyMore
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Figure 1: The power spectrum of an harmonic sound (left) to-
gether with the power spectrum resulting from the Fouriens-
form of this first spectrum (right). There might be missingan-

ics (dashed).

precisely, ifFs is the sampling rate and the size of the Fourier
transform, we have:

irr=Nf/Fs 2
When considering an harmonic sound whose fundamentgl is
the magnitude spectrum shows a series of uniformly-spaeakisp
(unless some harmonics are missing). The distance between t
consecutive harmonics s, which corresponds to a period Af
bins where:

A =NF/Fs (3)

In the spectrum resulting from the Fourier transform of thegmi-
tude spectrum of the first Fourier transform (FT(FT)), theagest
local maximum of magnitude (apart from the one correspandin
to bin 0) is located at the bin corresponding to index:

iFr(er) = N/(28) (4)

In Equation 4 we consider that the size of the second Fouepst
form is againN. This is no mandatory though. It is then possible
to recover the fundamental frequency from the value of tidex:

F= B2
IFT(FT)

(6)

The same reasoning also works for single sinusoids or fipple
noises (even if some ripples are missing). Figure 2 illteg¢his.
As a consequence, the Fourier of Fourier transform turnbebe
extremely well-suited for determining the pitch of thesersds,

as well as their volume. We have also verified this for natural
sounds, as shown in Figure 3. Itis important to note that the a
plitude corresponding to thigrrr) index is close to the sum of
the amplitudes of the harmonics constituting the sound. €me
also obtain instead a good approximation of the RMS (RootrMea
Square) amplitude, by replacing the amplitudes by theiasegi

in the magnitude spectrum prior to the second Fourier toansf
and by replacing the amplitudes by their square roots in tgmn
tude spectrum resulting from this second transform (seg.[The
result must be scaled by &2 factor though.

4. PITCH-TRACKING ALGORITHM

We have seen previously that the Fourier of Fourier transfer
the magnitude spectrum of the Fourier transform of the madai
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Figure 2: The power spectrum of a rippled noise (left) together
with the power spectrum resulting from the Fourier transfor
of this first spectrum (right). There might be missing rigple
(dashed).

spectrum of the Fourier transform of the signal — is weltesifor
pitch tracking, that is for computing the fundamental frewcy of
the sound, even if it is missing or “virtual”.

4.1. Using the Order-1 Fourier Transform

We propose to use the Fourier of Fourier transform to perfibien
detection of the pitch. A very important feature is that weyma
use the FT method [10, 11] fom = 1 — also called the order-1
Fourier transform or simply the “derivative algorithm” —stead
of the classic Fourier transform for a better accuracy fergtich
detection.

More precisely, if we want to determine the pitch at a certain
timet, then we consider a small portion of temporal signal cedtere
att. This temporal frame is multiplied by the Hann analysis win-
dow, and then analyzed using the order-1 Fourier transfovith
this transform, the spectral peaks are extracted with aarergd
precision in comparison to the classic Fourier transform.

With this technique, the short-term magnitude spectrum has
then to be reconstructed from the spectral peaks prior tegbend
Fourier transform. In fact, this is done by a simple samptifithe
spectrum. For a greater accuracy, a convolution of the peihks
the spectrum of the Hann window can be used as a preliminary.
After that, the classic Fourier transform is used, and tleetsal
peaks are extracted. The resultingpectral peaks corresponds to
frequencies (see Equation 5) that are pitch candidates.

4.2. Pseudo-partial Tracking

We have seen that the fundamental frequency of the soundes gi
— in theory — by the greatest local maximum of magnitude ¢apar
from the one corresponding to bin 0) in the spectrum regultin
from the Fourier of Fourier transform. As a consequencepitch
should be the frequency of the pitch candidate with the getat
amplitude.

The problem is that for some sounds this maximum of energy
is detected at the wrong place from time to time. This ofteulse
to jumps among octaves and results in a poor robustness. &e pr
pose to apply a peak-tracking strategy similar to partetking
(see [12]), except that this time we deal with “pseudo-pist;
that is partials detected in the spectrum resulting fromFierier
of Fourier transform. When obtain a set of partials, as shiown
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Figure 3:Fourier of Fourier. From top to bottom are the original
signal (singing voice, sampled at & 44100Hz), its magnitude
spectrum, and the magnitude spectrum resulting from theiéou
transform of the previous magnitude spectrum=12048 but only
the first 256 bins are displayed). One can clearly see in théxs
trum the prominent peak corresponding to the fundamental fr
guency of the original sound.
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Figure 4: The strongest partial () among the dominant partials
(P1, P, and R). P5 is dominated by

Figure 4. Each partial corresponds to a certain pitch cateld
and contains the evolutions in time of its frequency and &g
parameters. In order to detect the right pitch, we have tosho
the right partial in this set.

