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ABSTRACT

Existing deterministic+stochastic spectral models assume that the

sounds are with low noise levels. The stochastic part of the sound

is generally estimated by subtraction of the deterministic part: It

is assumed to be the residual. Inevitable errors in the estimation

of the parameters of the deterministic part result in errors – of-

ten worse – in the estimation of the stochastic part. We propose

a new method that avoids these errors. Our method analyzes the

stochastic part without any prior knowledge of the deterministic

part. It relies on the study of the distribution of the amplitude val-

ues in successive short-time spectra. Computations of the statisti-

cal moments or the maximum likelihood lead to an estimation of

the noise power density. Experimentations on synthetic or natural

sounds show that this method is promising.

1. INTRODUCTION

Many representations of musical sounds are based on spectral mod-

els and consider audio signals as sums of sinusoids whose ampli-

tudes and frequencies evolve slowly with time [1]. Sinusoids+noise

models [2] decompose natural sounds into two independent parts:

the deterministic part and the stochastic part. The deterministic

part is a sum of sinusoids evolving slowly, whereas the stochas-

tic part corresponds to the noisy part of the original sound. This

decomposition is usually required for performing several high-

quality transformations such as time stretching or pitch shifting,

because it allows two different treatments for the two parts. These

hybrid models considerably improve the quality of the synthesized

sounds.

Spectral models usually consider the stochastic part of the sig-

nal as residual or artifacts due to the analysis errors. Most of these

techniques try to eliminate this stochastic part. In this paper, we

are interested in noisy sounds: The stochastic part is considered

as very important from a perceptual point of view. This assump-

tion imposes new techniques and new approaches. Our method

analyzes the stochastic part without any prior knowledge of the

deterministic part.

After reviewing the representations of noise in existing spec-

tral models in Section 2 and their limitations in Section 3, we

present the theory about distribution functions in Section 4. The

method proposed is then detailed in Section 5. Finally, the results

of experimentations are given in Section 6.

2. NOISE IN SPECTRAL MODELING

Existing hybrid spectral models are specially dedicated to natural

sounds with low noise levels. The stochastic part is composed of

all the signal components that have not been considered as sinu-

soids whose amplitudes and frequencies evolve slowly with time.

It is assumed to be entirely defined by the time variations of the

short-time spectral envelopes. Therefore, usual methods for the

estimation of the noisy part are dependent on the analysis of the

deterministic part. They require a high-precision analysis (in fre-

quency, amplitude, and phase) of sinusoidal peaks. Detected si-

nusoids are then subtracted from the original sound in order to

analyze the stochastic part. Limitations of these approaches ap-

pear if the frequencies and the amplitudes of the sinusoids are not

precisely estimated: The errors of these estimations are added to

the residual, and this part is thus badly estimated.

Recent works have shown the limitations of sinusoidal anal-

ysis methods [3]. The presence of high-level noise considerably

degrades the quality of the results of the analysis methods. Fur-

thermore, theory indicates that the precision of the frequency esti-

mation is limited according to the Cramér-Rao lower bound [4, 5]

which gives the limit of the variance on an estimator computing

data that are corrupted by noise. As several real-world sounds

(musical instruments, natural sounds, etc.) contain high noise lev-

els, the analysis step cannot be precise enough. Errors cannot be

avoided. Moreover, these errors result in an imprecise estimation

of the stochastic part of the signal. For example, an error for the

estimation of the frequency, amplitude, or phase of a sinusoid may

imply the presence of this sinusoid in the residual. Furthermore,

even if the sinusoid is correctly analyzed, residual analysis meth-

ods relying on a spectral subtraction [2] define the residual mag-

nitude spectra as composed of several holes, at the frequency of

the subtracted sinusoids. All these reasons explain why we think

that analyzing the stochastic part of sounds after having estimated

the deterministic part is not the most accurate technique. In our

application, the stochastic part is the most important part of the

analyzed sound. This part has not to be considered as a residual.

