
HAL Id: hal-00307924
https://hal.science/hal-00307924

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent Constraints Models for Interactive Scores
Antoine Allombert, Gérard Assayag, M. Desainte-Catherine, Camilo Rueda

To cite this version:
Antoine Allombert, Gérard Assayag, M. Desainte-Catherine, Camilo Rueda. Concurrent Constraints
Models for Interactive Scores. 3rd Sound and Music Computing Conference (SMC06), GMEM, May
2006, Marseille, France. �hal-00307924�

https://hal.science/hal-00307924
https://hal.archives-ouvertes.fr

CONCURRENT CONSTRAINTS MODELS FOR INTERACTIVE SCORES

A. Allombert, G. Assayag
Ircam

M. Desainte-Catherine
Bordeaux I University

C. Rueda
Ircam and Javeriana Univ.

ABSTRACT

We propose a formalism for construction and performance
of musical pieces composed of temporal structures involv-
ing discrete interactive events. The occurrence in time of
these structures and events is partially defined according
to constraints, such as Allen temporal relations. We rep-
resent the temporal structures using two constraint mod-
els. A constraints propagation model is used for the score
composition stage whereas a non deterministic temporal
concurrent constraint calculus (NTCC) is used for the per-
formance phase. The models are tested with examples
of temporal structures computed with the GECODE con-
straint system library and run with a NTCC interpreter.

1. INTRODUCTION

Composing an interactive musical piece often necessitates
to construct several musical parts before binding them to
interactive events or computing programs. But, on the one
hand, existing systems for writing music actually propose
very limited real-time interaction, and on the other hand,
programming languages, such as MAX (or pd) do not pro-
vide the composer with very sophisticated tools for com-
position.

We claim that a new kind of systems is needed for com-
posing interactive musical pieces. Such systems would
provide a composition environment for building musical
parts as well as programming tools for specifying interac-
tion computation.

In this paper, we propose a formalism for writing musi-
cal pieces involving discrete interactive events. As in [2],
we shall callinteractive score, a musical score involving
static and interactive events, that are bound by some log-
ical properties. In this paper, we limit our study to tem-
poral relations, such as the Allen’s ones. After the pre-
sentation of what is exactly an interactive score, we pro-
pose an operational model based on concurrent constraints
models, and wich provides a sound specification of any
interactive score. Our model comprises a compositional
phase and a performance phase. For the first one we pro-
pose an incremental constraints propagation model based
on the GECODE constraints library, and for the second
one a non deterministic temporal concurrent constraints
calculus. Our preliminary tests show this model to be ap-
propriate both for score editing and for our real-time re-
quirements, but more experiments are needed for this to
be conclusive.

2. BACKGROUND

2.1. Temporal structures

An interactive score is a set of musical objects (such as
notes and events) that are bound with temporal relations.
In this set, some events are choosed to be interactive. That
means that they will happen in real-time. In the general
case, temporal relations specify in a partial way the mu-
sical piece, so that several pieces can be obtained during
performance, according to the real-time events coming in
input. This indeterminism provides a kind of degree of
freedom to the musicians while the resulting piece still
satisfies the composer requirements.

The whole process requires the two following consec-
utive steps.

1. The compositional process: the composer builds his
interactive score by creating his musical objects, bind-
ing them with temporal relations, and choosing his
interactive events;

2. The performance process: the interactive score is
no more edited. The system executes and decides at
each step what object must start, continue or stop.
These decisions are made according to the asyn-
chronous real-time events coming from input, and
the indeterminism that remains in the score.

2.2. Concurrent constraints models

Concurrent constraint programming (CCP [8]) is intended
as a model of concurrent systems. In CCP a concurrent
system is modeled in terms of constraints over the vari-
ables of the system. A constraint is a formula representing
partial information about the values of some of the vari-
ables. For example, in a system with variablespitch1, pitch2

taking MIDI values, the constraintpitch1 > pitch2 +
2 specifies possible values forpitch1 andpitch2 (those
wherepitch1 is at least a tone higher thanpitch2). The
CCP model includes a set of (basic) constraints and a so-
called entailment relation |= between constraints. This
relation gives a way ofdeducing a constraint from the
information supplied by other constraints. For example,
pitch1 > pitch2 + 2, pitch2 > 60 |= pitch1 > 48.

