
HAL Id: hal-00307929
https://hal.science/hal-00307929

Submitted on 29 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast additive sound synthesis for real-time simulation of
ocean surface

Matthias Robine, Jocelyn Fréchot

To cite this version:
Matthias Robine, Jocelyn Fréchot. Fast additive sound synthesis for real-time simulation of ocean
surface. International conference on systems, signals and image processing (IWSSIP 2006), Sep 2006,
Budapest, Hungary. pp.223–226. �hal-00307929�

https://hal.science/hal-00307929
https://hal.archives-ouvertes.fr


Fast Additive Sound Synthesis
for Real-time Simulation of Ocean Surface

M. Robine and J. Fréchot
LaBRI, University of Bordeaux, France

{robine|frechot}@labri.fr

Keywords: additive sound synthesis, real-time image syn-
thesis, natural phenomena simulation

Abstract - The fastest additive sound synthesis methods are
presented and used to compute and animate ocean surface.
These sound methods are commonly used to efficiently sum a
lot of sinusoidal components of the sound called partials. We
consider the ocean waves as partials of a sound by shifting from
the frequency and time domains to the wavenumber and space
ones. Sound methods can therefore be used to compute coordi-
nates of ocean surface points, and allow the rendering of real-
istic ocean surfaces in real-time.

1. INTRODUCTION

Simulation of ocean surfaces requires a lot of visual de-
tails to be realistic. In particular, the presence of hundreds
of wave trains leads to complex and nice looking surfaces.
While rendering with texture effects is very efficient, it still
lacks geometry details due to wave animations. This prob-
lem has been handled by the use of the Fast Fourier Trans-
form (FFT), but this method is not flexible and can hardly
produce realistic ocean scenes. On the other hand, classical
Gerstner equations can easily be used to simulate wide and
complex surfaces. By using oceanographic methods to get
wave parameters, as amplitude and frequency distribution,
these parametric equations allow the reproduction of ocean
surface with respect to a given sea state. But since they rely
on classical trigonometric functions, they cannot handle si-
multaneously fast and high-quality rendering.

We have recently presented a new additive sound syn-
thesis method called PASS [1]. Particularly efficient for low
frequency signals, this method seems to be suited to synthe-
size ocean waves. In this paper, we propose to adapt fast
sound synthesis methods to the simulation of ocean waves.
Since these methods are devoted to the fast evaluation of
sums of sine functions, they are perfectly suitable for Ger-
stner equations computations. While not reaching FFT per-
formances, they allow us to use hundreds of waves. Using
an adaptive mesh method to handle the surface, we achieve
real-time realistic ocean simulation.

This paper is organized as follows: the principles of clas-
sic additive synthesis are reviewed in section 2, as well as the
methods proposed for real-time implementations. Section 3
presents the existing methods for the simulation of ocean
surface in computer graphics, and explains how we apply
sound methods to wave simulation. We give some results in
section 4, and perspectives in section 5.

2. ADDITIVE SOUND SYNTHESIS METHODS

We present here the principles of additive sound synthesis,
and its fastest implementations.

2.1. Additive Sound Synthesis

Additive sound synthesis is the original spectrum modeling
technique (eg. [2]). It is rooted in Fourier’s theorem, which
states that any periodic function can be modeled as a sum
of sinusoids at various amplitudes and harmonic frequen-
cies. For stationary pseudo-periodic sounds, these ampli-
tudes and frequencies evolve slowly with time, controlling
a set of pseudo-sinusoidal oscillators commonly calledpar-
tials. This is the well-known McAulay-Quatieri represen-
tation [3] for speech signals, also used by Serra [4] in the
context of musical signals. As they evolve slowly in time,
we can consider the frequencies and amplitudes as constant
for a short length. An audio signals can be calculated from
the sum of the partials using:

s(t) =
N
∑

i=1

ai sin (2πfit + φi) (1)

whereN is the number of partials in the sound and the pa-
rameters of the model arefi, ai, andφi, which are respec-
tively the frequency, amplitude, and initial phase of the par-
tial numberi. This equation is valid if the frequency is con-
stant. However, for practical sound examples, both the fre-
quency and the amplitude must be updated regularly. Equa-
tion (1) then holds for each sound segment between two up-
date times.

