
HAL Id: hal-00307931
https://hal.science/hal-00307931

Submitted on 29 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Additive Sound Synthesis Using Polynomials
Matthias Robine, Robert Strandh, Sylvain Marchand

To cite this version:
Matthias Robine, Robert Strandh, Sylvain Marchand. Fast Additive Sound Synthesis Using Poly-
nomials. Digital Audio Effects (DAFx06) Conference, Sep 2006, Montréal, Canada. pp.181–186.
�hal-00307931�

https://hal.science/hal-00307931
https://hal.archives-ouvertes.fr

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

FAST ADDITIVE SOUND SYNTHESIS USING POLYNOMIALS

Matthias Robine, Robert Strandh, Sylvain Marchand

SCRIME – LaBRI, University of Bordeaux 1
351 cours de la Libération, F-33405 Talence cedex, France

firstname.name@labri.fr

ABSTRACT

This paper presents a new fast sound synthesis method using

polynomials. This is an additive method, where polynomials are

used to approximate sine functions. Traditional additive synthe-

sis requires each sample to be generated for each partial oscillator.

Then all these partial samples are summed up to obtain the result-

ing sound sample, thus making the synthesis time proportional to

the product of the number of oscillators and the sampling rate. By

using polynomial approximations, we instead sum up only the os-

cillator coefficients and then generate directly the sound sample

from these new coefficients. Most of computation time is con-

sumed by a data structure that manages the update of the generator

coefficients as a priority queue. Practical implementations show

that Polynomial Additive Sound Synthesis (PASS) is particularly

efficient for low-frequency signals.

1. INTRODUCTION

We present a method for additive sound synthesis with a complex-

ity that is proportional to the sum of the frequencies of the oscil-

lators, as opposed to the traditional method whose complexity is

proportional to the number of the oscillators, regardless to their

frequencies. Thus, the new method is especially efficient for low

frequencies. Perhaps more surprisingly, this method is not so de-

pendent on the sampling frequency. This makes our new method

especially well-suited for high sampling frequencies.

First, we review in Section 2 the principles of classic additive

synthesis, as well as the methods proposed for real-time imple-

mentations. Then we present in Section 3 our new method using

polynomials, with a lower complexity. We explain how to approxi-

mate with polynomials the sine functions of the sinusoidal oscilla-

tors, and how to generalize this approximation for all the partials.

All the polynomial coefficients from these approximations are then

summed, becoming coefficients of a global polynomial generator.

Thus, sound samples are computed from a single polynomial.

As the approximation of each partial is limited in time (on a

part of a period of the sine function), its coefficients must be up-

dated. We propose in Section 4 to manage all these update events

with a priority queue, efficiently implemented as a binary heap.

The element with the highest priority is always the next update

event to be processed. We explain how to use this data structure

for our method. We show then in Section 5 how this priority queue

can again be useful to manage the change of the amplitudes and

frequencies of the partials at the right moment.

Finally we present some performance results in Section 6 and

we compare our method with other techniques proposed in the lit-

erature.

2. ADDITIVE SOUND SYNTHESIS

Additive synthesis (see for example [1]) is the original spectrum

modeling technique. It is rooted in Fourier’s theorem, which states

that any periodic function can be modeled as a sum of sinusoids

at various amplitudes and harmonic frequencies. For stationary

pseudo-periodic sounds, these amplitudes and frequencies evolve

slowly with time, controlling a set of pseudo-sinusoidal oscilla-

tors commonly called partials. This is the well-known McAulay-

Quatieri representation [2] for speech signals, also used by Serra

[3] in the context of musical signals. As they evolve slowly in

time, we consider the frequencies and amplitudes as constant for a

short length. The audio signal s can be calculated from the sum of

the partials using:

s(t) =
N

X

i=1

ai sin (2πfit + φi) (1)

where N is the number of partials in the sound and the parameters

of the model are fi, ai, and φi, which are respectively the fre-

quency, amplitude, and initial phase of the partial number i. This

equation is valid if the frequency is constant. However, for practi-

cal sound examples, both the frequency and the amplitude must be

updated regularly. Equation 1 then holds for each sound segment

between two update times.