Computation in the CCP model proceeds by accumu-
lating information (i.e. constraints) in astore. The in-
formation specifies all that is known about the values of
the variables at a given moment. Information on thestore

may increase but it cannot decrease. Concurrent processes

interact with the store eithertelling new information or
asking whether some constraint can be deduced (entailed)
from the information contained in it. It may well hap-
pens that the constraint cannot be entailed. In this case the
interacting process is said toblock until some other pro-
cesses tell enough information to the store to deduce its
constraint.

Basic constraints in a CCP model are chosen so that
entailment can be efficiently computed. In programming
systems based on the CCP model the user can compute
with more complex (non-basic) constraints. These sys-
tems provide apropagator for each different type of user
constraint. The role of the propagator is to translate a
given asserted constraint into a collection of basic con-
straints supplying the same information. For example, as-
suming basic constraints are all of the formx ∈ [a..b], and
a store containing{pitch1 ∈ [36..72], pitch2 ∈ [60..80]},
a propagator for the constraintpitch1 > pitch2+2 would
tell constraintspitch1 ∈ [63..72] andpitch2 ∈ [60..69]. A
good CCP language provides the user with efficient prop-
agators for a rich collection of constraint types. A well-
known example is thedistinct type of constraint, used for
asserting that the values of some collection of variables
must be all pairwise distinct.

As can be seen in the above example, the action of
propagators ends up narrowing down the set of possible
values for each variable (so-called itsdomain). This, how-
ever, does not guarantee that it will eventually be inferred
a single value to each variable. CCP languages thus in-
clude in generalsearch engines. The purpose of a search
engine is to choose additional basic constraints to tell into
the store until all variables have reduced their domain into
a single value. For example, a search engine might choose
to tell constraintpitch1 ∈ [72..72] in the example dis-
cussed above. This will allow the propagator forpitch1 >

pitch2+2 to infer constraintpitch2 ∈ [69..69] and thus all
variables will get assigned to a single value. It may so hap-
pens, of course, that the constraint chosen by the search
engine leads to a contradiction. The search engine backs
up then and performs a different choice of constraint.

A system providing many efficient propagators and pow-
erful user controllable search engines is GECODE ([9]).
We describe below how to use it to model a temporal
structure interaction system.

One drawback of the CCP model as presented above
is that information is always accumulated. There is no
way to eliminate it. This poses difficulties for modeling
reactive systems in which information on a given vari-
able changes depending on the interactions of a system
with its environment, as is the case, for example, in inter-
active performance systems. Different extensions on the
CCP model have been proposed to handle reactive sys-
tems. One such model is the non-deterministic temporal
concurrent constraint calculus (NTCC, [6]). This calculus
introduces the notion of time, seen as a sequence oftime
slots. At each time slot a CCP computation takes place,
starting with an empty store (or one that has been given
some information by the environment). Concurrent con-

straints agents operate on this store as in the usual CCP
model to accumulate information into the store. As op-
posed to the CCP model, however, the agents can sched-
ule processes to be run in future temporal slots. In addi-
tion, since at the beginning of each time slot a new store is
created information on the value of a variable can change
(e.g. it can be forgotten) from one slot to the next. The
computational agents of NTCC are describe in table 1.
Intuitively, agenttell(c) adds informatrionc to the store

Agent meaning
tell(c) Add c to the current store
when c do A if c holds now, runA
local x in P runP with localx
A ‖ B Parallel composition
nextA runA at the next instant
unless c next A unlessc can be inferred now,

runA∑
i∈I when ci do Pi choosePi s.t. ci holds

∗P delayP undefinitely (not
forever)

! P ExecuteP each time unit
(from now)

Table 1. NTCC agents

of the current time unit. This information can then be used
to deduce other constraints. Agentwhen c do A asks
whetherc can be deduced to hold from the current store
and if so, executes agentA. Computed information that
is to remain local to an agent is defined bylocal x in P .
Here, information onx added byP is only seen by itself
or by its subprocesses (if any). Reciprocally, any exist-
ing global information onx cannot be seen byP . The
parallel composition agentA ‖ B runsA andB in paral-
lel. AgentnextA schedulesA to be run at the next time
unit. Notice that an agentnext tell(c) adds information
c to the store of the next time unit. Notice that this store
might initially be empty or contain some information pro-
vided externally by the environment (e.g. as the result of
the system interacting with a musical device), but is com-
pletely independent of the store of the current time unit.
Agentunless c next A offers the possibility of perform-
ing activity on the basis ofabsence of information. When
constraintc cannot be deduced from the store of the cur-
rent time unit, actionA is performed in the next time unit.
It should be noticed that in NTCC this means that entail-
ment checking ofc is performed when all other processes
have finished, i.e. when it is certain thatc cannot be de-
duced in the current time unit.