In the general approach derived from (1), the partials
are processed separately for each sample, and then summed.
The complexity of the method is therefore proportional to
the product of the number of partials and the sample rate.
Fast additive synthesis methods propose to reduce the com-
putation time of the synthesis, while keeping the control of
all the parameters of the sound partials in time.

2.2. Inverse Fourier Transform

In order to efficiently synthesize many sinusoids simultane-
ously, Freed, Rodet, and Depalle propose in [5] to use the
inverse Fourier transform. The idea is to reconstruct the
short-term spectrum of the sound at timet, by adding the
band-limited contribution of each partial, then to apply the
Inverse Fast Fourier Transform (IFFT or FFT−1) in order to
obtain the temporal representation of the sound, and finally
to repeat the same computation further in time. Complexity



decreases when the number of oscillators is large in com-
parison to the number of samples to compute at each frame.
This approach is very interesting, because its complexity is
no more the product of the number of partials and the sam-
pling rate. However, the control of the additive parameters
is more complex.

2.3. Digital Resonator

The most straightforward way to calculate a partial contri-
bution is to use the sine function, but it consumes a lot of
computation time. We can prefer the use of the digital res-
onator method (see for example [6,7]), which computes the
samples of each separate partial with an optimal number of
operations. In this method, the sine is calculated with an in-
cremental algorithm that avoids computing the sine function
for every sample. Marchand and Strandh [8,9] proposed the
use of the digital resonator with floating point arithmetic for
fast additive synthesis. For each partial the resonator is ini-
tialized as (2) shows, withFs the sampling rate of the syn-
thesis,a, f , andφ respectively the amplitude, frequency, and
initial phase of the partial, and∆φ the phase increment. The
incremental computation of each oscillator sample requires
only 1 multiplication and 1 addition.























∆φ = 2πf

Fs

s[0] = a sin(φ0)
s[1] = a sin(φ0 + ∆φ)
C = 2 cos(∆φ)
s[n + 1] = C · s[n] − s[n − 1]

(2)

The complexityCDR of the digital resonator method is nat-
urally given by:

CDR = O(NFs∆t) (3)

with Fs the sampling rate,N the number of partials in the
sound, and∆t the duration of the synthesis.

2.4. Polynomial Additive Sound Synthesis (PASS)

We proposed in [1] the PASS method, which uses polynomi-
als to replace the sine function. It consists of first calculating
a set of polynomial coefficients for each partial of the sound.
Evaluation of polynomials computed with these coefficients
approximate the signal of the partials on a part of their pe-
riod. The classic approach would evaluate the polynomial
associated to each oscillator, and then sum up the results,
which is quite inefficient. The idea is yet to sum the coeffi-
cients in a polynomial generator, then to evaluate the result-
ing polynomial only once. Indeed, summing polynomials
leads to another polynomial of the same degree. The sound
samples can be computed from this single resulting polyno-
mial, with a fairly low degree, independent of the number of
partials to synthesize. The general process is illustratedby
Figure 1.

The polynomial approximation of a partial is valid only
on a part of the period of the sine function. Thus, the polyno-
mial coefficients must be regularly updated, with a rate that
depends on the frequency of the partial. However, as the
function to approximate is periodic, we only need to com-
pute sets of coefficients for one period, as long as the ampli-

CA B

s(t)

s3(t)

s1(t)

s2(t)

d
∑

i=0

αit
i

d
∑

i=0

βit
i

d
∑

i=0

γit
i

d
∑

i=0

(αi + βi + γi)t
i

Figure 1: PASS.Step A: A periodic signal can be divided into
sinusoidal components (Fourier’s theorem).Step B: Computing
polynomial coefficients to approximate the signal for each partial.
Step C: A polynomial generator is obtained by summing the co-
efficients from the polynomials of the partials. The degree of the
generator is the same as the degree used for partials. Valuescom-
puted by the generator are the samples of the sound signal.

tude and the frequency of the partial are constant. A poly-
nomial generator is regularly updated with these changes of
coefficients and is evaluated each time a sound sample must
be produced.