In the general approach derived from Equation 1, for each

sample the partials are processed separately, and then summed.

Thus the complexity of the method is proportional to the prod-

uct of the number of partials and the sample rate. Computing the

sine function for every partial and every sound sample can be very

time-consuming. Using additive synthesis to synthesize a whole

orchestra is a big challenge, and even more so if we want to do

it in real time. This is why we need to reduce the computation

time of the additive synthesis, while keeping the control of all the

parameters of the sound partials in time.

The most straightforward – rather naive – way to calculate a

partial contribution is to use the sine function. But it consumes a

lot of computation time. Other techniques are possible, such as the

use of the digital resonator method (see for example [4, 5]), which

computes the samples of each separate partial with an optimal

number of operations. In this method, the sine is calculated with

an incremental algorithm that avoids computing the sine function

for every sample. We proposed the use for fast additive synthesis

of the digital resonator with floating point arithmetic in [6, 7]. For

each partial the resonator is initialized as Equation 2 shows, with

Fs the sampling rate of the synthesis, a, f , and φ respectively the

amplitude, frequency, and initial phase of the partial, and ∆φ the

phase increment. The incremental computation of each oscillator

DAFX-181

http://scrime.labri.fr
http://www.labri.fr
http://www.u-bordeaux1.fr

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

sample requires only 1 multiplication and 1 addition.
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∆φ = 2πf

Fs

s[0] = a sin(φ0)
s[1] = a sin(φ0 + ∆φ)
C = 2 cos(∆φ)

s[n + 1] = C · s[n] − s[n − 1]

(2)

This algorithm is optimal in a sense that 1 multiplication with no

addition will lead to a geometric progression, whereas no multi-

plication with 1 addition will lead to an arithmetic one; none of

these progressions being a sine function. Again for the purpose of

real-time additive synthesis, we then proposed to limit the number

of partials to be synthesized by removing inaudible ones, using a

psychoacoustic model together with an efficient data structure [8].

In order to efficiently synthesize many sinusoids simultane-

ously, Freed, Rodet, and Depalle propose in [9] to use the inverse

Fourier transform, provided that the oscillator parameters vary ex-

tremely slowly. The idea is to reconstruct the short-term spectrum

of the sound at time t, by adding the band-limited contribution

of each partial, then to apply the Inverse Fast Fourier Transform

(IFFT or FFT−1) in order to obtain the temporal representation of

the sound, and finally to repeat the same computation further in

time, thus performing a kind of “inverse phase vocoder”. The gain

in complexity is when the number of oscillators is large in com-

parison to the number of samples to compute at each frame. This

approach is very interesting, because its complexity is no more the

product of the number of partials and the sampling rate. However,

the control of the additive parameters is more complex.

3. USING POLYNOMIALS

Polynomials have been traditionally used in order to model the pa-

rameters of the sinusoidal model [10, 11, 12]. Here, we propose

to use polynomials to replace the sine function. Our method con-

sists of first calculating a set of polynomial coefficients for each

partial. Polynomial values from polynomials computed with these

coefficients approximate the signal of the partial on a part of its

period. The classic approach would evaluate the polynomial as-

sociated to each oscillator, and then sum up the results, which is

quite inefficient. The idea is yet to sum the coefficients in a poly-

nomial generator, then to evaluate the resulting polynomial only

once. Indeed, summing polynomials leads to another polynomial

of the same degree. The sound samples can be computed from this

single resulting polynomial, with a fairly low degree – indepen-

dent of the number of partials to synthesize. The general process

is illustrated by Figure 1.

3.1. Partial Approximation

The time-domain signal generated by each partial is defined by a

sine function. We propose to approximate this function by a poly-

nomial. To get the polynomial coefficients that can approximate

any partial of a sound, we decide to first approximate a unit signal

u with amplitude a = 1, frequency f = 1, and phase φ = 0, i.e.:

u(t) = sin(2πt)

We have to choose a part of the period where we will do the ap-

proximation. We call this part the validity period p of the polyno-

mial coefficients. Thus, if we approximate a half period of u, then

p = 1/2.

s1(t)

s2(t)

s3(t)

A B C

s(t)

d
X

i=0

βit
i

d
X

i=0

γit
i

d
X

i=0

αit
i

d
X

i=0

(αi + βi + γi)t
i

Figure 1: PASS. Step A: A periodic signal can be divided into si-

nusoidal components. Step B: Computing polynomial coefficients

to approximate the signal for each partial. Step C: A polynomial

generator is obtained by summing the coefficients from the poly-

nomials of the partials. The values computed by the generator will

be the samples of the sound signal.