The choice agent
∑

i∈I when ci do Pi non deter-
ministically runs some processPi such that its guardci

can be deduced from the current store. Several of theci’s
could hold but only onePi is non deterministically cho-
sen. Agent∗P schedulesP to be run either now or at
some unspecified time in the future. In practice, a more
controlled version of this agent, denoted∗[i,j] P , is used.
This schedulesP to be run at some time within the (closed)

interval[i, j]. This version can be encoded in the standard
NTCC. In NTCC, agents are ephemeral. Their life span is
just the time unit in which they run. Agent! P adds per-
sistence. It launches processP at the current time unit and
at all future time units.

The following example illustrates computation in NTCC.

SY ST
def
= ! tell(start > 20) ‖ CHECK ‖ PLAY

‖ ∗[50,200] tell(play(done)) ‖ BEAT (0)

PLAY
def
= !

∑
i∈{1,2,3} when play(on) do NOTEi

CHECK
def
= unless beat < start next play(on)
‖ unless play(done) nextCHECK

BEAT (i)
def
= tell(beat = i) ‖ nextBEAT (i + 1)

The system asserts (persistently) that the value ofstart is
greater than 20 and runs in parallel three processesPLAY ,
CHECK and BEAT . It also launches a process that
is to stop performance at some unspecified time unit in
the range50..200. ProcessPLAY non deterministically
chooses one of three notes when playing is on. Process
CHECK asserts that playing is on once it can be de-
duced that the beat counter is greater than or equal to the
starting time. It does so repeatedly until the stop playing
signal arrives. TheBEAT process is simply a counter
(recursive process definition can be encoded in the stan-
dard NTCC calculus. See [6]).

The NTCC calculus has an associated linear temporal
logic. Desirable properties of an NTCC model can be ex-
pressed as a formula in this logic. A proof system allows
then to verify wether the NTCC model satisfies or not the
property.

The NTCC calculus has been used to model musical
improvisation processes ([7]). We use it here to account
for the interaction with a composer (or device) during per-
formance as a hierarchical temporal process, constrained
in various ways, is run.

3. THE MODEL

In this section, we present our model ofinteractive scores
on which is based our study. This model directly stems
from the model presented in [5].

3.1. Interactive Score

Intuitively, a score is a representation where a set of tem-
poral objects (TO) are disposed in time. Temporal objects
have a start time and a duration (or an end time) . If the
score is to be executed in real-time by a computer, an as-
sociated process is attached to temporal objects, giving
them a musical/sound content. A note, for example, is a
particularly simple temporal object to which conventional
graphical notations may apply, and for which the asso-
ciated process could be a simple Midi note-on / note-off
triggering mechanism. In the general case, the associated
process might be much more complexe and involve, for

example, starting a synthesis engine and controlling its pa-
rameters in real-time. Or, it could involve the processing
of an incoming stream of events or sound. In this case the
score will be said to be interactive as its execution depends
on asynchronous informations from the outside. Musical
processes attached to TOs are beyond the scope of this pa-
per. We see three levels of representations for scores in a
computer environment : graphical, structural and tempo-
ral. These representations establish a complex network of
relationships over the TOs. The graphical level provides
a set of surface representations and graphical edition tools
that may include conventional music notation (where it
may apply) or hierarchical boxing representations such as
in OpenMusic Maquettes [4] or Boxes [3]. For a given
structural and temporal representation, several graphical
representations may interchange, that reveal more or less
of the structural / temporal details. Structural represen-
tations encompass diverse structural relationships such as
hierarchical ones (a son TO may belong to a father TO)
or functional ones (the process linked to a TO may pro-
vide input informations to another TO/process). Tempo-
ral representation expresses all the temporal relationships
between TOs, such as before, meets etc. This paper is
mostly focused on the the temporal representation, which
is enough in order to undestand the propagation and ex-
ploration processes that takes place at score composition
time as well as performance/execution time. For instance
hierarchical relationships, usually represented as boxesin-
side boxes in graphical scores, although they are necessary
for the composer to have a synthetic view of his musical
sketch at the graphical/structural level, can be for our pur-
pose easily translated at the temporal level into automati-
cally generated basic relations : a son TO will always be
linked by a during relation to its father. Although we will
for the sake of clarity represent hierarchical information
in the graphical representations, only information at the
temporal level will be actually processed by the constraint
engines described.