Thus, two types of event occur during time. An update
event consists of updating the coefficients of the generator,
due to the change of the polynomial coefficients of one par-
tial. An evaluating event occurs when a value is computed
from the polynomial generator to produce a sample of the
sound. The generator is therefore regularly updated and
computed during time. The complexity of PASS is domi-
nated by the management of the update events from indi-
vidual partials. [1] uses a binary heap as priority queue to
manage these events. Thus, the general complexity of PASS
is:

CPASS = O

(

α

N
∑

i=1

fi log N∆t + dFs∆t

)

(4)

wherefi is the frequency parameter of the partial numberi,
d the polynomial degree of the generator andα a constant
which is architecture-dependent.

3. APPLICATION TO OCEAN RENDERING

We propose in this section to use the additive sound methods
described above to synthesize ocean surface.

3.1. Synthesis of Ocean Surface

Ocean waves can be described by several parameters. The
most commonly used for wave simulation are amplitudeA,
wavelengthλ, frequencyF , wavenumberk = 2π/λ and
angular frequencyω = 2πF (in deep water,ω2 = gk, where
g is the standard acceleration of gravity). A wave vector~k is
a vector with magnitudek and direction of the propagation
of the wave.

The common wave model used for ocean simulation is
based on the Gerstner equations and was introduced in com-
puter graphics by Fournier and Reeves [10]. This Lagrangian
model describes the trajectory of water particles at the ocean
surface, due to a set of wave trains. For each wave, particles
follow a vertical circle around their position at rest, leading



to a trochoid wave shape:















~x(~x0, t) = ~x0 +
∑

i

~̂ki Ai sin(~ki · ~x0 − ωit + Φi)

z(~x0, t) = z0 −

∑

i

Ai cos(~ki · ~x0 − ωit + Φi)
(5)

where~x = (x, y) is the horizontal particle position at timet,
z is its vertical position,~x0 = (x0, y0), (x0, y0, z0) is the

position of the particle at rest,~̂k is the unit vector of~k andΦ
is a random phase term. Using a regular grid of points, this
model allows procedural animations of ocean waves. The
reader can refer to [11] for a short overview of the related
work.

3.2. Sound Methods for Ocean Surface Synthesis

We choose to not use the inverse Fourier transform, which
leads to a loss of control of the additive parameters. Digital
resonator and PASS methods allow to sum a lot of sinusoidal
components to synthesize a signal as a time function. As we
want to synthesize a grid of points of an ocean surface, we
propose to apply sound methods line by line on the grid. The
synthesis is done as function of length on a line of the grid,
instead as function of time. To compute thex coordinate of
a point of the line, we use the wave parameters~k, A, w and
Φ, respectively the wave vector, the amplitude, the angular
frequency and the phase of a wave. Sound parametersa,
f andφ, respectively the amplitude, the frequency and the
initial phase of a partial are given by:







a = Ak̂x

f = k
2π

cos(~k, ~L)

φ = ~k · ~x0 − ωt + Φ

(6)

with k̂x defined by~̂k = (k̂x, k̂y), and~L the direction vector
of the line.

We can now perform a sound synthesis along a line of
the grid, using distance∆L instead of time.∆L is the dis-
tance from the first point of the line, along this line. The
value of thex coordinate is therefore given by:

x = x0 +

N
∑

i=1

ai sin (2πfi∆L + φi) (7)

We do the same for all the coordinates, and again for the
derivatives used to compute the normals. Only the initial
phase parameter varies between two lines.

