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This paper presents the first version of an algorithmic scheme dedicated to the model reduction problem, in the context of polynomial ODE models derived from generalized chemical reaction systems. This scheme, which relies on computer algebra, is implemented within a new MAPLE package. It is applied over an example. The qualitative analysis of the reduced model is afterwards completely carried out, proving the practical relevance of our methods.

Introduction

This paper is concerned by the model reduction problem in cellular biology. The concerned modeling approach is the well-established one, based on nonlinear differential equations [START_REF] Leloup | Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila[END_REF][START_REF] Conrad | Modeling Molecular Interaction Networks with Nonlinear Differential Equations[END_REF]. However, this paper only considers parametric polynomial ordinary differential equation (ODE) systems, derived from generalized chemical reaction systems by means of the mass-action law [START_REF] Horn | General mass action kinetics[END_REF].

When modeling cellular processes by this approach, one rapidly gets very complicated overparameterized systems. Fitting methods to determine parameter values become difficult to carry out and unreliable. The parameters which reproduce some behaviour of interest are usually far from unique [START_REF] George Von Dassow | The segment polarity network is a robust developmental module[END_REF][START_REF] George Von | Exploring modularity with dynamical models of gene networks[END_REF]. Because of these reasons, the ODE systems need to be reduced for further analysis.

The model reduction problem is common in biological modeling. Though not formulated in these terms, most of the approaches listed in [START_REF] De | Qualitative Approaches to the Analysis of Genetic Regulatory Networks[END_REF] address this issue, in particular the one that considers the qualitative simulations of genetic networks [START_REF] Hidde De | Genetic Network Analyzer: qualitative simulation of genetic regulatory networks[END_REF]. Even in our particular setting, many methods exist for the model reduction, including lumping, sensitivity analysis and multiple time-scale analysis [START_REF] Okino | Simplification of Mathematical Models of Chemical Reaction Systems[END_REF]. Among all these methods, this paper is concerned by the quasi-steady state approximation (QSSA) [START_REF] Kokotovic | Singular Perturbation Methods in Control: Analysis and Design[END_REF], combined with reparameterization techniques. In our setting, the QSSA relies on the assumption that some of the chemical reactions are much faster than the other ones. Its principle is simple: focusing on the dynamics of the slow reactions, assuming that the fast ones are at quasi-equilibrium. The QSSA has two advantages: it reduces the number of ODE occuring in the system under study and it transforms stiff ODE systems into non stiff ones. Even in the setting of chemical reaction systems, the QSSA has been extensively studied [START_REF] Van | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF].

The authors are developing software which aim is to make the model reduction process as automatic as possible. This paper presents a first version, still incomplete, of such a software. It carries out the following steps:

1. definition of the chemical reaction system to be studied ; 2. approximation by QSSA of the ODE system derived from the input system, leading to a raw reduced model ; 3. reduction of the parameter set of the raw reduced model, leading to a reduced model.

This software is implemented in the new MABSys package of the MAPLE computer algebra system. The QSSA step applies the method presented in [START_REF] Boulier | Model Reduction of Chemical Reaction Systems using Elimination[END_REF], which makes algorithmic the equivalent methods of [START_REF] Van | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF][START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF]. The reduction of the parameter set is an exact reduction step, relying on the computation of the system Lie symmetries. It relies on the ExpandedLiePointSymmetry MAPLE package [START_REF] Sedoglavic | Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries[END_REF][START_REF] Sedoglavic | Expanded Lie Point Symmetry (MAPLE package)[END_REF]. All these methods are presented in section 2.

In order to prove the relevance of our methods, an example, borrowed from [START_REF] Boulier | On proving the absence of oscillations in models of genetic circuits[END_REF][START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF], is completely carried out in section 3. This example features a single gene regulated by an order n polymer of its own protein (the integer number n is a parameter of this model). The non reduced model involves n + 3 ODE depending on 2 n + 5 parameters. An interesting value is n = 8, which leads to a medium size system. The reduced model involves 3 ODE and n + 6 parameters only. Its qualitative analysis is carried out and one proves that the model exhibits Poincaré-Andronov-Hopf bifurcations if and only if n ≥ 9. Observe that this problem is already solved in [START_REF] Boulier | On proving the absence of oscillations in models of genetic circuits[END_REF][START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF] but with only a sketched proof in the case n ≥ 9, a different reduction in the case n ≤ 8, and much less automatic computations.

The methods

Performing QSSA by means of differential elimination

For differential systems arising from generalized chemical reactions systems, there exists a standard way to perform the QSSA, provided that the set of chemical reactions is divided in two parts: the fast ones and the slow ones.

As far as we know, the first clear relationship between this method and the Tikhonov theorem [START_REF] Kokotovic | Singular Perturbation Methods in Control: Analysis and Design[END_REF]Theorem 3.1] was established in [START_REF] Van | Reduced order dynamical modelling of reaction systems: a singular perturbation approach[END_REF]. Afterwards, close variants of the same method were rediscovered more or less independently [START_REF] Vora | Nonlinear model reduction of chemical reaction systems[END_REF][START_REF] Bennet | Transient Dynamics of Genetic Regulatory Networks[END_REF]. Though all these papers present methods, none of them is fully presented in an algorithmic manner. This may at least partly be due to the fact that some steps of the methods require the inversion of a matrix over a residue class ring, a non obvious task which may imply splitting cases. Indeed, it turns out that the whole method is equivalent to a differential elimination process, as shown for the first time in [START_REF] Boulier | Model Reduction of Chemical Reaction Systems using Elimination[END_REF]. See section 4 for an introduction to differential elimination.