So, at the temporal level, we will describe the structure
of an interactive score as such :

A score is defined by a tuplets = 〈t, r〉 wheret is a
set of temporal objects andr is a set of temporal relations.
A temporal relation is defined byr = 〈a, t1, t2〉 where a
belongs toA, the set of Allen relations [1], andt1 andt2
are temporal objects.

A temporal object is defined byt = 〈s, d, p, c〉 wheres

is the start timed is the duration,p is an attached process,
c is a constraint attached tot (i.e. its local store).

The local store will be useful later for assigning musi-
cal attributes and configuring classes of temporal objects.
It can also serve to assert “value fixing” relations (e.g.
s = 20, or d > 50).

When creating new temporal objects, there is the facil-
ity to choose it among four classes that differ in the role
they play in the score and the constraints in their store.
The four classes are : event, texture, interval, and control-
point.

• An event has the constraintd = 0. Events model

discrete interactive actions. Their attached process
is specialized in “listening” to the environment and
waiting a triggering signal to happen.

• A texture has the constraintsd ∈ [d1, d2], 0 < d1 ≤
d2 , which gives its duration an authorized range of
variation. If we forced1 andd2 to be equal to the
textures initial duration, then it is considered rigid.
Otherwise it is considered supple. A texture has a
generative process.

• An interval is exactly like a texture except it has
no generative process. Intervals are used as blank
placeholders in the score. They help to refine Al-
lens relations with respect to authorized time inter-
vals.

• A control-pointp is always created in relation with
a texture/intervalq. A relationp during q is auto-
matically added to the score. Control points help to
express a time relation between any TO and a par-
ticular point inside a texture or an interval.

The class information is kept at the structural representa-
tion level, just as the hierarchical information: as for the
temporal level, objects are handled in a unified fashion.

Temporal relations

The composer can bind the temporal objects with tempo-
ral relations based on the Allens relations. He can define
the relations before, meets, overlaps, starts, finishes, dur-
ing between temporal objects ; as said before, to main-
tain the temporal hierarchy of the score, a during relation
is automaticaly added between a TO and its sons. Al-
lens relations are only qualitative, while all inital temporal
positions and durations are quantitatively specified in the
score. Thus, we keep this information and use it for ex-
pressing quantitative temporal properties that may in cer-
tain case put restrictions on the Allen relations. For ex-
ample, a TO defined as rigid will be obliged to keep the
duration it is given when created. The temporal relations
are used to keep the organization of the score whenever
the composer changes the characteristics of a TO (dura-
tion, start time) at score edition time. The new values are
propagated through the score and the TOs are moved or
stretched as necessary in order to respect the constraints.

Interactive events

We call an interactive event a particular event that is not to
be played by the score player. Rather, it models a discrete,
asynchronous event that is supposed to happen at perfor-
mance time in the external environment and to enter the
system through an input channel. Such an event could be
related to the triggering of a pedal, or the detection of an
instrumentist who begins to play, the recognition of a cer-
tain pitch played by a musician etc. The composer can
define temporal relations between events and any other
TO including events. The meets relation will generally be

used to synchronize TOs with the arrival of an interactive
event and therefore to explicitly represent the way an ex-
ternal control will be able drive the execution of the score
at performance time. The process associated to an event
will run from the origin of time in the score until the event
happens actually. When it does happen, a special con-
straint will be added to the store, informing the execution
machine that it is time to check all the constraints relating
this event to other TOs. This will in turn condition the exe-
cution of the TOs (start a TO, stop a TO, etc.) that depend
on the event. It must be well understood that interactive
events may well happen at a certain distance from the date
they are assigned to in the score, because of expressive
choices or even mistakes. Thus the event date in the score
is only the ideal date, and the Allen relations will be used
to maintain the score coherence whatever the anticipation
or the delay is. Of course this must stay within reason-
able limits : an exagerated anticipation or delay should
be interpreted as a mistake or a time out. Such limits can
be expressed by setting a before relation between an in-
teractive event and other TOs, in order to forbid the event
to happen outside of a certain region of the score. One
can also use the intervals we have introduced sooner. By
defining an interval supple or rigid, by giving it a duration
range, one can control the authorized region for an event
(see example further). In case of anticipation error or time
out, decisions have to be made, the simple of which is to
just ignore the event. This can lead to difficulties : due
to the web of dependencies between TOs, it could result
in preventing the whole remaining score to be executed.
Adressing this problem is beyond the scope of the paper.
So, the general philosophy behind this all, at performance
time, is “keep as much as possible the coherence of the
time structure planned in the score, while taking into ac-
count, and accepting up to a certain limit, the expressive
freedom of the external agents.”