We think that a new technique considering first the analysis of this

stochastic part may certainly give more accurate results.

3. ANALYSIS OF THE STOCHASTIC PART

Several approaches for the extraction of the stochastic component

have been proposed. These techniques rely mainly on the classi-

fication of spectral components (or peaks) into sinusoidal compo-

nents or stochastic components induced by noise [6]. This decision

is binary which implies that a component is always associated to

a sinusoid or to noise. But a component cannot be assumed as a

mix of sinusoid and noise. Moreover, the decision is made accord-

ing to the values of audio descriptors (correlation with the window

spectrum, duration, energy location, etc.) computed in the current

analysis frame [6].

Such methods have limitations if the analyzed sound is with

high noise levels: The Cramér-Rao bound theoretically indicates

that errors cannot be avoided. Moreover we think that considering
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only one short-time amplitude spectrum cannot be sufficient for a

precise estimation of the level of the noise.

Another approach consists in considering a long-time analysis

of the amplitude spectrum. Several short-time spectra are com-

puted from several consecutive frames. The estimation thus relies

on the study of the variations of the short-time amplitude spectra.

The observation of successive short-time amplitude spectra shows

significant differences between noise and sinusoidal spectral con-

tributions. Amplitude spectra appear to be nearly constant in the

case of sinusoidal sounds provided that frequencies and amplitudes

do not highly vary over time (tremolo, vibrato). At the opposite,

amplitude spectra of noisy sounds vary very rapidly with time.

Empirical methods based on these realizations have already

been proposed [7] with some success. The first possibility is to

consider for each Discrete Fourier Transform (DFT) bin the mini-

mum of the amplitude spectra. In the case of noisy bins, this min-

imum may take values near zero whereas in the case of sinusoidal

bins, this minimum approximates the amplitude of the sinusoid

(slightly lower if noise exists). Thus, the noise level for each bin

cannot be estimated.

Another similar idea is to consider the maximum of the am-

plitude spectra. Here again, this maximum approximates the am-

plitude of the sinusoid (slightly higher if noise exists). But if the

energy of the analyzed bin is due to the presence of noise, the max-

imum of the amplitude spectra may have a very high value. Indeed,

whatever the noise level is, there is a non-null probability that the

amplitude of this bin is very high.

The last empirical method is to consider the average of the

amplitude spectra. This method leads to errors in the case of noisy

bins. We detail the explanations in the next section and we show

how this method can be improved.

4. DISTRIBUTION OF THE AMPLITUDE SPECTRUM

The method introduced in this paper relies on a study of variations

in the magnitude spectrum along the time axis. High variations

seem to indicate the presence of noise whereas stationarity seems

to characterize sinusoidal components. We propose here to revert

to statistical considerations. The way these variations occur leads

to a new analysis method for the stochastic part. We present in

this section the theoretical distribution of the amplitude spectrum

of noises.

4.1. Spectral Properties of Noises

Thermal noises can be described in terms of a Fourier series [8]:

x(t) =
N

X

n=1

[An cos(ωnt) + Bn sin(ωnt)] (1)

where N is the number of frequencies, n is an index, and ωn are

equally-spaced frequency components. The random variables An

and Bn are normally distributed with zero mean and variance σ2.

The magnitude spectrum computed by the Fourier transform is de-

fined by random variables Cn:

Cn =
p

A2
n + B2

n (2)

The amplitudes Cn are distributed according to a Rayleigh distri-

bution with most probable value σ.

4.2. Rayleigh Distribution

Let us consider a complex random variable whose real and imagi-

nary parts, denoted Xr and Xi, follow a Gaussian probability dis-

tribution (PD) with a standard deviation σ. The probability of the

magnitude M =
p

X2
r + X2

i is given by the Rayleigh PD defined

by:

p (M) =
M

σ2
e

−M
2

2σ2 (3)

where σ is the most probable value.

