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Abstract

We propose a formalism for specifying temporal relations between interactive triggerings and re-
leasings occurring during performance of written musical pieces. Temporal durations are specified
between parts or notes of a written piece. Then, we proceed to a static analysis of the piece in order
to produce a program providing safe execution of the piece according to the temporal relations.

1 Introduction

Actual computers allow various kinds of real time interactions with sound synthesis. The huge quantity of
possible ways of interaction in contemporain music shows the great diversity of new possibilities provided
by computers, but also the difficulty of aiming to formalize and generalize these practices. The recent
researchs on sound interaction focus on the analysis of the gestures of the musician and the mapping
of the parameters of these gestures with the parameters of the sound synthesis. Some researchs deal
with musical associations (harmonic and melodic organization), but none has been carried out in order
to propose a general model. We think that such a model would help to unifiy the different ways of
interaction of musical and sound levels and bring a better understanding of musical interaction.

We start this study by focussing on temporal aspects of interaction, putting aside, for now, sound
synthesis. We propose a formalization of an interactive score, which is a static score augmented with
interactive points and temporal relations binding them [DCBO03, All83]. The first objective of this research
is to provide a tool for interacting with a written piece by triggering and releasing any of its parts. We
call this kind of interaction interpretation. Interpretation of musical pieces based on the operations of
activating and releasing notes has been very well studied by Jean Haury [Hau, HS98]. In this case, the
piece is entirely written, and the musician can activate musical events. He has the choice of the starting
dates, velocity and ending dates of the events. Such a study showed how important are temporal relations
between those dates for specifying linking between notes.

The interest of this study is twofold. Firstly, interpretation of a written piece can be formally defined
by the composer as a set of eventual pieces resulting from the temporal constraints that bind musical
events. In that way, the composer can describe a kind of degree of freedom given to the musician, while
he gets the certainty that temporal relations he specified between musical events will always be satisfied.
Secondly, the same piece can be interpreted in several ways, by varying interaction points and temporal
relations. Thus, the piece could be adapted to any situation, according to the material and musicians
that are available for performance.

2 Architecture of the system

The building of the interactive piece proceeds in several steps. Given a static score, some starting or
ending dates can be declared interactive and a peripheral is thus associated to them. That means that
they will be triggered in real time by this peripheral. We call the result of this processus interactive score.
Then, temporal relations binding starting dates and ending dates of its components can be defined in
order to constraint the interactive score. The interactive score is then translated into a three-coloured
graph, providing the partial order between all the events. Colours are used to indicate priority between
static and interactive events. The three-coloured graph is compiled into a static musical environment
that will be used to execute an abstract machine reading its input from the peripherals and outputing
synthesized sound.
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Figure 1: An example of a static score P

2.1 Static Score

We consider that the static score is structured in a temporal hierarchy [BDCO01]. In this paper, we focus
on the temporal organisation of the score, since sound representation is another subject and it is not
investigated here. Thus, let us consider that each node of the musical hierarchy is represented by a tuple:
n=<s,e,d,a,l >, that will be called a note, where s is the starting date of the node n, e is the ending
date, d is the duration, a is a set of musical attributes and [ is the list of children of n. When [ is empty,
the node is a leaf. Let us notice that a simple leave we call a note as well as a node containing other
nodes. Let us moreover define two functions for the notes : s and e, such that :

forn=<s,e,d,a,l>,s(n) =sande(n) =n

The static score is completely specified. That is, every parameter has been given a value, so that the
score can be played without any interaction.

Let us now present an example of such a score in Figure 1. In this example, the score will be defined
as follows :

P = (0, 25, 25, ap, (A, B, G)) where:

o A=(1,7,6,a4, ()

L4 B = (97 247 15, aB7 (C’ D’ E7 F)) Where C - (17 67 57 aC7 ())7 D - (67 137 77 aD7 ())7 E - (6, 87
2, ag, ())7 F= (77 12,5, ap, ())

o G = 12; 197 ag, ())

2.2 Temporal Relations

In order to produce an interactive score, the composer can introduce interactive points into his static
score. This implies that the musician will chose the date of the start and end of some notes during
performance. Thus, the respect of the dates that have been written in the static score is no more
guaranteed. In order to define more precisely the freedom given to the musician at performance time,
and how its interpretation can be different from the written scrore, we provide the composer a way to
specify temporal relations between notes, relations that will be guaranteed during performance. These
relations are the Allen’s relations [All83] which are represented on figure 2.2. Since Allen’s relation are
only qualitative, we decided to introduce values (durations and delays) in relation with the static score
as we can see in the Figure 3.1.1. Thanks to those values, constraints on durations and delays can be
specified and interpretation can be closer to the score.