An interactive score is shown in figure 1.

T6

1

∆2

s2

T2 ∆6

∆0

∆3

meets

meets

overlapss1

T1

T4

T5

∆7

T3
,∆ maxmin ∆][

T0

T7

∆

Figure 1. An example of an interactive score

In this example, we have 8 temporal objectsT 0 to T 7.
ObjectsT 0 to T 6 are embedded intoT 7, which means
they all have an implicitduring relation toT 7. By con-
vention we will callsi and∆i the variables defining the

start time and duration of temporal objectT i.

T 0, T 3, T 6 are intervals (drawn as arrows)
T 1, T 2 are textures (drawn as rectangles)
T 5 is an interactive event (drawn as circle)
T 4 is a control-point associated toT 1

(drawn as black circle)
T 0, T 1 andT 6 are rigid (shown by a bold line)
T 3 is supple and has a duration range of[∆min, ∆max]
T 2 is supple.

The Allen relations are :

T 0 starts T 7
T 0 meets T1
T 4 meets T2
T 1 overlaps T2
T 5 meets T2
T 3 starts T 1
T 3 meets T5
T 2 meets T6
T 6 meets T7

The relations involving an interval (e.g.T 0 meets T1)
have not been drawn as the arrow symbol is quite explicit.
The interpretation of this score is as follow :

T 7 is a complex texture that controls the occurrence of
a certain number of substructures. From the beginning of
execution ofT 7, wait for a duration equal to∆0. Then
begin playingT 1. From that point, after duration∆min

has elapsed, we begin to expect an external event (T 5)
that should happen before duration∆max has elapsed. As
soon asT 5 has been detected, start playingT 2. When
duration∆0 + ∆1 has elapsed since the beginning ofT 7,
stopT 1. Now the end ofT 2 will depend on the status
of T 7. If T 7 is rigid, it has a certain duration defined by
the composer and the end ofT 2 will occur after duration
∆7 − ∆6 has elapsed since the beginning. IfT 7 is not
constrained, thenT 2 will last an undetermined time after
T 1 has finished. ObjectT 7 will end ∆6 units of time after
T 2 has finished.

3.2. The propagation model

In this section we present how we solve the constraints
problem we face during the composition when the com-
poser changes the values of the dates of a TO, and we have
to propagate it throught the score to maintain consistency
in the relations. A score can be translated into a constraint
problem where the variables are the starting dates and du-
rations of the TOs, and the constraints are equations de-
duced from the temporal relations. For example for two
TO n1 andn2 linked by a relationn1 meets n2 we have
the constraints1 + ∆1 = s2 with s1 the starting date of
n1, ∆1 the duration ofn1, ands2 the starting date ofn2

. This leads to a linear constraints problem with a cyclic
constraint graph. Since a lot of constraint-propagation al-
gorithms do not admit cyclic constraints graphs, we use

GECODE [9], a a very efficient multi-engines constraints-
satisfaction library written by Christian Schulte. Concep-
tually, GECODE divides the constraints graph into several
parts with structural particularities before treating each
part with a specific domain filtering algorithm. GECODE
also propagates intervals of values instead of single val-
ues, which makes it admit cyclic constraints graphs.

For the example in figure 1, the constraints set is (d0, d1
andd6 are locked values fixed by the composer):

∆0 = d0, ∆1 = d1, ∆6 = d6
s1 = s7 + ∆0

∆min ≤ ∆3 ≤ ∆max

s1 + ∆3 = s5

s2 = s5

s2 + ∆2 > s1 + ∆1

s2 + ∆2 + ∆6 = ∆7

We also add constraints with minor priority imposing that
each variable is equal to its current value. These level of
“soft” constraints is provided in GECODE by means of
constraint “reification”. In this scheme, instead of posting
some propertyc, a constraintb ↔ c is posted. This asserts
that b is the boolean value of the result of postingc. If
b = false is deduced, thenc is inconsistent. The branch
and bound search engine of GECODE is used to find a so-
lution maximizing the number ofb’s with the valuetrue.
In our case, this scheme gives a way of getting, after the
pertubation, the closest solution to the solution before per-
tubation. Remember that we always have a solution be-
fore pertubation since the composer designs the score and
therefore gives a value to each variable when he creates
and places the TOs (we suppose here that he cannot create
inconsistencies).