Measuring the performance of the approach of a signal u(t)
by a polynomial U(t) on a validity period p can be done using the

SNR ratio given by:

SNR = 10log10

R p

0
u2(t)dt

R p

0
(u(t) − U(t))2dt

For a given polynomial degree, we propose to find the polyno-

mial coefficients that minimize the value of the denominator of the

SNR:
Z p

0

(u(t) − U(t))2dt

These coefficients have to respect other constraints to maintain a

piecewise continuity. For example, with a 2-degree polynomial

U and p = 1/2, to impose a C1 continuity, it is sufficient that

U(0) = U(1/2) = 0, and the coefficients ai that minimize:

Z 1

2

0

(sin(2πt) − (a0 + a1t + a2t
2))2dt

are:
8

<

:

a0 = 0
a1 = 240/π3

a2 = −480/π3

To approach the sine function, we can use in this case alternately

Ua for a first half period and Ub for the second:



Ua(t) = a1t + a2t
2

Ub(t) = −a1t − a2t
2

The choice of the validity period, and the highest degree of the

polynomials to use, have a big influence on the performance of the

approximation, as shown in Table 1. We explain in 3.3 how a high

polynomial degree can lead to numerical instability of the method,

or in Section 6 why the choice of a short validity period increases

the computation time. We can note that using a validity period

p = 1/2 with a polynomial degree d = 2 is particularly suited for

a very fast synthesis, and that using a validity period p = 1/2 with

a polynomial degree d = 4 is suited for a fast synthesis with good

quality.

The coefficients we compute define a unit polynomial U(t) by

validity period. When the unit polynomial is found, every partial

can be approximated from it. In the general case of a partial i with

DAFX-182

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

amplitude ai, frequency fi, and initial phase φi, the approximating

polynomial Pi is then given by:

Pi(t) = aiU

„

fit +
φi

2π

«

Notice that the amplitude, frequency, or phase parameters do not

modify the approximation error given in Table 1. In addition to

the sinusoid, the polynomial approximation generates a noise con-

sisting of harmonics of this sinusoid. The magnitudes of these

harmonics are small, and depend on the validity period p and the

polynomial degree d.

p d C0 SNR (dB) C1 SNR (dB)

1/4 2 36 28

1/4 3 57 28

1/4 4 79 59

1/4 5 102 59

1/2 2 28 28

1/2 3 28 28

1/2 4 59 59

1/2 5 59 59

1 4 17 17

1 5 42 42

Table 1: Error of polynomial approximation of a partial. For two

different continuity requirements (C0 and C1), the Signal-to-Noise

Ratio (SNR) obtained with the approximation error u − U com-

pared to the target signal u are shown as functions of the validity

period p and the polynomial degree d.

Since for now we consider only constant parameters for the

partials, the generated functions are periodic. It is thus possible

to compute the polynomial coefficients for only one period of any

partial.

Each set of polynomial coefficients is valid for a part of the pe-

riod of the sine function. For example, if we choose to approximate

sine functions using a fourth of their period, we need to compute

four sets of coefficients by partial. As long as the amplitude and

the frequency of a partial are constant, we can continue with the

same pre-calculated sets. During the sound synthesis, the coeffi-

cients that approximate the partials must be updated regularly (the

rate depending on the frequency of each partial), and must also be

changed if the parameters have changed.

3.2. Incremental Calculation of Polynomials

To avoid the problem of computing a polynomial with large time

values, leading to numerical imprecision, we propose to use the

Taylor’s theorem to compute it. The polynomial can be evaluated

at every instant t0 + ∆t by using the value and the values of its

derivatives at a preceding instant t0:

P k(t0 + ∆t) = P k(t0) +

d
X

i=k+1

∆i−k
t

(i − k)!
P i

(3)

where P k is the k-th derivative of the polynomial function (P 0

being the polynomial itself). The number of necessary values de-

pends on the degree of the polynomial (e.g., three values with a

2-degree polynomial).