As explained in Section 4.1, the amplitude spectrum of any

colored noise is defined by this probability density function: For

each DFT bin, each amplitude value is a random variable that

is distributed according to this Rayleigh distribution. Here, it is

important to note that the probability that the amplitude of a bin

reaches a very high or a very low value is not null.

4.3. Rice Distribution

If we add a complex Gaussian noise X with standard deviation σ
to a complex value Ar + jAi of module A, the probability distri-

bution of the magnitude M =
p

(Xr + Ar)2 + (Xi + Ai)2 is a

random variable distributed according to the Rice distribution [9].

This distribution is defined by:

pA,σ (M) =
M

σ2
e

−(M
2+A

2)
2σ2 I0

„

AM

σ2

«

(4)

where I0 is the modified Bessel function of the first kind of order

0.

Figure 1 shows the Rice PD for σ = 1 and various A. The A
value represents a fixed amplitude value due to the presence of a

sinusoid. That is the reason why if A is zero, the Rice distribution

turns into the Rayleigh distribution. At the opposite, if A is much

greater than σ, the amplitudes are distributed according to a normal

(Gaussian) distribution with standard deviation σ and mean A.

Whatever the noise level is, each bin amplitude is theoretically

distributed according to the Rice law. Properties of this distribution

can be exploited to extract information about the noise part of any

signal.

5. NOISE ESTIMATION FROM AMPLITUDE

DISTRIBUTION

We consider long-time stationary sounds: Noise power density and

the frequencies and amplitudes of sinusoidal components are as-

sumed to be constant in several consecutive frames.

The complex value observed at a bin of the spectrum of such

sounds can be decomposed into a constant-magnitude component

and a complex Gaussian noise. For each bin, the complex spec-

trum can be characterized with two parameters A and σ that re-

spectively represent the magnitude induced by one or more sinu-

soidal peaks or side lobes, and the standard deviation induced by

noise at this bin. Each bin is the realization of the Rice PD with

parameters A and σ associated to this bin. When observing the

magnitude on the same bin at different frames, a Rice-distributed

set is obtained. This magnitude distribution may be analyzed in

turn to determine the parameters A and σ associated to the studied

bin.

The standard deviation σ indicates the energy of noise, while

A indicates the amplitude of a sinusoid. So the noise power den-

sity of a sound can be obtained by the estimation of the standard
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Figure 1: The Rice probability distribution function: If the param-

eter A of the function is zero, the Rice distribution turns into the

Rayleigh distribution, whereas if A is much greater than σ, the

Rice distribution turns into the normal (Gaussian) distribution.

deviation σ of noise at each bin. Since this distribution follows

a Rice PD, two methods are proposed: It is possible to apply the

relations on the moments of the Rice PD or to apply the likelihood

method to estimate the standard deviation of the noise for each bin

and thus obtain the noise power density.

Let us consider L non-overlapping consecutive frames. The

discrete Fourier transform is computed for each frame. For each

frequency bin the magnitude is computed for each frame in or-

der to obtain a data set of L realizations per bin. The following

methods are estimators for σ from a single set of realizations. The

variance σ2 for the whole bins leads to an estimation of the noise

power density.

5.1. Moments Method

The first moment can be expressed in terms of the modified Bessel

function:

E [M ] =

»„

1 +
A2

2σ2

«

Ie0

„

A2

4σ2

«

+

„

A2

2σ2

«

Ie1

„

A2

4σ2

«–

× σ

r

π

2
(5)

where Ie0
and Ie1

are the scaled modified Bessel functions defined

by:

Ie0
(x) = e−xI0(x) (6)

Ie1
(x) = e−xI1(x) (7)

I0 and I1 being the modified Bessel functions of the first kind of

orders 0 and 1, respectively.