Algorithm 1 DifferentialModelReduction( Ẋ = N V )

Input: The initial parametric ODE system Ẋ = N V derived from a generalized chemical reaction system involving n chemical species and p reactions. The stoichiometry matrix N has dimension n × p and integer entries. The vector X of dependent variables has dimension n. The vector of reaction rates V has dimension n. Its entries are power products of system parameters and dependent variables. Each reaction rate of V (hence each column of N ) is assumed to be tagged "fast" or "slow". Output: a list of dynamical systems in the dependent variables X obtained by quasi-steady state approximation from the initial system or Fail.

1: Split N into two matrices N f (columns of the fast reactions) and N s (columns of the slow reactions). Split V into V f and V s so that the initial ODE model writes Ẋ = N s V s + N f V f .

2: By (say) Gaussian elimination, determine a maximal linearly independent set of columns of N f and remove the other ones, giving N f . Update the vector of reaction rates V f , giving a new vector V f , such that the initial ODE model writes as follows. The entries of V f are linear combinations of elements of V f with rational number coefficients.

Ẋ = N s V s + N f V f .
3: Build a vector F of new dependent variables, having the same dimension as V f . 4: Build the following DAE of the differential polynomial ring K{X ∪ F } where K is the field of the rational fractions in the system parameters:

Ẋ = N s V s + N f F , V f = 0 .
(2.1)

5: R := a ranking F ≫ X eliminating F w.r.t. X. 6: [C 1 , . . . , C t ] := Rosenfeld-Gröbner((2.1), R) 7:
If there exists some dependent variable X i and some regular differential chain

C k such that NF(X i , C k ) is not a rational fraction in the variables X then Fail. 8: Return the list Ẋ = NF( Ẋ, C k ) for 1 ≤ k ≤ t.
The DifferentialModelReduction algorithm is summarized in Algorithm 1. One illustrates it over a famous example: the beginning of the Henri-Michaelis-Menten reduction of the basic enzymatic reaction system:

E + S k1 ----→ ← ---- k2 C k3 ----→ E + P .
(2.

2)

The initial system of ODE writes:

Ẋ = N V i.e.     Ė Ċ Ṡ Ṗ     =     -1 1 1 1 -1 -1 -1 1 0 0 0 1     •   k 1 E S k 2 C k 3 C   (2.3)
where X is the vector of the chemical species, N is the system stoichiometry matrix and V is the vector of the reaction rates. The stoichiometry matrix is built as follows: it involves one row per species and one column per reaction. The entry at row r, column c is the number of molecules of species r produced by the reaction c (i.e. the number of times species r occurs on the reaction right-hand side minus the number of times it occurs on the reaction left-hand side). The rate of a reaction is the product of the left-hand side species (with multiplicities) times the reaction rate constant (the parameter over the arrow). Split the stoichiometry matrix N into two matrices N f and N s putting the columns which correspond to fast reactions in N f and the ones which correspond to slow reactions in N s . Split accordingly the rows of the vector V into two vectors V f and V s . One gets a formula Ẋ = N s V s + N f V f . Over system (2.3), one gets:

    Ė Ċ Ṡ Ṗ     =     1 -1 0 1     • k 3 C +     -1 1 1 -1 -1 1 0 0     • k 1 E S k 2 C . (2.4)
Determine a maximal linearly independent set of columns of N f (i.e. a basis of that matrix) and remove the other ones, giving a new matrix N f . Update the vector of reaction rates V f , giving a new vector V f such that N f V f = N f V f . Over the example, removing the second column, one gets a new formula Ẋ =

N s V s + N f V f which is equivalent to formula (2.3):     Ė Ċ Ṡ Ṗ     =     1 -1 0 1     • k 3 C +     -1 1 -1 0     • k 1 E S -k 2 C . (2.5)
Replace the vector V f by a vector F of new dependent variables F i . The slow variety 1 is defined by letting the entries of V f all equal to zero. The DAE to be considered for quasi-steady state approximation is

Ẋ = N s V s + N f F , V f = 0 . (2.6)
Over the example, one gets:

    Ė Ċ Ṡ Ṗ     =     1 -1 0 1     • k 3 C +     -1 1 -1 0     • F 1 , k 1 E S -k 2 C = 0 .
(2.7) Expand this system in order to get a set of differential polynomials in the differential polynomial ring K{X ∪ F } where K = Q(k 1 , k 2 , k 3 ) and, using a ranking F ≫ X eliminating the new unknowns F , simplify it by means of a differential elimination process. One gets the following system:

F 1 = k 3 k 1 E S (k 1 S + k 2 ) k 2 (k 1 S + k 1 E + k 2 ) , Ė = k 2 1 E 2 k 3 S k 2 (k 1 S + k 1 E + k 2 ) , Ṗ = k 3 k 1 E S k 2 , Ṡ = - k 3 k 1 E S (k 1 S + k 2 ) k 2 (k 1 S + k 1 E + k 2 ) , C = k 1 E S k 2
Readers used to the Michaelis-Menten formula do probably not recognize it in the above result. Indeed, some further simplifications need to be done but these simplifications are actually not related to the QSSA. They involve considerations on initial conditions and parameter renaming. See [START_REF] Boulier | Model Reduction of Chemical Reaction Systems using Elimination[END_REF] for a complete study.