With the polynomial coefficients of the partials obtained ac-

cording to the method presented in Section 3.1, we compute the

first value of the polynomial and of its derivatives. To compute

each of the following values, we use Equation 3 with a step ∆t

corresponding to the time between two time events. A time event

is either the time of a sound sample or of a scheduled update of

the coefficients. When time reaches or exceeds the validity period

we have chosen, the coefficients are updated, and the incremental

algorithm goes on with the new coefficients.

3.3. Polynomial Generator

Using this incremental method for each individual partial would

be very expensive in terms of computation time. For that reason,

we propose a technique in which we sum the coefficients to com-

pute only a global polynomial, the generator. During the synthesis,

the generator is computed incrementally. When a partial reaches

the end of its validity period, the different values of the generator

(value and values of the derivatives) are summed with the new val-

ues from the partial. When a sound sample must be produced, the

generator is computed to get the sound sample value.

As the generator is computed incrementally, we have to care

about numerical precision: using the preceding values to compute

new ones accumulates floating-point precision errors in the result.

Thus, there is a validity limit for updating the generator. According

to the polynomial degree used, to the number of partials in the

sound, and the floating-point precision we can use, we need to

re-initialize the generator coefficients regularly with the authentic

sine function.

The complexity of our method is dominated by the manage-

ment of the update events from individual partials. To optimize

this process, we propose the use of an efficient data structure, in

a way similar to that of [8] which uses a skip-list to increase the

performance of additive synthesis. In the PASS method, we use a

priority queue implemented as a binary heap to manage the update

events from the partials.

4. DATA STRUCTURE

4.1. Using a Heap as a Priority Queue

A priority queue is an abstract data type supporting two opera-

tions: insert adds an element to the queue with an associated pri-

ority; delete-max removes the element from the queue that has the

highest priority, and returns it. We use a priority queue to manage

update events from partials of the sound. During synthesis, update

events are regularly inserted in, or removed and processed.

The standard implementation of priority queues is based on

binary heaps (see for example [13]). With this implementation,

queue operations have O(log(N)) complexity, with N the number

of elements in the queue. A binary heap is a binary tree satisfying

two constraints:

1. the tree is either a perfect binary tree, or, if the last level

of the tree is not complete, the nodes are filled from left to

right;

2. each node is greater (in priority) than or equal to each of

its children. The top of the binary heap is always the next

event to process.

DAFX-183

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

4.2. Heap Optimization

Most of the computation time of the PASS method is due to the

management of the heap. Consequently, heap primitives need to be

highly optimized. Our first approach was to delete-max the priority

queue, to process the update event and to insert a new one in the

queue. With this approach, the heap is substantially reorganized

twice for each insert / delete pair of operations.

To improve the performance, we replaced the insert / delete

primitives with top and replace. top returns the element of the

queue that has the highest priority, without removing it. It is possi-

ble to process an update event without removing it from the queue.

The replace method replaces the element from the queue that has

the highest priority with an other element by initially putting it on

top of the heap, and then letting it trickle down according to nor-

mal heap-reorganization primitives. In the worst case, the replace

method needs O(log(N)) operations, N being the number of ele-

ments in the heap. The heap is reorganized only once per update.

Partials with high frequencies must be updated more often

than the others, because their validity period is smaller. With the

replace method, the update events concerning high frequencies

stay near to the top of the heap. Using fewer operations for the

most frequently updates improves the complexity of our method.

Figures 2 and 3 give an example of heap management, where the

delete-max then insert methods use 4 elements swaps, whereas the

replace method takes only 1 swap.

24

.

9

45 48 72

1723

8

22

5

36

(a)

5

9

24

45 48 72

1723

8

22

36

(b)

45 48

1723

8

22

9

24

36

5

72 6

(c)

45 48

23 22

9

24

36

5

72

6

8

17

(d)

Figure 2: delete-max then insert priority queue methods within a

heap. (a) Delete-max of the element with highest priority. (b) Heap

reorganization. (c) Insert of the new element. (d) Heap reorgani-

zation.