2.3 Interactive Score

Interactive score is built from a static score by choosing some interactive events and binding the notes
with temporal relations. An interactive event is always associated to a starting or an ending date of a
note. Thus, an interactive score is a tuple: s = < m, i, r >, where m is a static score, i is a set of either
starting or ending dates of notes of m, that is i = {(n,t,¢)|n € m,t € {start,end},c € C}, where start
means starting dote while end means ending date and c is a discrete control provided by peripherals. At
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Figure 3: An example of an interactive score Pi

last, r is a set of temporal constraints binding notes of m, that is r = {(a,n1,n2)|a € A,n1 € m,ns € m},
where A is the set of temporal relations described in the preceding subsection.

Let us present in Figure 3 an example of an interactive score based on the static score P. In this
example we have

Pi =< P, i, > where :

i - {(A7 end7 $)7 (B7 end7 m)? (07 StaTt? E)? (E7 Start7 y)? (E7 end? y)? (F7 end7 m)? (G7 end? Z)}

and

r = {(before, A, B), (meets, C, D), (starts, E, D), (overlaps, F, E), (during, G, B)}

We have to notice here that the hierarchical structure of the static score implies a during relation
between a note and all of its children. These relations are not stored in the element ¢ of the interactive
score, but they will be used later.

As we can see, the main object of an interactive score is the event. An event € of an interactive score
s=< m, i, t > can be either an interactive event, that means € € i, either a static event that means ¢ =
(n,t)|n € m,t € {s,e}. Let us denote by ¥, the set of all the events of an interactive score s. We define
an absolute date function ¢ on X, as: for € € Xy, € = (n,t,c) or (n,t)

[ s(n) ift=start
He) = { e(n) if t=end

The t function gives the date that is written in the static score. We cannot assume that during the
performance, this will be the date of the event, because of the shiftings due to the interactive events. So
we define another date function ¢’ which represents the effective date of the event during the performance.
We cannot precisely express this date, but we can partially order these effective dates of the events thanks
to the time relations between the notes. We now want to turn the interactive score into a representation
that uses the events as main objects instead of the notes. This representation is the three-colored graph.



2.4 Three-colored Graph

A three-colored graph is an oriented graph, with colored and weighted arcs, formally :
G=<V,A fsa>

where F is the set of vertices, A CV xV,and f4 : A—» {RED,BLACK,BLUE} x N. For an interactive
score s, we define an associated three-colored graph such that :

V=53
Ja€ A a= (e, ¢e)onlyif t'(e,) < t'(e)

The color of an arc is defined as follows :
For a = (€,,¢;) € Aand A€ N :

o fa(a) = (BLUE,A) means : t'(e) > t'(e,) + A
e fa(a) = (BLACK,A) means : t'(¢) > t'(e,)
e fa(a) = (RED,A) means : ¢ is interactive

An arc is colored in BLUE if, during execution, the duration between its source event and its target event
has to be greater or equal than the one written in the score during execution. In this case, the composer
gives a higher priority to the written duration than to interactivity. On the contrary an arc is colored in
BLACK when the composer allows to interrupt its duration because of interaction.

2.5 Musical Environment
2.5.1 Petri Network

The system is based on a set of partially ordered events. Nevertheless, at execution time, real-time
events will admit a total order. Because of the indeterminism of this order (several orders can eventually
occur at performance), finite automata is not a suitable representation, even indeterminist automata.
As a matter of fact, the specification of all possible cases of orders occurring between events would be
necessary, leading to a high number of states. On the contrary, Petri network [Mur89]are well suited for
handling concurrency. A Petri Network is an oriented graph with two types of vertices, the places and the
transitions: PN = <V, A >, with V = PUT, where P is the set of places and T, the set of transitions,
and A= (PxT)U (T x P).