The second moment of the Rice PD can be expressed as poly-

nomials in A and σ:

E
ˆ

M2˜

= A2 + σ2
(8)

The standard deviation σ is evaluated by using any pair of

moments and by finding the correct value that matches these mo-

ments.

The normalized mean µ is the mean computed on the data set

normalized by the square root of the second moment. The normal-

ized mean can be expressed only in terms of the signal-to-noise

ratio (SNR). In this paper, the SNR is denoted γ and is defined by:

γ = A2/σ2
(9)

The normalized mean can be expressed as a function of γ [10] as:

µ =
E[M ]

p

E[M2]

=

√
π

2
√

1 + γ
((1 + γ)Ie0

(γ/2) + γIe1
(γ/2))

(10)

In order to obtain an estimation of γ, it is possible to calculate

the first and second moments and to find the value of γ that makes

the calculated normalized mean match the theoretical normalized

mean.

Expressing the first moment as a function of γ and σ leads to:

σ̂ =

r

2

π
E [M ] /

h

(1 + γ) Ie0

“γ

2

”

+ γIe1

“γ

2

”i

(11)

5.2. Maximum Likelihood Method

For a probability distribution pA,σ(x) and a set M of L realiza-

tions following the probability density function denoted p, the like-

lihood function is given by:

L =

L
Y

i=1

pA,σ(Mi) (12)

where Mi is the i-th element of M .

Since M is a set of numerical values, L depends only of p. If

p is the Rice PD, L can be considered as a function of A and σ.

The log-likelihood function is given by:

log(L) =

N
X

i=1

Mi

σ2
I0

„

AMi

2σ2

«

− NA2

2σ2
−

N
X

i=1

M2
i

2σ2
(13)

The amplitude and the standard deviation can be computed by

maximizing the log-likelihood function [11]:

{Â, σ̂}ML = argmax
A,σ

log(L) (14)

The maximization of the log-likelihood function on each data

set gives us the parameters A and σ of the associated bin.

However, the maximization of 2-dimensional functions can be

time consuming. So the maximization problem is here reduced

to a 1-dimension problem by normalizing the data set M by the

square root of the second moment (the second moment of the data

set is an unbiased estimator of the Rice second moment). The log-

likelihood function is then given by:

log(L) =N log (2 (1 + γ)) − Nγ − (1 + γ)

N
X

i=1

yi

+

N
X

i=1

log
“

I0

“

2yi

p

γ (1 + γ)
””

(15)

where

yi =
Mi

p

(E[M2])
(16)
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The maximization of this second log-likelihood function gives

us the approximate location of the parameter γ:

γ̂ = argmax
γ

log(L) (17)

A solution may be derived by solving:

∂

∂γ
log(L) = 0 (18)

5.3. Algorithms

Analysis of the theoretical distribution of the amplitude for each

bin leads to the proposal of two algorithms for the estimation of

the noise power density. The first method is based on the com-

putation of two moments whereas the second one is based on the

computation of the maximum likelihood.

The general algorithms for the estimation of the noise power

density from L consecutive frames (of 1024 samples for example)

are described here:

5.3.1. Moments Method

• L DFT with size 2N are computed;

• N distributions of L realizations are computed;

• For each distribution Mk (k = 1, · · · , N ):

– µk = E[Mk]√
E[M2

k
]

is computed;

– Equation 10 is applied to compute γk;

– Equation 11 is applied to compute σk.

5.3.2. Maximum Likelihood Method

• L DFT with size 2N are computed;

• N distributions of L realizations are computed;

• For each distribution Mk (k = 1, · · · , N ):

– Equation 17 is applied on Mk to compute the approx-

imate value for γk;

– Finding the root of Equation 18 is applied to refine

solution for γk;

– Equation 11 is applied to compute σk.

6. EXPERIMENTAL RESULTS

The two estimation methods described previously have been com-

pared with various SNR and number of realizations. The conclu-

sions of these experimentations indicate that the maximum likeli-

hood and moment-based methods lead to the same precision.