9

45 48 72

1723

8

22

5

36 24

6

(a)

9

45 48 72

1723

8

22

36 24

6

5

(b)

Figure 3: replace priority queue method with a heap. (a) Replace

of the element with highest priority by the new one. (b) Heap reor-

ganization.

5. CHANGE OF SOUND PARAMETERS

We consider that the parameters of the partials are constant on a

short length. But since they change, they have to be updated reg-

ularly. In [14] we indicate the best time in a period to change

parameters of a partial, as illustrated by Figure 4 and 5. The best

moment to change the amplitude is when the signal is minimal,

to preserve the continuity of the signal. And the best moment to

change the frequency is when the signal is maximal, to preserve

the continuity of the signal derivative.

Figure 4: Changing the amplitude either when the signal is mini-

mal (left) or maximal (right). It appears that the left case is much

better, since it avoids amplitude discontinuities (clicks).

Figure 5: Changing the frequency either when the signal is min-

imal (left) or maximal (right). It appears that the right case is

better, since it avoids derivative discontinuities (clicks).

Changing parameters of partials with the PASS method con-

sists in changing the polynomial coefficients of an oscillator when

this oscillator must be normally updated, because of the end of its

validity period. Thus, this change does not need more computa-

tion time than without changing the parameters. The best case is

with the validity period p = 1/4. In this case we can update the

parameters at the best moment we described before for the fre-

quency or the amplitude. Otherwise an update event will be added

in the priority queue, to indicate the time to change the parame-

ters of the partials. But few events will be added regarding to the

normal updates of the coefficients, and it will not really affect the

general computation time. The parameters are updated in the right

moment to avoid clicks in the sound. This moment is different for

every partials, regarding to their frequencies.

6. COMPLEXITY AND RESULTS

The complexity of the PASS method depends on the use of the

priority queue. For one second of synthesis, the priority queue

will be used f/p times per partial, where p is the validity period

chosen (1/2 for a half of a sine period), and f the frequency of the

DAFX-184

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

partial. For every partial, the queue operations are called X times

per second, where:

X =
1

p

N
X

i=1

fi =
Nf̄

p
(4)

with N being the number of partials in the sound, p the validity

period, fi the frequency of the partial i, and we denote by f̄ the

mean frequency of the partials.

If we consider that each priority queue operation is done with

O(log(N)) complexity for an update event, with N the number of

elements simultaneously in the queue (i.e. the number of partials

in the sound), the complexity C1 due to the priority heap managing

is given by:

C1 = O

„

Nf̄

p
log N

«

(5)

We can note that this complexity is very dependent from the mean

frequency of the partials. It explains why the method is particu-

larly efficient for low-frequency signals. If the validity period p is

doubled (from a fourth to a half of period for example), the per-

formance of the PASS method is doubled too. The higher is p and

the better is the complexity of the method. But if we want to in-

crease p, we need to use higher polynomial degree to approximate

the sine function. And it leads to numerical instability. We have to

find a trade-off between complexity and stability.

In addition to C1 is the C2 complexity, to produce the sam-

ples of the sound. If we use Fs as the sampling rate and d the

polynomial degree of the generator, it is given by:

C2 = O(dFs) (6)

Thus, the general complexity of PASS is:

CPASS = O

„

α
Nf̄

p
log N + dFs

«

(7)

where α is some constant which is architecture-dependent (in prac-

tice, the synthesis methods were implemented in C language, com-

piled using the GNU C compiler (gcc) versions 4.0 and 4.1, and

executed on PowerPC G4 1.25-GHz and Intel Pentium 4 1.8-GHz

processors). This global complexity is a function of the sum of the

frequencies of the partials, and we notice that it does not strongly

depend on the sample rate anymore. Increasing the sample rate

from 44.1 kHz to 96 kHz does not really affect the computation

time, as illustrated by Table 2.