Reduction of the parameter set and reparameterization

Two packages are available for reducing the parameter set and reparameterizing differential systems. The first one is the ExpandedLiePointSymmetry package which is not specifically designed for the manipulation of biochemical systems. The second one is the MABSys package which is mostly oriented for the manipulation of models coming from biochemical reactions. They perform automatically two kinds of changes of coordinates:

1. changes of coordinates which reduce the number of parameters (by computing Lie symmetries of the differential system) ; 2. changes of coordinates which make some parameters appear as factors in the right-hand sides of differential equations (by computing Lie symmetries of the nondifferential system which defines the system steady points).

To illustrate these features, consider the following ODE, which is borrowed from system (3.4) and slightly simplified:

Ġ = θ (1 -G) -α G.
Greek letters denote parameters. The solutions of the steady point equation 0 = θ (1 -G) -α G are not changed when α and θ are both multiplied by any nonzero constant λ. This suggests to replace α by α θ, which leads to the new ODE:

Ġ = θ (1 -G -α G).
The parameter θ appears as a factor of the right-hand side of the ODE. The steady point does not depend on θ anymore. Now, the ODE is left unchanged when the time t is multiplied by λ and θ is divided by λ. This suggests to replace t by t/θ. This leads to the new ODE:

Ġ = 1 -G -α G.
An important feature of the MABSys package is that it restricts itself to symmetries of type scaling because they preserve the positivity of the system variables and parameters: a crucial property for studying the system qualitative behaviour.

An important issue is not yet satisfactorily solved: the parameters that can be removed or rewritten by means of symmetries is not uniquely defined. Designing a package interface which precisely defines the package output is thus far from easy. Different choices may lead to different systems which lead to qualitative analyses of various difficulties.

The example

One considers the genetic circuit depicted in Figure 1. The single gene is regulated by an order n polymer of its own protein. The integer number n is a parameter of the system. This study was motivated by the activity of a working group aiming at modeling the circadian clock of the green alga ostreococcus tauri. See [START_REF] Mcclung | Plant Circadian Rhythms[END_REF] for a survey on circadian rhythms and [START_REF] Fall | [END_REF]Chapter 9] or [START_REF] Goldbeter | Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour[END_REF][START_REF] Françoise | Oscillations en biologie[END_REF] for more general texts about oscillations in biology.

The addressed question is: does there exist biologically meaningful (i.e. positive) parameter values which make this circuit oscillate ? A related but easier problem consists of searching for the existence of parameter and variable positive values which give rise to Poincaré-Andronov-Hopf bifurcations. See [START_REF] Hale | Dynamics and Bifurcations[END_REF]Chapter 11], or [START_REF] Hairer | Solving ordinary differential equations I. Nonstiff problems[END_REF]Section I.16]. In the neighborhood of a Poincaré-Andronov-Hopf bifurcation indeed, a stable steady point of the model under study gives birth to a small stable limit cycle under some general hypotheses. Note that searching for Poincaré-Andronov-Hopf bifurcations is not as general as searching for limit cycles: first, some Poincaré-Andronov-Hopf bifurcations (the subcritical ones) do not imply the existence of stable limit cycles; second, there may exist limit cycles not related to Poincaré-Andronov-Hopf bifurcations.

Our approach is decomposed in three parts. First one reduces the initial model to a three-variable model by means of quasi-steady state approximation. Second, one reduces the parameter set of the three-variable model. Third one proves by computer algebra methods that Poincaré-Andronov-Hopf bifurcation occur for positive values of the parameters if and only if n ≥ 9. As pointed out previously, this is not sufficient to prove the presence of limit cycles in the case n ≥ 9. However, this result is confirmed by extensive numerical simulations. Other approaches could have been applied. There exist software packages such as AUTO or XPPAUT [START_REF] Doedel | AUTO software for continuation and bifurcation problems in ODEs[END_REF][START_REF] Ermentrout | Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students[END_REF] which locate Poincaré-Andronov-Hopf bifurcations by means of numerical calculations. They allow one to evidence the existence of Poincaré-Andronov-Hopf bifurcations but not to prove their absence, and thus cannot be used to discard a model. Moreover, they can only tackle particular values of n. Theoretically, the existence or the absence of Poincaré-Andronov-Hopf bifurcations can be decided algebraically [START_REF] Kahoui | Deciding Hopf bifurcations by quantifier elimination in a software-component architecture[END_REF][START_REF] Wang | Stability Analysis of Biological Systems with Real Solution Classification[END_REF][START_REF] Gatermann | Computational algebra for bifurcation theory[END_REF][START_REF] Gatermann | Toric Ideals and graph theory to analyze Hopf bifurcations in mass action systems[END_REF][START_REF] Niu | Algebraic Approaches to Stability Analysis of Biological Systems[END_REF]. In particular, it can be decided by means of computer algebra methods which rely on Sturm sequences computations and algebraic elimination. Practitioners usually seem to avoid these methods because of their huge complexity in the worst case. See however [START_REF] Anai | Algebraic Methods for Solving Real Polynomial Constraints and their Applications in Biology[END_REF][START_REF] Yoshida | Inquiry into Conditions for Cell-Type Diversity of Multicellular Organisms by Quantifier Elimination[END_REF] for applications in biology. In particular, the QEPCAD [START_REF] Brown | QEPCAD B: a program for computing with semi-algebraic sets using CADs[END_REF] package, which is based on quantifier elimination methods, could not solve the problem addressed in this section. The REDLOG package [START_REF] Dolzmann | Redlog: computer algebra meets computer logic[END_REF] and the software described in [START_REF] Kahoui | Deciding Hopf bifurcations by quantifier elimination in a software-component architecture[END_REF] rely on QEPCAD for the quantifier elimination process. An attempt to solve the addressed problem using the RAGLib library [START_REF] Safey | RAGLib (Real Algebraic Library Maple package[END_REF] did not succeed. According to specialists, these methods are optimized to tackle the worst case while our problems exhibit more generic features.

