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Abstract

In this paper, we focus on the oriented coloring of graphs. Oriented coloring is a coloring
of the vertices of an oriented graph G without symmetric arcs such that (i) no two neighbors
in G are assigned the same color, and (ii) if two vertices w and v such that (u,v) € A(G)
are assigned colors ¢(u) and c¢(v), then for any (z,t) € A(G), we cannot have simultaneously
c(z) = c(v) and ¢(t) = c(u). The oriented chromatic number of an unoriented graph G is
the smallest number k of colors for which any of the orientations of G can be colored with &
colors.

The main results we obtain in this paper are bounds on the oriented chromatic number of
particular families of planar graphs, namely 2-dimensional grids, fat trees and fat fat trees.
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1 Introduction

In this paper, we focus on a particular vertex coloring of graphs, called oriented coloring. It
consists in coloring the vertices of an oriented graph G without symmetric arcs given the two
following rules :

e The coloring is proper, that is no two neighbors can be assigned the same color.
e For any (u,v) and (z,t) € A(GQ), if c(u) = ¢(¢) then c(v) # c(z).

The oriented chromatic number of an oriented graph G (without opposite arcs) is the minimum
number of colors needed to color G according to the above rules, and is denoted ¥(G). The ori-
ented chromatic number ¥(G) of an unoriented graph G is then defined as the maximum oriented
chromatic number over all the possible orientations of G.

The oriented chromatic number of a family F of graphs is defined to be the minimum number
of colors that are necessary to color any member of F according to the above rules. This number
is denoted by X(F).

In this paper, we focus on the oriented chromatic number of 2-dimensional grids, and some



of its subgraphs. Concerning grids, surprisingly for such structured and “simple” graphs, exact
results seem very difficult to extract. In this paper, we were only able to determine tight but non
matching bounds on the oriented chromatic number of 2-dimensional grids. For some particular
cases (2-dimensional grids where the number of rows is equal to 2 or 3), it is possible to get exact
results. This also allows us to determine exact results for subgraphs of 2-dimensional grids, namely
fat trees and fat fat trees.

The paper is organized as follows : in Section 2, we give bounds for the oriented chromatic
number of the 2-dimensional grid, using homomorphism arguments ; in Section 3, we focus on
some particular cases for 2-dimensional grids (number of rows being either 2 or 3) for which we
give exact results, and we derive some other exact results for subgraphs of 2-dimensional grids,
namely fat trees and fat fat trees.

2 2-Dimensional Grids

In this Section, we give bounds on the oriented chromatic number of 2-dimensional grids. In
particular, the upper bound will be determined using homomorphism arguments. For this pur-
pose, we first define formally the notion of homomorphism.

Given two oriented graphs G = (V,A) and G' = (V', A") a homomorphism from G to G’
is any mapping f : V — V' satisfying

(z,9) € A = (f(2),f(y)) € A".

The Oriented Coloring Problem can then be stated as follows : given an oriented graph G =
(V, A), find the smallest number of vertices of an oriented graph G' = (V', A") for which G — G'.
We will then say that G is colored by a homomorphism in G’.

It is easy to see that this smallest number is ¥(G) for any oriented graph G. The Oriented
Coloring Problem has been extensively studied [RS94, NRS97, Sop97, BKN198, BKN199, NR99,
BFK*01] these last years.

Using this notion, we get the following result.

Theorem 1 7 < ¥(G2) < 11.

Proof : The lower bound can be shown by a very tedious case by case analysis, which has also
been confirmed by computer : the orientation G* of the grid G(4,5) that is given in Figure 1 is
such that any oriented coloring of G* requires at least 7 colors (we note that the computer has
given us many different orientations for which 7 colors are necessary). Hence, for any grid G(m,n)
such that min{m,n} > 4 and max{m,n} > 5, we have \(G(m,n)) > 7.

Figure 1: Any oriented coloring G* needs at least 7 colors

The upper bound comes from the fact that any orientation of G(m,n) can be colored by a
homomorphism in the graph T'(11;1,3,4,5,9), or T11, that is the oriented circulant graph with 11
vertices, and chords of jump 1,3,4,5 and 9. One of the properties, shown in [BKN199], of T; that
we are going to use here is the following :



Property P1 : for any two distinct vertices of Ti1, there exists at least two distinct paths
of (unoriented) length 2 joining u and v for any given orientation of this path.

For any m,n > 2, we recall that we define any vertex u by its coordinates (i,j), 0 <i <m—1,
0 < j <n—1 (iis the z-coordinate and j the y-coordinate). Now let us color any given orientation
of G(m,n), by a homomorphism in T};.