One might reasonably ask how our method compares to other

methods for additive synthesis. Recently, we showed in [7] that the

digital resonator method was a little better than the synthesis using

the FFT−1 method. But later, Meine an Purnhagen [15] compared

different methods and concluded that the fastest additive synthesis

is now the FFT−1 method. In fact, this highly depends on the

implementation details and computer used, as well as the number

of partials and sampling rate. However, the digital resonator easily

allows the fine control of each partial of the sound, which is not

really the case the FFT−1 method. The PASS method allows the

same fine control, and thus we have compared the performance of

our method with that of the digital resonator method.

And if we have just noted that for PASS method the sample

rate does not really affect the computation time, it is not the same

with the digital resonator. The complexity CDR of the digital res-

onator method is given by:

CDR = O(NFs) (8)

with Fs the sampling rate, and N the number of partials in the

sound. Here N and Fs are multiplied. This difference of com-

plexity between digital resonator and PASS methods is illustrated

by Table 2.

As shown in Table 3 or in Figure 6, the method we present is

clearly better than the digital resonator for low frequencies. Using

a 2-degree polynomial to approximate a half of a period of each

partial, PASS is better for 2500 partials when the mean frequency

of the partials is under 300 Hz, and even 500 Hz for a 96-kHz sam-

pling rate. Real-time synthesis can be achieved with 5000 partials

with a frequency of 150 Hz for example.

N f̄ Fs (Hz) DR PASS

4000 300 22050 3.2 s 6.6 s

4000 300 44100 6.3 s 6.6 s

4000 300 96000 13.7 s 6.6 s

Table 2: Comparison of the computation time of the Digital Res-

onator (DR) and PASS methods using different sampling rates, for

5 seconds of sound synthesis, implemented in C language, com-

piled using the GNU C compiler (gcc) version 4.1, and executed

on an Intel Pentium 4 1.8-GHz processor. The PASS method is

used with 2-degree polynomials and a validity period p = 1/2. N
is the number of partials, f̄ is the mean frequency of the partials,

and Fs is the sampling rate.

N f̄ DR PASS

2500 200 3.9 s 2.0 s

2500 300 3.9 s 3.0 s

2500 400 3.9 s 4.0 s

2500 500 3.9 s 5.0 s

5000 200 7.9 s 7.3 s

5000 300 7.9 s 10.6 s

5000 400 7.9 s 14.4 s

Table 3: Comparison of the computation time of the Digital Res-

onator (DR) and PASS methods, for 5 seconds of sound synthesis

with a sampling rate of 44100 Hz, implemented in C language,

compiled using the GNU C compiler (gcc) version 4.1, and exe-

cuted on an Intel Pentium 4 1.8-GHz processor. The PASS method

is used with 2-degree polynomials and a validity period p = 1/2.

N is the number of partials, f̄ is the mean frequency of the par-

tials.

7. CONCLUSION AND FUTURE WORK

We have presented PASS, a new additive synthesis method us-

ing polynomials. The computation time of this method depends

mainly on the sum of the frequencies of the partials. We have

shown that the method is fast, and particularly efficient for signals

with low frequency partials, as well as for high sampling rates.

In the near future, we plan to tune the trade-off between com-

plexity and stability for our method on the fly, by combining the

advantages of the PASS and Digital Resonator (DR) methods, since

these methods both manipulate oscillators. For this hybrid method,

the idea is, for a given partial, to use either PASS or DR depending

DAFX-185

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700 800

c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

mean frequency (Hz)

PASS
DR - 44100 Hz
DR - 96000 Hz

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

number of partials

PASS
DR - 44100 Hz
DR - 96000 Hz

(b)

Figure 6: Comparison of the computation times of the Digital Resonator (DR) and PASS method, for 5 seconds of sound synthesis. (a)

Computation times are functions of the mean frequency f̄ , with a fixed number of partials N = 3000. (b) Computation times are functions

of the number of partials N , with a fixed mean frequency f̄ = 200 Hz. The PASS method is used with 2-degree polynomials and a validity

period p = 1/2. For this comparison, both methods were implemented in C language, compiled using the GNU C compiler (gcc) version

4.0, and executed on a PowerPC G4 1.25-GHz processor.

on the frequency of the partial. For low frequencies, PASS will be

preferred. Also, the DR method will take advantage of the priority

queue to schedule its optimal update times (see Section 5). At each

update time, for the concerned oscillator the decision of switching

from PASS to DR or from DR to PASS could be decided. And

since at this update time, the amplitude, frequency, and also phase

of the oscillator is known, the switch of method is really straight-

forward.