The abstract model depicted in Figure 1 is closely related to models studied by Goodwin and Griffith in the 60's [START_REF] Goodwin | Temporal Organization in Cells[END_REF][START_REF] Goodwin | Advances in Enzyme Regulation[END_REF][START_REF] Griffith | Mathematics of Cellular Control Processes. I. Negative Feedback to One Gene[END_REF]. It features a negative feedback loop, one of the core ingredients for generating oscillations [START_REF] Fall | [END_REF]. Griffith considered a model of a gene regulated by a polymer formed of n copies of its own protein.

The same problem is studied here, but in a slightly more general case, where gene activation is not assumed to be fast. Although we do focus here on biology, it should be stressed that a cooperativity of order 9 is not as unrealistic as it may seem. In particular, gene regulation by an octamer has been reported [START_REF] Selleck | A histone fold TAF octamer within the yeast TFIID transcriptional coactivator[END_REF]. Moreover, an effective cooperativity of order 9 may also be obtained as a consequence of reducing a higher-dimensional, more realistic, model to that of Figure 1. Finally, our conclusions are consistent with those of Griffith [START_REF] Fall | [END_REF] and of other works devoted to more sophisticated variants of the Goodwin model [START_REF] Ruoff | The Temperature-Compensated Goodwin Model Simulates Many Circadian Clock Properties[END_REF][START_REF] Ruoff | The Goodwin Model: Simulating the Effet of Cycloheximide and Heat Shock on the Sporulation Rhythm of Neurospora crassa[END_REF][START_REF] Kurosawa | Comparative Study of Circadian Clock Models, in Search of Processes Promoting Oscillation[END_REF].

In the next sections, all the computations are sketched. A detailed trace of these computations is available at [20].

The initial model

The model of Figure 1 is translated as a system of generalized chemical reactions (observe that transcription and translation are not balanced reactions). The variables G and H represent the state of the gene. The mRNA concentration and the concentration of the protein translated from the mRNA are represented respectively by M and P . The n types of polymers of P are denoted by P = P 1 , P 2 , . . . , P n . Greek letters and k - i , k + i (1 ≤ i ≤ n-1) represent parameters:

G + P n α ----→ ← ---- θ H , G ρ f ----→ G + M , H ρ b ----→ H + M , M β ----→ M + P , M δM ----→ ∅ , P δP ----→ ∅ , P i + P k + i ----→ ← ---- k - i P i+1 (1 ≤ i ≤ n -1). (3.1) 
This generalized chemical reaction system can now be canonically translated as a system of parametric ordinary differential equations, denoting

A i = (k - i P i+1 - k + i P i P ).
Variables G, H, M, P = P 1 , . . . , P n are dependent variables. They all represent species concentrations except G and H, which should rather be viewed as "random variables".

Ġ = θ H -α G P n , Ḣ = -θ H + α G P n , Ṁ = ρ f G + ρ b H -δ M M , Ṗ = β M -δ P P + 2 A 1 + A 2 + • • • + A n-1 , Ṗi = -A i-1 + A i (2 ≤ i ≤ n -1) , Ṗn = -A n-1 + θ H -α G P n . (3.2)
This system involves n + 3 differential equations depending on 2 n + 5 parameters.

The raw reduced model

In order to apply a quasi-steady state approximation, it is assumed that the n -1 chemical reactions describing the polymerization of the protein are fast compared to the other ones. Then, according to the technique sketched in section 2.1, one gets an approximation of system (3.2) by replacing each expression A i by a new dependent variable F i (1 ≤ i ≤ n -1) and by augmenting this system by the n -1 following algebraic equations:

0 = k + i P P i -k - i P i+1 , (1 ≤ i ≤ n -1). (3.3)
It is now sufficient to eliminate the F i from the so obtained differential-algebraic system.

The MABSys package allows us to define the initial model and to compute the raw reduced model. Unfortunately, computations cannot be performed by keeping a symbolic value for n (this is a classical restriction of symbolic computation methods). However, the MABSys package can be applied for many different values of n and the general formula can be inferred.

Computations are as follows. The chemical reaction system (3.1) is entered by using the NewReaction function. Then the ModelReduce function (which is an enhanced implementation of DifferentialModelReduction, based on the RegularChains package) is applied. Then, H is replaced by γ 0 -G, introducing a new positive parameter γ 0 . Last n new K i parameters are introduced for legibility with the convention K 0 = 1.

K i = k + 1 • • • k + i k - 1 • • • k - i •
The obtained raw reduced model writes:

Ġ = θ (γ 0 -G) -α K n-1 P n G, Ṁ = ρ b (γ 0 -G) + ρ f G -δ M M, Ṗ = n θ (γ 0 -G) -n α K n-1 P n G -δ P P + β M n-1 i=0 (i + 1) 2 K i P i • (3.4) 
Observe that, in principle, there is no need to introduce the K i parameters since this simplification should be performed in the next section. However, the MABSys package does not find this particular change of coordinates but a slightly more complicated one. We chose to perform this natural simplification interactively for the sake of the legibility of our paper.

The reduced model

The raw reduced model (3.4) can now be simplified by rescaling all parameters and variables. Observe that computations are not completely automatic: the practitionner needs to choose the parameters to keep and the ones to eliminate.