When two partials overlap at a certain tite such as>; and
P> in Figure 4 — the partial with the greatest amplitude is said t
be dominating. If this partial is longer and louder than thigeg
we forget the dominated partial. In Figure 4, we rem&yebe-
cause it is always dominated IB%. Once all dominated partials
have been removed, we consider the strongest partial, istble
partial who is dominating for the longest period. In Figur®4lis
the strongest partial. The frequency of the strongestglayives
the evolutions in time of the fundamental frequency of thgah
sound.

5. RESULTS

We have implemented the above algorithm in dnSpectanaly-
sis software package [15]. This implementation is made @feth
main parts (see Figure 5). The first part (dashed box on this fig
ure) is a short-term analysis module: the Fourier of Fourans-
form, which computes the magnitude of the Fourier transfofm
the magnitude of the Fourier transform of the sound signia¢: [®-
cal maxima (peaks) in the resulting short-term “spectr&’then
tracked from frame to frame using a classic partial-tragkat
gorithm (second part). The third part consists in selectimg
strongest partial (see Section 4) among all these tracleseVdlu-
tion in time of the frequency of this partial coincides wittetpitch
— as a function of time — of the initial sound.

5.1. Performance

This algorithm is much faster than the well-known autodarre
tion method. Arfib and Delprat use in [9] the real part of the in
verse FFT of the sound spectrum modulus limited to the pesiti
frequency. This is strictly equivalent to the autocorrielatof the
windowed part of the signal, but much faster. Our method fasts
as this one. Both methods require the computation of twoiEour
transforms.

5.2. Accuracy

Perhaps surprisingly, our method is more accurate thanrike o
used by Arfib and Delprat. Ld%es be the exact fundamental fre-
guency and- its measured value. The relative ereds given by:

e=|F — Fref|/Fret (6)
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5.3. Robustness

] By considering the peak with the greatest amplitude in thaiEo
pitch of Fourier transform, it is possible to perform the pitchedeion in
real time. The problem is that the resulting algorithm isnotiust.
The technique consisting in constructing partials andcsele
Figure 5:Algorithm overview. ing the strongest of them (see Section 4) has proven to beya ver
robust way to obtain the pitch of the sound. We have sucdgssfu
recovered the pitches of many natural sounds like saxophone
tars or singing voice for example. With this technique, ¢hare
no more jumps among octaves. The problem is that the regultin
pitch-detection algorithm does not work in real time anyenor

Since our algorithm — as many others — fails in the case of@esin
sinusoid, let us take as a reference for our tests the soursisto
ing of the fundamental (with amplitude 0.75) and its firsthanic
(with amplitude 0.25), with a sampling rate Bf = 44100 Hz.
The number of samples per analysis framblis: 1024. Figure 6
shows that the relative error for the Fourier of Fourier $farm
goes from approximatively 1% to 6% for fundamental frequesc
between 440 Hz to 1660 Hz. With the method used by Arfib and
Delprat, we have measured that the relative error goes fipm a
proximatively 5% to 12% for the same frequency interval. The
difference between the two methods may seem quite small. But
even this small difference of 6% corresponds to approxinatee
half-tone. ..

6. CONCLUSION AND FUTURE WORK

In this article, we have presented a method for pitch detecti
based on a combination of two Fourier transforms. We have pro
posed a way to enhance the accuracy of the detected pitchs-by u
ing the order-1 Fourier transform — as well as a way to impthee
robustness of the detection algorithm — by selecting trenggst
pitch candidate. We have implemented the above algorithoaiin
InSpectanalysis software package [15], and it has proven to be

_ _ ~ Vvery accurate and robust in practice on natural soundsgyoias-
The accuracy of the Fourier of Fourier transform can be in- sic musical instruments, and even some kinds of noise).

creased by using the order-1 Fourier transform insteadeofitst During this research, we have identified the need for a standa
Fourier transform (see Section 4). It is then possible te tine set of tests in order to compare the numerous pitch-trackigor
accuracy (or, on the contrary, the performance) by adjgstie rithms. Further research should include the generalizaifcthe
size of the second Fourier transform. pitch-detection methods for polyphonic sounds, thus legth the

However, if we consider the relative error measured on a sin- €xtraction of multiple pitches, which is of great musicaeirest.
gle sinusoid with the classic Fourier transform (see Figirave

notice that this error is lower than for the Fourier of Foutrans- 7. ACKNOWLEDGMENTS

form for frequencies above approximatively 1000 Hz. It ntiga

wiser to use the classic Fourier transform instead of thei€oaf This research was carried out in the context of the SCRIS#E
Fourier transform in order to detect high pitches. Morepifere dio de Création et de Recherche en Informatique et Musidee E
consider the same relative error measured for the ordemtidfo troacoustiqupand was supported by tleonseil Régional d’Aqui-
transform (see Figure 7), we clearly see that this errornig hosv, taine the Ministére de la Culturethe Direction Régionale des
even for low frequencies. This opens up new horizons forrothe Actions Culturelles d’Aquitaineand theConseil Général de la
pitch-detection algorithms. Gironde
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