We can choose to compute the sum of sinusoidal compo-
nents directly with the sine function, but it is very time con-
suming. The digital resonator can be used instead. It must
be initialized by computing two sine functions by partial and
by line. Then only 1 addition and 1 multiplication by partial
are necessary to process the next point evaluated on the line.
Using PASS method, we must choice the part of period on
which we approximate the sine function, and the degree of
polynomials. It has a big influence on the performance of
the approximation and on the computation time. We have
chosen to approximate sine functions on half-periods with
2-degree polynomials. It leads to a maximal error of 4 per-
cent of the signal. As the wave parameters do not change

during a synthesis of an ocean surface line, we have modi-
fied the PASS algorithm to use a merge sort to manage the
update events (see section 2.4), instead of a binary heap as
priority queue. In our case, it leads to better performances.

3.3. Complexity Comparison

The complexities of digital resonator and PASS methods are
respectively given by (3) and (4). If we apply the change
of parameters from wave to partial as in (6), usingL as the
length of the synthesized ocean line andX as the number of
points on this line, we obtain:

CPASS = c1

N
∑

i=1

fi log NL + c2dX (8)

CDR = c3NX (9)

wherec1, c2, c3 are architecture-dependent constants.
We use an adaptive rendering [12] according to the view

point to minimize the numbers of points needed in the ren-
dering step. It reduces the time consuming by the synthesis.
Moreover, we filter the waves according to their wave length
to avoid aliasing. These methods have an impact on the per-
formance of the synthesis. Improvements vary according to
the synthesis method used.

Concerning the digital resonator method, which is lin-
early dependent on the number of waves and linearly de-
pendent on the number of points on the line, the effect on
the performance is easy to understand. We saw before that
several parameters influence the complexity of the PASS
method, principally the number of waves, the sum of the
frequencies of their corresponding partials, and the length
of the line to synthesize. If the impact of adaptive render-
ing is as clear as with digital resonator method, we can note
that the anti-aliasing filtering affects waves with the high-
est frequencies. As the sum of frequencies is very sensitive
to this, PASS method takes more advantage than the digital
resonator from these rendering improvements.

A comparison of the complexities of the methods is hard
to achieve, due to the architecture-dependentconstants. How-
ever, all the tests we practiced with adaptive rendering have
shown that the PASS method is the fastest, ever in extreme
condition of wind speed, for different numbers of points or
numbers of waves.

4. RESULTS AND DISCUSSION

We have implemented both digital resonator and PASS meth-
ods using C++. We used a regular grid for computation time
comparisons while our main framework is the adaptive mesh
model of [12]. Wave characteristics are found by adaptively
sampling a JONSWAP spectrum, as in [11]. Thus, when the
wind speed or fetch increases, sampling is focused on waves
with low wavenumbers. For the PASS, this means the sum
of frequencies

∑

i fi decreases (see section 3.3).
Comparisons of computation times on a 3 GHz Pen-

tium 4 PC are shown in table 1. For the classical sine/cosine
functions method, we used the sincos instruction present on
modern PC. This allows the evaluation of the sine and cosine
of a single value at the same time, reducing the evaluation



Figure 2: Adaptive mesh with a screen resolution of1024 × 768

pixels, a256 × 192 points mesh, 400 waves and a wind speed of
5 m·s−1. The framerate is from 5 to 12 fps with PASS method (less
than 1 fps with sincos).

time by about a factor 2. For the PASS method, compu-
tations took place along lines which are orthogonal to the
direction of the wind. Since the majority of waves runs in
a direction close to the direction of the wind, this decreases
the sum of frequencies of the partials and advantages the
method.

X × Y N L WS SC DR PASS
m m·s−1 ms ms ms

128 × 128 200 200 5 360 100 120
128 × 128 200 200 15 360 100 30
128 × 128 400 50 5 730 210 105
128 × 128 400 50 15 730 210 50
128 × 128 400 200 5 730 210 265
128 × 128 400 200 15 730 210 70
256 × 256 200 50 5 1610 600 90
256 × 256 200 50 15 1610 600 50
256 × 256 200 200 5 1610 600 245
256 × 256 200 200 15 1610 600 65

Table 1:Computation times inms of a regular grid with the sin-
cos (SC), digital resonator (DR) and PASS methods, for different
numbers of points (X× Y), numbers of waves (N), grid widths (L)
and wind speeds (WS).