Computations are made in two main steps as follows. The first step uses the function RemoveParameterByScalings which is an interface to some functionnalities of the ExpandedLiePointSymmetry package. It removes the two parameters β and δ P . The second step uses MABSys. The CylindrifySteadyPoints function is called in order to make some parameters appear as factors in the right-hand sides of the differential equations. Thus, these parameters do not appear anymore in the algebraic steady points system. For n ≥ 2, two further changes of coordinates are applied interactively for the sake of the legibility of the result (the case n = 1 is slightly different, see [20]). In all cases, the reduced model writes:

Ġ = θ (γ 0 -G -G P n ), Ṁ = ((ρ f -1) G + γ 0 -M ) δ M , Ṗ = M -P + n ρ b (γ 0 -G -G P n ) n 2 α n-1 P n-1 + n-2 i=0 (i + 1) 2 K i α i P i • (3.5)
The changes of coordinates, summarized below, are obtained by composing the ones automatically computed by the MABSys package with the extra ones, performed interactively. The old variables are expressed as functions of the new (overlined) ones. The bars are removed afterwards for legibility. For n ≥ 2, the change of variables are as follows (they are slightly different in the case n = 1, see [20]):

M = M α δ P K n-1 β , t = t δ P , P = P α K n-1 , G = G ρ b α K n-1 θ , α = K n-1 θ δ P α n , θ = θ δ P , ρ f = ρ f θ δ M δ 2 P ρ b β , ρ b = θ δ M δ 2 P ρ b β , δ M = δ M δ P , γ 0 = γ 0 ρ b α K n-1 θ , K n-1 = K n-1 n-1 , K i = K i K i n-1 (1 ≤ i < n) . (3.6) 

Qualitative analysis of the reduced model

In this section and the next ones, one proves the following proposition. Though the MABSys package provides functions related to the qualitative analysis of differential systems (in particular, functions for studying the presence of Poincaré-Andronov-Hopf bifurcations), most of the study performed in this section needed to be performed interactively. Observe that one does not need to distinguish the roles of the variables from the ones of the parameters at this step. The zeroes of this system provide the steady points of system (3.5). In general, one cannot compute a Gröbner basis if a symbolic n is left as an exponent, but in our case, a generic Gröbner basis exists. The ordering was chosen carefully in order to achieve two important properties:

1. the leading monomials are plain variables ; 2. the right-hand sides of the Gröbner basis equations are positive. The first property implies that the quotient ring defined by the Gröbner basis is a free algebra: a polynomial ring. The second property implies that there are no constraints on the values that can be assigned to the variables and parameters occuring in the right-hand sides of the Gröbner basis equations.

Computations were performed using the Basis function of the MAPLE Groebner package. The leading monomials appear on the left-hand sides of the equations:

γ 0 = P (1 + P n ) P n + ρ f , M = P, G = P P n + ρ f •

The Jacobian matrix

In order to study Poincaré-Andrononv-Hopf bifurcations of system (3.5), one needs to consider the Jacobian matrix of that system, evaluated over the system steady points. Thanks to the striking properties of the Gröbner basis computed in the above paragraph, one just needs to replace each element of the generic Jacobian matrix by its normal form w.r.t. the Gröbner basis and to forget the steady point equations. The normal form of the Jacobian matrix writes as follows:

J =         -θ (1 + P n ) 0 - n θ P n P n + ρ f (-1 + ρ f ) δ M -δ M 0 - n ρ b (1 + P n ) B 1 B - n 2 ρ b P n + P n + ρ f B (P n + ρ f )         where B = n 2 α n-1 P n-1 + n-2 i=0 (i + 1) 2 K i α i P i .
The parameters α and K i only occur in B. It is thus possible to assign arbitrary positive values to B without perturbating the values of the other expressions involved in the matrix elements. One can thus consider B as a new parameter.

If n ≤ 8 then no Poincaré-Andronov-Hopf bifurcation arises

In order to prove that no Poincaré-Andronov-Hopf bifurcation arises for positive values of variables and parameters whenever n ≤ 8, it is sufficient to prove that the three Hurwitz determinants c 0,0 , c 1,0 and c 2,0 are positive, thanks to Proposition 4.4 and Definition 4.6. These determinants are defined as follows:

c 0,0 = 1, c 1,0 = a 1 , c 2,0 = a 1 a 2 -a 3 .
where x 3 + a 1 x 2 + a 2 x + a 3 denotes the characteristic polynomial of the matrix J. The determinant c 0,0 is positive. The determinant c 1,0 is positive also since its numerator and denominator are linear combinations of power products of positive variables and parameters, with positive coefficients:

c 1,0 = θ B P 2 n + (1 + n 2 ρ b + δ M B + θ B + θ ρ f B) P n + (1 + δ M B + θ B) ρ f B (P n + ρ f ) •
In the sequel, one proves that c 2,0 is positive if n ≤ 8. The denominator B (P n +ρ f ) 2 of this rational fraction is positive. The numerator is a sum of 59 monomials, only two of which have negative coefficients:

-n δ M θ ρ f B P n (P n + ρ f ).