3.3. The NTCC model

Score and temporal objects are represented by ntcc pro-
cesses. Ascore is a ntcc process that launches in parallel
all its TO’s and asserts a conjunctionr of temporal rela-
tions over the TO variables. We use

∏
i∈I Pi, whereI is

finite, to denote the parallel composition of allPi. We also
write (

∧
r) for the conjunction of all constraints in the set

r. A score〈t, r〉 is the process

Score
def
= (

∏
i∈t TOi,[Pi,ci]) ‖ ! tell(

∧
r)

Each element ofr is a temporal relation. Allen relations
are naturally expressed as constraints. Three of them are
shown below:

Before(ob1,ob2)
def
= (datob1 + durob1 < datob2)

Starts(ob1,ob2)
def
= (datob1 = datob2)
∧ (durob1 < durob2)

Overlaps(ob1,ob2)
def
=

(datob1 < datob2)
∧ (datob1 + durob1 < datob2 + durob2)
∧ (datob2 < datob1 + durob1)

The score process above definespermanent relations, but
they could as well have been defined to hold only for par-
ticular time intervals.

Each temporal object〈si, di, Pi, ci〉 is a process launch-
ing itself at the right time:

TOi,[Pi,ci]
def
=

! tell(ci)
‖ ! unless clock + 1 < si

next (tell (clock ≥ si) ‖ Pi)
‖ ! when clock ≥ si do

next (Samei

‖ unless clock ≥ si + ∆i next Pi)

Notice that if there is not enough information to conclude
that the TO should not start it sets its starting timesi to the
(next) current value of the clock. This would cause the TO
to launch its activity at the next instant (this is represented
by processPi). This also include cases wheresi has not
been constrained to some specific value and information
on it is not enough to infer that its value should be greater
than the current value of the clock. It can be seen that
TOi schedules itself to finish processPi at the right time,
unless there is no information on its duration, in which
case it just continues acting forever. Objects linked to the
occurrence of a particular event would have a somewhat
different behavior in that they have to wait for the event to
arrive before displaying any activity:

EVi,[ci]
def
=

! when eventi(on) do

(! tell(ci)
‖ ! unless clock + 1 < si

next tell (clock ≥ si)
‖ ! when clock ≥ si do next Samei)

A very powerful feature of the calculus is illustrated
in the above example: the ability to compute on the ba-
sis ofabsence of information. Notice that not being able
to deduce, say,clock < si is not the same as being able
to infer clock ≥ si. In fact, there could be insufficient
information to deduce the former and also the latter. In in-
teractive music environments it is frequent that the time of
occurrence (if any) or the type of interaction is not known
in advance, and it might be useful in this case that the
computation continues on the assumption that such an in-
teraction will not take place once an appropriate amount
of time has elapsed.

ProcessSamei implements transmitting the current value
of si to the next time slot (n stands for the duration of the
whole piece).

Samei
def
=∑

v∈[0..n] when si = v do next tell (si = v)

The above process finds out first what the current value of
si is and then just tells that the same value will hold for
the next time unit.

The whole system is defined as follows:

System
def
= Score ‖ CLOCK(0)

The clock simply beats time.

CLOCK(v)
def
= tell (clock = v) ‖ next CLOCK(v+1)

Interaction results in adding (or changing) information on
the starting time of certain TO’s. Interactions are modeled
as processes:

Triggeri
def
= ∗[0..n] tell(eventi(on))

The above represents the result of some device eventu-
ally triggering some signal at some unspecified moment
within the time span of the piece (from 0 ton). A some-
what more elaborate model would involve a composer per-
forming several interactions, each one fixing somes to
some particular value. This could also be easily modeled
in NTCC:

Interactioni
def
=

! (Samei +
∑

k∈[0..n] when k > clock do Tryi(k))

Tryi(k)
def
=

unless si ≤ clock ∨ k ≥ si + ∆i

next tell (si = k)
‖ when si ≤ clock ∨ k ≥ si + ∆i do Samei

In the above definition two kind of choices are performed.
First, a choice is made of wether doing nothing (i.e. keep-
ing the same current starting time values) or to try chang-
ing ones value. In the latter case we use the summation
construct of NTCC to non-deterministically choose some
time valuek. TheTryi process then tries to assignk to si

providedTOi has not started playing yet.
We proceed now to model the example of figure 1. Tex-

tures are represented by the aboveTOi process. Intervals
and control points areTOi processes such thatPi = skip,
the null process.