Sound synthesis algorithms are always faster than the
sincos instruction. The PASS gives generally better results
than the digital resonator, but is very sensible to the widthof
the grid and to the wind speed. However, the improvement
is noticeable and allows us to produce animations at an in-
teractive rate, with many more waves and/or grid points than
classical method. For comparison, computation of a grid of
128 × 128 points and256 × 256 points with FFT method
take respectively about 10 and 60 ms.

We have tested our adaptive mesh implementation with
a Radeon 9200 graphic board, using a screen resolution of
1024× 768 pixels, a128× 96 points mesh (i.e. mesh quads
are 8 pixels wide), 400 waves and a wind speed of 5 m·s−1.
With the sincos method we got 2 to 5 fps, depending on
the view point, and 5 to 15 fps with the digital resonator.

We got 10 to 20 fps with the PASS, then 5 to 12 fps when
increasing the mesh resolution by a factor 2 (figure 2). We
tested also to render a high quality surface, with 800 waves
and a mesh size of1024 × 768. It took about 1 minute and
10 seconds with sincos instruction and less than 2 seconds
with the PASS, increasing performances by a factor 35.

5. CONCLUSION AND FUTURE WORK

We have proposed a method that adapts the fastest addi-
tive sound synthesis algorithms to the realistic simulation of
ocean waves. Combined with an adaptive mesh, we achieve
the rendering of complex ocean surfaces at interactive rate.
As improvements of our work, we could approach a trochoid
curve with the PASS method instead of three sine functions.
More generally, applications that need to sum a lot of pe-
riodic signals could take a big advantage by using methods
initially suited to additive sound synthesis.

REFERENCES

[1] M. Robine, R. Strandh, and S. Marchand, “Fast Additive
Sound Synthesis Using Polynomials,” to appear in Proc.
DAFx 2006.

[2] J. A. Moorer, “Signal Processing Aspects of Computer Mu-
sic – A Survey,”Computer Music Journal, vol. 1, no. 1, pp.
4–37, 1977.

[3] R. J. McAulay and T. F. Quatieri, “Speech analysis / syn-
thesis based on a sinusoidal representation,”IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp.
744–754, 1986.

[4] X. Serra and J. O. Smith, “Spectral modeling synthesis:
A sound analysis/synthesis system based on a deterministic
plus stochastic decomposition,”Computer Music Journal,
vol. 144, no. 4, pp. 12–24, 1990.

[5] A. Freed, X. Rodet, and P. Depalle, “Synthesis and Control
of Hundreds of Sinusoidal Partials on a Desktop Computer
without Custom Hardware,” inProc. ICSPAT, 1992.

[6] J. W. Gordon and J. O. Smith, “A Sine Generation Algorithm
for VLSI Applications,” inProc. ICMC, 1985.

[7] J. O. Smith and P. R. Cook, “The Second-Order Digital
Waveguide Oscillator,” inProc. ICMC, 1992, pp. 150–153.

[8] S. Marchand and R. Strandh, “InSpect and ReSpect: Spectral
Modeling, Analysis and Real-Time Synthesis Software Tools
for Researchers and Composers,” inProc. ICMC, 1999, pp.
341–344.

[9] S. Marchand, Sound Models for Computer Music (Analy-
sis, Transformation, and Synthesis of Musical Sound), Ph.D.
thesis, University of Bordeaux 1, 2000.

[10] A. Fournier and W.T. Reeves, “A simple model of ocean
waves,” SIGGRAPH Computer Graphics, vol. 20, no. 4, pp.
75–84, 1986.

[11] J. Fréchot, “Realistic simulation of ocean surface using wave
spectra,” inProc. GRAPP, 2006, pp. 76–83.

[12] D. Hinsinger, F. Neyret, and M.P. Cani, “Interactive anima-
tion of ocean waves,” inSymposium on Computer Animation,
2002, pp. 161–166.