One thus studies the positivity of the numerator, which is a polynomial in P n . One performs a change of coordinates, renaming P n as P . This polynomial has the form

d 0 ρ 2 b + d 1 ρ b + d 2
where d 0 and d 1 are linear combinations of power products of positive variables and parameters, with positive coefficients. Thus c 2,0 is positive for each ρ b > 0 if and only if d 2 is nonnegative. One thus studies the nonnegativity of d 2 , factoring out its positive coefficient P + ρ f . This polynomial has the form:

d 2 P + ρ f = e 0 ρ f + e 1
where e 1 is a linear combination of power products of positive variables and parameters, with positive coefficients. Thus d 2 is nonnegative for each ρ f > 0 if and only if e 0 is nonnegative. One thus studies the nonnegativity of e 0 , which has the form:

e 0 = f 0 P 2 + f 1 P + f 2
where f 0 and f 2 are linear combinations of power products of positive variables and parameters, with positive coefficients. Thus e 0 is nonnegative if and only if e 0 (viewed as a univariate polynomial in P ) has no nonnegative root. Since f 2 /f 0 is the product of the roots, the two roots have the same sign and are nonzero. For both roots to be positive, it is necessary and sufficient to have f 1 negative (since f 1 is the opposite of the sum of the roots) and a positive discriminant of e 0 w.r.t. P (in order to have real roots). These polynomials write:

f 1 θ = 2 B (B δ M + 1) θ + (δ M B) 2 + (2 -n) δ M B + 1
and disc (e 0 , P )

θ 2 = -4 n B (δ M B) (δ M B + 1) θ +(δ M B) 4 -2 n (δ M B) 3 + (n 2 -4 n -2)(δ M B) -2 n (δ M B) + 1.
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Denoting δ M B by δ, one has e 0 nonnegative if and only if the conditions 0 < θ < θ 0 and 0 < θ < θ 1 are not satisfied simultaneously, i.e. if and only if θ 0 and θ 1 are not positive simultaneously, where:

θ 0 = δ 4 -2 n δ 3 + (n 2 -4 n -2) δ 2 -2 n δ + 1, θ 1 = -δ 2 + (n -2) δ -1.
These two polynomials are reciprocal polynomials. Thus, denoting λ = δ + 1/δ, one has:

θ 0 /δ 2 = λ 2 -2 n λ + n 2 -4 n -4, θ 1 /δ = -λ + n -2.
For θ 1 to be positive, it is necessary that n > λ + 2. For θ 0 to be positive, it is necessary that

n < λ + 2 -2 √ λ + 2 or n > λ + 2 + 2 √ λ + 2.
Thus, for both θ 0 and θ 1 to be positive, it is necessary that n > λ + 2 + 2 √ λ + 2. Since λ = δ + 1/δ with δ > 0, one has λ ≥ 2 whence n > 8. Thus c 2,0 is positive if and only if n ≤ 8. This concludes the proof of the left to right implication of Proposition 3.1. 

K i = 1 for each 1 ≤ i < n.
The initial values are: P (0) = 1.17, M (0) = 0.8 and G(0) = 0.002.

Let n be an integer number greater than or equal to 9. One exhibits a Poincaré-Andronov-Hopf bifurcation by applying Proposition 4.5. Take δ = 1. Then, since δ = δ M B one can take δ M = 1/2 and B = 2 (observe that B denotes an expression that is greater than 1). The conditions θ < θ 0 and θ < θ 1 then permit to take θ = 1/20. Then the polynomial e 0 has two positive roots (in the P variable) and one can take the value P = 10, which is enclosed between the two roots of e 0 , in order to ensure e 0 < 0. Now, the curve d 2 = 0 is a decreasing function of n, bounded by (say), 600. Taking ρ f = 600 thus ensures that d 2 < 0. The positive root of d 0 ρ2 b + d 1 ρ b + d 2 = 0 provides a value of ρ b which cancels c 2,0 . Its analytic formula is:

ρ b = -3843 + √ 1461560 n + 1640961 20 n 2 •
These values ensure that c 0,0 > 0, c 1,0 > 0, c 2,0 = 0 and c 2,1 = -a 3 < 0 i.e. that a Poincaré-Andronov-Hopf bifurcation occurs. This concludes the proof of Proposition 3.1. Figure 2 shows an oscillation in the neighborhood of a Poincaré-Andronov-Hopf bifurcation.

Appendix

On differential elimination

The differential elimination theory is a subtheory of the differential algebra [START_REF] Fels | Differential Algebra[END_REF][START_REF] Robert | Differential Algebra and Algebraic Groups[END_REF].

See also [START_REF] Wang | Elimination Practice: Software Tools and Applications[END_REF]. The differential elimination processes that are presented in this paper take as input two parameters: a system of polynomial (thus nonlinear) differential equations, ordinary or with partial derivatives 2 and a ranking. They produce on the output an equivalent finite set of polynomial differential systems, which are simpler, in the sense that they involve some differential equations which are consequences of the input system but were somehow hidden. The output may consist of more than one differential system because the differential elimination process may need to split cases. The set of the differential equations which are consequences of the input system forms a so-called differential ideal of some polynomial differential ring. Since this ideal is an infinite set, a natural question arises: how does the process select the finitely many differential equations which appear in the output system ? This is indeed the role of the rankings.

A differential ring (resp. field) is a ring (resp. field) R endowed with a derivation (this paper is restricted to the case of a single derivation but the theory is more general) i.e. a unitary mapping R → R such that (denoting ȧ the derivative of a):

˙ (a + b) = ȧ + ḃ , ˙ (a b) = ȧ b + a ḃ . (4.1) 
Observe that, theoretically, the derivation is an abstract operation. For legibility, one views it as the derivation w.r.t. the time t. Algorithmically, one is led to manipulate finite subsets of some differential polynomial ring R = K{U } where K is the differential field of coefficients (in practice, K = Q, Q(t) or Q(k 1 , . . . , k r ) where the k i denote parameters that would be assumed to be algebraically independent)

and U is a finite set of dependent variables3 . The elements of R, the differential polynomials are just polynomials in the usual sense, built over the infinite set, denoted ΘU , of all the derivatives of the dependent variables.