Since the moments method has a better complexity, this me-

thod is preferred during our experimentations.

6.1. Number of Samples

Experimentations show that increasing the number of realizations

reduces both error and bias. When using more than 1000 realiza-

tions, the spectral envelope obtained is smooth. However, using

1000 frames cannot be acceptable. Considering 1000 observa-

tions imposes a sound duration of at least 23 seconds when the

sampling frequency is 44100 Hz and the DFT size is 1024. The

signal is likely to change in a significant way during such a long

period. Since the estimator is unbiased for 20 or more realizations,

it can be a good choice to compute distributions on 20 frames and

then recursively smooth values in time, according to:

σ(k, i) = ασ(k, i − 1) + (1 − α)σ̂(k, i) (19)

It should be also possible to use a temporal recursive computa-

tion of the moments instead of smoothing the estimated σ̂. There

are several advantages to do so. Complexity of the computation

of the moments is simplified and there is no need to save all L
magnitude spectra.

Figure 2 shows the estimated value for σ on a Rice-distributed

set with γ = 2 and σ = 1 according to the number of realizations.

0 50 100 150 200
0

0.5

1

1.5

!

Number of samples

Figure 2: Estimated σ of a Rice-distributed set (theoretical val-

ues σ = 1 and γ = 2) with the moments method. Vertical bars

indicate the standard deviation of the estimation.

6.2. Signal-to-Noise Ratio (SNR)

Experimentations show that the estimation is biased at low SNR.

Figure 3 shows the estimated σ as a function of γ with different

numbers of realizations. The distributions are computed with σ =
1, and A varies according to γ. For 20 samples, the estimator is

biased for γ lower than 1. When γ = 0, the estimation is biased by

20%. For 1000 samples, the estimation is biased for γ lower than

0.5 and the bias is very low (5%). Therefore increasing the number

of realizations reduces the bias. For low SNR, the Rice PD slightly

changes. More observations are needed to fit closely the Rice PD.

So, if the number of frame is not sufficient, errors in the estimation

of γ are likely to occur. If the SNR is low, more observation are

needed to avoid bias. If the SNR on a bin is a priori known to be

−∞ (γ = 0), the distribution follows the Rayleigh law and the

computation of the first moment gives an unbiased estimator.
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Figure 3: Estimated σ on Rice-distributed sets (theoretical values

σ = 1, γ varying from 0 to 10). Vertical bars indicate the standard

deviation of the estimation.

6.3. Effect of the Overlap

The moments and likelihood methods assume that the L realiza-

tions are statistically independent. Overlapping frames breaks this

assumption and induces correlation in the data set. The following

tests evaluate the effects of the induced correlation in the estima-

tion of σ. Tests are made with different values of γ and different

frame shifts.

The data sets are computed using a sound sampled at 44100
Hz, composed of a white noise of standard deviation

p

1024/2
and a sine wave of frequency 11025 Hz whose amplitude is

√
2γ.

FFT are computed on 1024 samples. Data sets are computed on

bin 256. In this way, the data set values obtained when the frames

are not overlapping are realizations of a Rice distribution with

standard deviation 1 and amplitude f(γ). Several data sets are

computed, with different frame shifts and γ (see Figure 4).

It has been observed that the first moment computed on data

sets is constant when the frame shift varies. Since the first moment

of the data set remains unbiased when overlapping frames, γ and

σ are affected in the same way. So the effects of the overlap are

only studied on the estimation of γ.

It has been observed that overlapping changed the magnitude

distribution and biased noise estimation. Overlapping frames adds

correlation in the computed magnitude data sets. So A may be

overestimated while σ is underestimated. However, overlapping

frames by 50% seems to have a small impact on the results. Bias

and mean square error on the estimation of γ have been calculated

using L non-overlapping frames on the one hand, and 2L−1 over-

lapping frames (50%) on the same duration on the other hand. It

appears that overlapping frames reduces bias and mean square er-

ror for the estimation of γ. Computing σ on overlapping frames

improves precision in time. It is even recommended to use a 50%
overlap since it reduces both the bias and mean square error (see

Figure 1).