Each place contains a number of tokens greater or equal to zero. Every transition contains a condition
which have to be satisfied for tokens to go throw it. Moreover, all places admitting an arc towards a
transition ¢ have to contain at least a token for the transition ¢ to be passed. When a transition ¢ is
passed, one token is removed from all places preceding ¢ and one token is added to all places admitting
an arc coming from the transition ¢. Then, execution of a Petri network is a sequence of tokens moves.

In our case, the source of the graph is the beginning of the musical piece. Initially, one token is
given to the source. Transitions conditions provide a way to wait for input controls (in the case when
an interactive event is expected) and for specific dates (in the case when a written duration has to be
respected). In addition, actions are associated to places and are used to launch events. Only two types
of functions are necessary, functions ON (n) (to trigger the note n) and OF F(n) (to release the note n).

2.5.2 Priority Queue

Each place of a Petri network is associated to a set of actions. Some actions, that we shall call immediate
actions, consist in launching an event immediately, while others consist in waiting for a certain date before
launching the event. In a very concrete way, those actions consist in fact in adding in a priority queue
a frame < f,d,n > such that f is a pointer to the function (ON or OFF), d is the date for launching
the function, and n is the note containing the event (start or end), providing attributes for applying the
function.
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2.5.3 State Variables

Indeterminism implies several possible total orders during performance between events. At static time,
it is necessary to consider all those orders. That means that several interval of dates can be associated
to the launching of certain event during performance. The solution we adopted consists in adding in the
queue all action frames for launching events for all possible cases of order. Then, in order to respect
temporal constraints, we have to wait for the last action frame associated with an event e for really
launching the event e.

For implementing this mechanism, we define a counter for each event e. This counter is initialized to
the number of possible orders of launch that can occur at performance for the event e. Then, each time
an action frame < f,d,e > is removed from the priority queue, the counter of the event e is decremented.
When the counter of an event e reaches zero, the function f is applied to the note n.

3 Algorithms

3.1 Interactive Score Translation

We will present here the steps that will turn an interactive score into a musical environnement. We will
present two algorithms and discuss the conservation of all the information stored in the interactive score.

3.1.1 Three-colored graph

The first step consists in turning the interactive score into a three-colored graph which is a representation
of the score based on the events. This algorithm is based on a set of elementary transformations that
turn particular configurations of the interactive score into sub-three-colored graphs. We can find in this
set the transformation of a note and the transformations that traduce the time relations between notes
(see figure 4). For each case, we present the time relation in the interactive score with the associated
three-colored graph. In these figures, we note an event as follows: s4 = (A, start) and e4 = (4, end),
where A is a note. From now and for all the figures we will present, the nomenclature is respected : a
BLACK is drawn with a single solid line, a BLUE arc is drawn with a single dashed line and a RED arc
is drawn with double solid arc.

We present the sub-three-colored graphs with generic events and arcs, without taking into account
interactivity. So, in the figures, the events are static and the arcs are blue.



Figure 5: The associated three-colored graph of Pi

Once the elementary transformations are defined, the algorithm consists in creating a three-colored
graph with a vertice for each event of the interactive score. It places arcs corresponding to the duration
of the notes, and places arcs corresponding to the time relations between notes including the during
relations implied by the hierarchical structure. Each time a BLUE arc is preceded by a RED one, the
composer is asked for the priority he wants: written duration or interactivity. If the composer chooses
the duration, the BLUE arc is turned into a BLACK one, elsewhere the colors remain as they are.

We present in Figure 5 the associated three-colored graph of the interactive score Pi. We did some
choices as a composer would do to determine the BLACK \ BLUE color of arcs followed by a RED arc.
We don’t present the weight of the arc (except 0), to not over complicate the figure. In reality, each arc
is weighted except the RED ones.

3.1.2 Musical Environment

Now, we have to turn the three-colored graph into a musical environment that will be executed by the
ECO Machine.