Definition 4.1. A differential ideal of a differential ring R is an ideal of R, stable under the action of the derivation.

Let F be a finite subset of a differential ring R. The set of all the finite linear combinations of various orders derivatives of elements of F , with elements of R for coefficients, is a differential ideal. It is called the differential ideal generated by F . An ideal A is said to be radical if a ∈ A whenever there exists some nonnegative integer p such that a p ∈ A. The radical of an ideal A is the set of all the ring elements a power of which belongs to A. The radical of a (differential) ideal is a radical (differential) ideal.

Theorem 4.2. Let R be a differential polynomial ring and F be a finite subset of R. A differential polynomial p of R lies in the radical of the differential ideal generated by F if and only if it vanishes over every analytic solution of F .

Proof. [START_REF] Fels | Differential Algebra[END_REF]chap. II,[START_REF] Boulier | Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits[END_REF][START_REF] Cox | Ideals, Varieties and Algorithms. An introduction to computational algebraic geometry and commutative algebra[END_REF] or [START_REF] Boulier | A computer scientist point of view on Hilbert's differential theorem of zeros[END_REF].

The Rosenfeld-Gröbner algorithm [START_REF] Boulier | Representation for the radical of a finitely generated differential ideal[END_REF] solves the membership problem to radical differential ideals. To present it, one needs to define the concept of ranking. Definition 4.3. If U is a finite set of dependent variables, a ranking over U is a total ordering over the set ΘU of all the derivatives of the elements of U which satisfies: a < ȧ and a < b ⇒ ȧ < ḃ for all a, b ∈ ΘU .

Let U be a finite set of dependent variables. A ranking such that, for every u, v ∈ U , the ith derivative of u is greater than the jth derivative of v whenever i > j is said to be orderly. If U and V are two finite sets of dependent variables, one denotes U ≫ V every ranking such that any derivative of any element of U is greater than any derivative of any element of V . Such rankings are said to eliminate U w.r.t. V .

Assume that some ranking is fixed. Then one may associate with any differential polynomial f ∈ K{U } \ K the greatest (w.r.t. the given ranking) derivative v ∈ ΘU such that deg(f, v) > 0. This derivative is called the leading derivative or the leader of f . Rankings permit to define leaders. Leaders permit to use differential polynomial as rewrite (substitution) rules. Assume that f = a d v d + • • • + a 1 v + a 0 is a differential polynomial with leader v (the coefficients a i are themselves differential polynomials). Then the equation f = 0 can be written:

v d -→ - a d-1 v d-1 + • • • + a 1 v + a 0 a d • (4.2)
It can be used afterwards as a rule to simplify any differential polynomial g such that deg(g, v) ≥ d or deg(g, v (k) ) > 0 where v (k) denotes any proper derivative of v. There are precise algorithms for performing these sorts of substitution by finite sets of rewrite rules: Ritt's reduction algorithm or the normal form algorithm [4, algorithm NF].

The Rosenfeld-Gröbner algorithm gathers as input a finite system F of differential polynomials and a ranking. It returns a finite family (possibly empty) C 1 , . . . , C r of finite subsets of K{U } \ K, called regular differential chains. Each system C i defines a differential ideal C i (it is a characteristic set of C i ) in the sense that, for any f ∈ K{U }, we have

f ∈ C i iff NF(f, C i ) = 0 . (4.
3)

The relationship with the radical A of the differential ideal generated by F is the following:

A = C 1 ∩ • • • ∩ C r . ( 4 
.4) When r = 0 we have A = K{U }. Combining both relations, one gets an algorithm to decide membership in A. Indeed, given any f ∈ K{U } we have:

f ∈ A iff NF(f, C i ) = 0, 1 ≤ i ≤ r . (4.5) 
The differential ideals C i do not need to be prime. They are however necessarily radical. The NF( • , C i ) function permits to compute canonical representatives of the residue classes of the differential ring R/C i .

4.2. On Poincaré-Andronov-Hopf bifurcations 4.2.1. Non parametric systems. Let ẋ = F (x) be a differential system in m dependent variables. The steady points of the differential system are the zeros of the system (that we assume to be polynomial or rational) F (x) = 0. To each steady point, one may associate a linear system ẋ = J x where J is the m × m jacobian matrix of the differential system, evaluated over the steady point. The stability of the steady state is determined by the eigenvalues of J. It is stable if and only if all eigenvalues have negative real parts. Thus to each steady point, one may associate the characteristic polynomial

C(σ) = σ m + a 1 σ m-1 + • • • + a m (a 0 = 1) of J.
Thanks to the Routh-Hurwitz criterion, the stability of the steady points can be studied by analyzing the sign of the Hurwitz determinants c k,0 . These ones can be directly computed from the coefficients of the characteristic polynomial, as shown below. Following [28, Section I.13], compute the Sturm sequence:

p 0 (ω) = ℜ C(i ω) i m , p 1 (ω) = -ℑ C(i ω) i m (4.6) p k+2 (ω) = -rem(p k , p k+1 , ω) (k ≥ 0). Denote p k (ω) = c k,0 ω m-k + c k,1 ω m-k-2 + c k,2 ω m-k-4 + • • •
Observe that the computation of p k must be performed carefully (e.g. using subresultant sequences) to ensure that c k,0 actually is a Hurwitz determinant. See [START_REF] Kahoui | Deciding Hopf bifurcations by quantifier elimination in a software-component architecture[END_REF]. Indeed,

c 0,0 = 1, c 1,0 = a 1 , c 2,0 = a 1 a 2 -a 3 , . . . , c m,0 = a m c m-1,0 .
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The two following propositions are well known. The first one is nearly a corollary to the Routh Theorem [START_REF] Hairer | Solving ordinary differential equations I. Nonstiff problems[END_REF]Theorem 13.4].