It appears from our tests that using 21 overlapped frames gives

the best results. Using less frames strongly degrades performances

whereas increasing the number of frames improves slightly the re-

sults. Due to the under-estimation of the method at low SNR, it

may be interesting to increase the number of frames if a bias at

0 200 400 600 800 1000
0

50

100

150

200

!

frame shift

!=1

!=4

!=16

!=64

Figure 4: Estimated γ for several Rice-distributed DFT bins with

various SNR according to the overlap rate. Distributions are com-

puted with 20 frames. For a frame shift of 1024 samples, there is

no overlap. Overlap increases when the frame shift decreases.

SNR(γ) 1 4 16 64

MSE with overlap 0.865 3.99 38.1 597

MSE without overlap 1.30 5.76 56.5 841

Table 1: Compared MSE for the estimation of σ with 20 non over-

lapping frames or 39 overlapping frames, for the same duration

and for various γ.

low SNR is not acceptable.

6.4. Sound Tests

Sounds have been analyzed using the moments method. Data sets

are computed on 21 overlapping frames of 1024 samples. Es-

timated σ values are smoothed in time using Equation 19 and

α = 0.9.

6.4.1. Synthetic Sound

Figure 5 shows the spectrogram of a synthetic sound and its sto-

chastic component. This sound is composed of a pink noise and

several sinusoids with various magnitudes. Due to the under-esti-

mation of σ at low SNR, horizontal lines appear on the spectro-

gram. These lines are located on the frequency bins inhabited by

the sines. However this error is hardly audible.

6.4.2. Natural Sound

The moments method has been tested on a sound composed of a

saxophone sound and wind noise. Due to the length of the analy-

sis frame, variations in the color of the noise are stretched in time

while the attack and the release from the saxophone disturb the

magnitude distribution. When the sound is nearly stationary dur-

ing the analysis frame, sinusoids are correctly removed. Due to the

under-estimation at low SNR and the small amplitude modulation

of the harmonics of the saxophone sound, some estimation errors

appear for the frequency bins inhabited by the sinusoids. This error

is not disturbing, when the amplitude modulations are limited.
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Figure 5: Spectrogram of a synthetic sound (23 s) composed of 9
stationary sinusoids (fundamental 1378 Hz) with a colored noise

(top) and its analyzed stochastic component (bottom).

7. CONCLUSION

In this paper, we propose a new technique that estimates the sto-

chastic part of the signal without having previously estimated the

deterministic part. This method relies on a long-term analysis of

the variation of the amplitude spectrum. It avoids errors due to

the estimation of the sinusoidal parameters for the noisy bins. The

limitations of this method is due to the assumption of stationarity

for the analyzed signal. When sounds are nearly stationary, the

method shows accurate results. Where classical methods require a

short-term stationarity, our method requires that the sound is sta-

tionary over several frames. Due to the stochastic nature of noise, a

single amplitude spectrum does not contain enough information to

retrieve statistical properties of noise. That seems to be in agree-

ment with perception. More time is needed to identify spectral

content from noise than sinusoidal sounds. In the same way noise

was ignored in early sinusoidal models, in this first approach we

have neglected the variation of the sinusoids. Indeed, we are also

interested in noise where sines could even be absent.

Applications of the methods proposed in this paper are nu-

merous and concern essentially the improvement of the analysis

method for the sinusoid+noise spectral models. Existing methods

assume that each bin are either sinusoidal or stochastic, whereas

the technique we introduce here estimates the proportion of noise

– and thus the proportion of sinusoid – for each bin. In the future,

improvements induced by this method on spectral model will be

studied. Sound examples are available online1.
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