Let

t = {0, 1, ..., 7}
r = {Starts0,7, Meets0,1, ..., Meets6,7, During4,1, ...}

The score is

TO0,[skip,∆0=d0] ‖ TO1,[P1,∆1=d1] ‖ TO2,[P2,true]

‖ TO3,[skip,∆min≤∆3≤∆max] ‖ TO4,[skip,true]

‖ EV5,[skip,true] ‖ TO6,[skip,∆6=d6] ‖ TO7,[skip,true]

‖ ! tell(
∧

r) ‖ Trigger5

4. CONCLUSIONS AND FUTURE WORK

We described in this paper how interactive scores could
be conveniently represented in a concurrent constraints
model. We used a constraints propagation scheme for
the interactive editing composition phase and a temporal
concurrent constraints calculus for the interactive perfor-
mance phase. Preliminary results of implementations of
some test cases is encouraging.

In the near future we plan to pursue the work presented
here in several directions. Both the editing and perfor-
mance phases are to be integrated as a music modeling
tool within the Open Music environment. This will re-
quire devising an efficient two way interface between the
GECODE library Common Lisp. Even though NTCC seems
to be a good choice for the performance phase, we plan to
assess the behavior of NTCC in real-time contexts where
complex interactions may occur. The examples presented
in this paper were run in an experimental NTCC inter-
preter implemented in the Mozart programming language[10].
We plan to build from an existing Linux version running
in C [11] to develop an efficient implementation for the
Mac OS X platform.

5. REFERENCES

[1] Allen, J.F. ”Maintaining Knowledge about
Temporal Intervals”Communications of the
ACM 1983

[2] M. Dessainte-Catherine and A. Allombert
”Specification of temporal relations betwenn
interactive events”,Proc. of the SMC 2004
(Sound and Music Computing), Paris, France
2004

[3] A. Beurivé ”Un logiciel de composition musi-
cale combinant un modle spectral, des struc-
tures hirarchiques et des contraintes”Journes
d’Informatique Musicale, JIM 2000, 2000

[4] Grard Assayag, Camilo Rueda, Mikael Laur-
son, Carlos Agon, and Olivier Delerue ”Com-
puter Assisted Composition at IRCAM: From
PatchWork to OpenMusic”.COMPUTER
MUSIC JOURNAL Volume 23 No. 3, 1999

[5] M. Dessainte-Catherine and A. Allombert.
”Interactive Scores : A Model for Specifying
Temporal Relations between Interactive and
Static Events”JNMR Vol. 34(4), 2005.

[6] , C. Palamidessi and F. Valencia. “A Tempo-
ral Concurrent Constraint Programming Cal-
culus”Proc. of the Seventh International Con-
ference on Principles and Practice of Con-
straint Programming CP2001, 2001.

[7] C. Rueda and F. Valencia. ”Proving mu-
sical properties Using a temporal Concur-
rent Constraints calculus”Procedings of the
ICMC2002, Goteborg, Sweden, 2002.

[8] V. Saraswat.Concurrent Constraint Program-
ming The MIT Press, Cambridge, MA, 1993.

[9] C. Schulte and G. Tack. ”Views and Iterators
for Generic Constraint Implementations”,Pro-
ceedings of the Fifth International Colloqium
on Implementation of Constraint and Logic

Programming Systems, CICLOPS05. 2005.
Software homepage: http://www.gecode.org

[10] G. Smolka ”The Oz Programming Model”.
Computer Science Today. Lecture Notes in
Computer Science, vol. 1000,1995

[11] R. Hurtado and P. Munoz and C. Rueda and F.
valencia. ”Programming Robotic Devices with
a Timed Concurrent Constraint Language”,
Proc. of the Tenth International Conference
on Principles and Practice of Constraint Pro-
gramming CP2004, Toronto 2004.