Proposition 4.4. With the same notations, if all the Hurwitz determinants c k,0 are positive, apart perhaps c m,0 , then J has no pure imaginary eigenvalue.

Proof. If all the Hurwitz determinants c k,0 are positive (0 ≤ k < m) then they are a fortiori nonzero. Assume J has pure imaginary eigenvalues ±i ω (they are necessarily conjugate). These values ±ω are then common zeros of p 0 and p 1 . The gcd of p 0 and p 1 has thus degree greater than or equal to 2. This gcd is the last nonzero polynomial in the sequence p 0 , . . . , p m-1 . Thus one polynomial p k with 0 ≤ k < m must vanish identically. Therefore the corresponding Hurwitz determinant c k,0 must vanish also. 

Parametric systems.

The differential systems encountered in biological modelling involve parameters. Let ẋ = F (x, θ) be a differential system in m variables and p parameters θ. If some real values are assigned to the parameters then one gets a system such as the one described in the previous section. If these real values continuously vary then the steady points and their associated eigenvalues continuously vary also. Definition 4.6. With notations as above, a Poincaré-Andronov-Hopf bifurcation arises for a steady point when all the eigenvalues associated to the steady point have negative real parts except one complex conjugate pair, which crosses the imaginary axis because of a variation in the system parameters.

In computer algebra, an important point is to avoid to compute the steady points, i.e. not to solve the system F (x, θ) = 0. The Hurwitz determinants can be computed generically. They depend on the system parameters. Their sign is studied modulo the ideal I generated by the polynomial system F (x, θ) = 0. The absence of Poincaré-Andronov-Hopf bifurcation is established, thanks to Proposition 4.4 and Definition 4.6, by proving that the Hurwitz determinants c 0,0 , . . . , c m-1,0 are positive for all x and θ, considering that x and θ satisfy F (x, θ) = 0 plus, usually, some extra (positivity) conditions such as x, θ > 0.

The Hurwitz determinants c k,0 get reformulated by computing their normal forms ck,0 w.r.t. any Gröbner basis of the ideal I. Reference books for the Gröbner basis theory are [START_REF] Cox | Ideals, Varieties and Algorithms. An introduction to computational algebraic geometry and commutative algebra[END_REF][START_REF] Becker | Gröbner Bases: a computational approach to commutative algebra[END_REF]. Indeed, the difference c k,0 -ck,0 belongs to I. Over any steady point of the differential system, it is thus zero, thus the two polynomials c k,0 and ck,0 have the same value hence the same sign.

In practice moreover, Gröbner bases can be computed in dimension zero. Computing in dimension zero corresponds to some generic computation, which may be false for particular values of the system variables and parameters. However, in biological models, parameters (and thus variables) have no accurate values and zero dimensional computing makes sense.

Conclusion

We have presented the first version of an algorithmic scheme dedicated to the model reduction problem. By carrying out a complete medium size example, including its qualitative analysis, we have proven that computer algebra tools may be most useful in biological modeling. Embedding these methods in an easy to use package should help practitioners to model cellular processes by means of a much wider variety of functions than the classical Michaelis-Menten or Hill functions, and to make the hypotheses leading to model reductions more explicit than they do. However, the model reduction part of our package still needs many improvements. It also misses tools which make automatic the small set of heuristics which permitted us to carry out the qualitative analysis of our example.
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 45 With the same notations, if all the Hurwitz determinants c k,0 are positive (0 ≤ k ≤ m -2) and c m-1,0 = 0 and c m-2,1 < 0 then all the eigenvalues of J have negative real parts except a purely imaginary conjugate pair.Proof. The polynomial p m-1 has the special form p m-1 = c m-1,0 ω. We have c m-1,0 = 0. Then p 0 and p 1 have a degree two gcd, p m-2 , which has the special form p m-2 = c m-2,0 ω 2 + c m-2,1 . We have c m-2,1 < 0 and c m-2,0 > 0 thus, the common roots ±ω of p 0 and p 1 are real. Therefore J has one pair of purely imaginary conjugate eigenvalues ±i ω. Now, compute the Sturm sequence (4.6) over the polynomial C(σ) = C(σ)/(σ 2 + ω2 ). This Sturm sequence p0 , p1 , . . . , p m can actually be derived from that of C:p0 (ω) = p 0 σ 2 + ω2 , p1 (ω) = p 1 σ 2 + ω2 , . . . , p m(ω) = c m-2,0 .All the corresponding Hurwitz determinants are positive. According to the Routh Theorem[START_REF] Hairer | Solving ordinary differential equations I. Nonstiff problems[END_REF] Theorem 13.4], all the roots of C have negative real parts. This concludes the proof of the proposition.For m = 3 we have c m-2,1 = -a 3 . For m = 4 we have c m-2,1 = -a 1 a 4 .

More precisely, its approximation M 0 , following the notations of[START_REF] Kokotovic | Singular Perturbation Methods in Control: Analysis and Design[END_REF] Sect. 1.4].

This paper is only concerned by the ordinary case.

In the differential algebra theory, the terminology differential indeterminates is preferred to dependent variables for derivations are abstract and differential indeterminates are not even assumed to correspond to functions. In order not to mix different expressions in this paper, the second expression, which seems to be more widely known, was chosen.
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