8. REFERENCES

[1] J. A. Moorer, “Signal processing aspects of computer music

– a survey,” Computer Music J., vol. 1, no. 1, pp. 4–37, 1977.

[2] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis

based on a sinusoidal representation,” IEEE Trans. Acoust.,

Speech, and Signal Proc., vol. 34, no. 4, pp. 744–754, 1986.

[3] X. Serra and J. O. Smith, “Spectral Modeling Synthesis:

A sound analysis/synthesis system based on a deterministic

plus stochastic decomposition,” Computer Music J., vol. 14,

no. 4, pp. 12–24, 1990.

[4] J. W. Gordon and J. O. Smith, “A sine generation algorithm

for VLSI applications,” in Proc. Int. Comp. Music Conf.

(ICMC’85), Burnaby, Canada, 1985, pp. 165–168.

[5] J. O. Smith and P. R. Cook, “The second-order digital waveg-

uide oscillator,” in Proc. Int. Comp. Music Conf. (ICMC’92),

San Francisco, USA, 1992, pp. 150–153.

[6] S. Marchand and R. Strandh, “InSpect and ReSpect: Spectral

modeling, analysis and real-time synthesis software tools for

researchers and composers,” in Proc. Int. Comp. Music Conf.

(ICMC’99), Beijing, China, 1999, pp. 341–344.

[7] S. Marchand, “Sound models for computer music (analysis,

transformation, and synthesis of musical sound),” Ph.D. dis-

sertation, University of Bordeaux 1, France, 2000.

[8] M. Lagrange and S. Marchand, “Real-time additive synthesis

of sound by taking advantage of psychoacoustics,” in Proc.

COST-G6 Conf. on Digital Audio Effects (DAFx-01), Limer-

ick, Ireland, 2001, pp. 5–9.

[9] A. Freed, X. Rodet, and P. Depalle, “Synthesis and control of

hundreds of sinusoidal partials on a desktop computer with-

out custom hardware,” in Proc. ICSPAT, 1992, pp. 98–101.

[10] Y. Ding and X. Qian, “Processing of musical tones using a

combined quadratic polynomial-phase sinusoid and residual

(QUASAR) signal model,” J. Audio Eng. Soc., vol. 45, no.

7/8, pp. 571–584, 1997.

[11] L. Girin, S. Marchand, J. di Martino, A. Röbel, and

G. Peeters, “Comparing the order of a polynomial phase

model for the synthesis of quasi-harmonic audio signals,” in

Proc. IEEE Workshop Appl. of Dig. Sig. Proc. to Audio and

Acoust., New Palz, NY, 2003, pp. 193–196.

[12] M. Raspaud, S. Marchand, and L. Girin, “A generalized

polynomial and sinusoidal model for partial tracking and

time stretching,” in Proc. Int. Conf. on Digital Audio Effects

(DAFx-05), Madrid, Spain, 2005, pp. 24–29.

[13] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures

and Algorithms, ser. Series in Computer Science and Infor-

mation Processing. Addison-Wesley, 1983, pp. 392–407.

[14] R. Strandh and S. Marchand, “Real-time generation of sound

from parameters of additive synthesis,” in Proc. Journées

d’Informatique Musicale, 1999, pp. 83–88.

[15] N. Meine and H. Purnhagen, “Fast sinusoid synthesis for

MPEG-4 HILN parametric audio decoding,” in Proc. Int.

Conf. on Digital Audio Effects (DAFx-02), Hamburg, Ger-

many, 2002, pp. 239–244.

DAFX-186

	1 Introduction
	2 Additive Sound Synthesis
	3 Using Polynomials
	3.1 Partial Approximation
	3.2 Incremental Calculation of Polynomials
	3.3 Polynomial Generator

	4 Data Structure
	4.1 Using a Heap as a Priority Queue
	4.2 Heap Optimization

	5 Change of Sound Parameters
	6 Complexity and Results
	7 Conclusion and Future Work
	8 References