The first step consists in labeling events in the three-colored graph with places. Those label indicate,
for each event, which place contains its launching action. Since interactive events have only one launch
action, they receive only one label. On the contrary, static events have as many launching actions as
interactive events that preceed them in the partial order, so that launching of static events may be
represented in several places. Thus, each interactive event is labeled by its own place, while static events
are labeled by places of all interactive events preceding them with an BLUE or BLACK arc.

Once the events are labeled, we can create the Petri Network. We can find two types of places in it :
the main places that will contain the actions, and the empty places, which do not have any action, and
will only permit the rendez-vous between events as well as and the expectation of signals from peripherals.
For each label I, we create a new main place, in which we store all the actions that correspond to the
events of the three-colored graph that have been labeled with /. A main place ¢ will be directly reachable
from a main place s, if there are arcs between the events corresponding to s and the events corresponding
to t. As there is a bijection between the set of interactive events and the set of main places, we can see
the Petri Network as the partial arrangement of groups of actions depended of an interactive event. As
a consequence, empty places are created to represent all the conditions of the passing from a place to it
successor, as well as immediate transition (without any conditions) to satisfy alternance between places
and transitions.

Let us illustrate this point with the situation between the end of note A and the the end of note F'
in the example of Pi. The Figure 6 shows the part of the Petri Network corresponding to this part of
the three-colored graph. So we will find in the place of e4 (p1), the instruction for sp and s, because
the are joined by BLACK and BLUE arcs. As we can see on the graph, the composer has chosen to give
higher priority to the duration between sp and sg and a lower priority to the interactivity of ep. So we
must wait for waiting sg, before allowing the musician to start F. This constraint is satisfied thanks to
the two empty places pguration and pperipheral and the transitions between them. Once sp has been
launched, we accepted the signal z for activating the place pa.

Concerning other components of the musical environment, the queue is empty at the beginning of the
execution, and the state variable of each event e is initialized with the number of labels it has received
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Figure 6: An example of a part of a Petri Network

during the labeling algorithm. As a matter of fact, it corresponds to the number of actions for launching
€ that will be stored in the different places of the Petri Network.

3.2 ECO Machine

An ECO machine is an abstract machine such that:
e a state of the ECO machine is a 4-tuple (E, C, O, t) where:

— F is a musical environment, as it is described in the previous subsection;
— (' is a control string representing input time-stamped events;
— O is the output string;

— t is the time-stamp of the state.

e the operation of the machine is described in terms of state transitions that are synchronized on a
clock. The first state is associated to the initial date 0. Let §t be the value of a cycle of the clock,
transitions occur at that rate. Given the current state (E, C, O,t), the next state (E',C', 0, t+ dt)
is determined by the events of the current control string C' whose time-stamp are greater than ¢
and lower than t + dt.

Concretely, the execution consists in activating all the places of the Petri Network that contain a
token. The Petri Network begins with a source which is a transition. This transition is managed by the
signal for the start of the piece which is always interactive. In general, when a main place is activated,
the immediate actions it contains are comsumed and the others are placed in the queue ordered by their
date of completion. Each time an action is consumed, we decrement the state variable of the event that
corresponds to this action. When a state variable is null, we effectively run the associated action, because
it means that all the occurrences of the action have been consumed, so that all the constraints on this
action have been satisfied. The performance stops the action when the end of the piece has been run.

4 Conclusion

We presented a formal definition of interpretation of written piece as a set of pieces obtained during
performance and satisfying certain temporal constraints between triggering and releasing events. We
proposed an operational model to compute a program associated to any kind of interpretation associated
to a musical piece. A system implementing this model is under development. This system should provide
a way to define interaction points on a score bound with temporal relations and to associate them to any
kind of peripherals providing discrete control (keyboard, mouse, etc.).

Next step of this research consists in integrating continuous controls in the model. This should not
change fundamentally the model, unless mapping has to be defined between continuous control and
musical or sound parameters. For that purpose, the hierarchical structuring of the score will be very
useful for structuring the mapping itself. As a matter of fact, hierarchical mapping will result from this
model and will provide a very comfortable way to represent interactions with sound synthesis as well as
interactions with musical parameters.
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