Step 1 (First row) : Clearly, it is always possible to color any oriented path, in such a way
that homomorphism in 77; is respected, since the indegree and outdegree of any vertex in Ti;
is equal to 5 (actually, it is well known that 3 colors are enough to color any directed tree (and
consequently any directed path)).

Step 2 (Following rows) : The method we are going to show for the second row also works for
the following ones, and should then repeated for all the remaining ones.
First of all we color vertex (1,0) with a color different from the color of (0,1), which is always
possible because the outdegree of any vertex of 711 is 5. Then, using Property P1, it is always
possible to color vertex (1,1) by a color different from the color of vertex (0,2), still by a homo-
morphism in 77;. Then we can continue this method to color the whole second row. Hence, it is
always possible to color vertices of the (r + 1)-th row, » > 1, once the vertices of the r-th row are
colored, by a homomorphism in 74;.

Thus, there exists a way to color any orientation of G(m,n) with 11 colors, and consequently
(G (m,n)) < 11. O

Thanks to the computer, we have determined the oriented chromatic number of a large number
of orientations of grids G(m,n), for different values of m and n, and we have been unable so far
to find an orientation G* for which the number of colors necessary to color G* strictly exceeds
7. Moreover, for every orientation that has been fed to the computer (more than several tenth
of millions of occurrences), we have shown that they all could be colored by a homomorphism in
T(7;1,2,4) (something which we have not been able to prove theoretically so far). These results
incline us to pose the following conjecture.

Conjecture 1 x(G2) = 7, and any orientation of Go can be colored by a homomorphism in
T(7;1,2,4).

3 “Small” 2-Dimensional Grids and some of its Subgraphs

Surprisingly, determining the exact oriented chromatic number in 2-dimensional grids seems
to be a very difficult problem. This is why we now turn our attention to “smaller” cases (2-
dimensional grids having either 2 or 3 rows), and to subgraphs of the 2-dimensional grids, such as
fat trees and fat fat trees.

Proposition 1
. R(G2,2)=14;
e X(G(2,3))=5;
e For anyn >4, Y(G(2,n)) =6.

Proof : It is easy to find an orientation of G(2,2) for which any oriented coloring needs 4 colors.
In the case n = 3, it can be easily seen that 5 colors are enough to color any orientation of G(2,3) :
for this, consider the coloring shown in Figure 2 (left). In this coloring, vertices are assigned colors
in such a way that an edge has its extremities colored by a unique pair of colors. Hence, for any
orientation of G(2,3), this coloring will be an oriented coloring and thus ¥(G(2,3)) < 5.



Moreover, as shown in Figure 2 (right), there exists an orientation G* of G(2,3) such that any
oriented coloring of G* needs at least 5 colors. Thus ¥(G(2,3)) = 5.

4 4 3 5

1 2 4 1 2 4

Figure 2: ¥(G(2,3)) <5 (left) X(G*) > 5 (right)

For the case n > 4, the lower bound derives from the study of G(2,4), for which we can find
an orientation G* such that any oriented coloring of G* requires at least 6 colors. Indeed, let
G* be the oriented graph shown in Figure 3. It can be easily seen that any oriented coloring of
G* requires at least 4 colors (for this, consider only the 4 leftmost vertices of the graph given in
Figure 3). Now we will show that even 5 colors are not enough. Suppose we try to color G* with
5 colors : then wu; can either be colored 1 or 5. If ¢(u;) = 1, then ¢(u2) = 5 and no color can
be assigned to uz. Thus, c¢(u1) = 5. In that case, c(u2) = 2, and consequently no color can be
assigned to uy4. Hence, G* cannot be colored in 5 colors, and X(G(2,4)) > 6.

2 4 ul u3

1 3 u2 ud

Figure 3: Any oriented coloring of G* needs at least 6 colors

Since G(2,4) is subgraph of G(2,n) for any n > 4, we get ¥(G(2,n)) > 6 for any n > 4.
The upper bound can be obtained by a homomorphism in the digraph Ag given in Figure 4.
This digraph has the property that for any two distinct vertices v and v, there exists a path of
(unoriented) length 3 that joins u to v, whatever the orientations of the 3 arcs on the path from
u to v (it is only a time consuming exercise to check all the possibilities for 7 < j (1 <4 < 6 and
1 < j <6), and to see that the graph Ag has the required property, which has also been confirmed
by computer).

AVAZS

5 4

Figure 4: Digraph Ag

In that case, any grid G(2,n), n > 2, can be colored by a homomorphism in Ag. Indeed, let
u; = (0,4) and v; = (1,7), for any 0 < i < n—1in G(2,n). uo and vy are connected by an
arc. Whatever the orientation of this arc, we can color both ug and vy by a homomorphism in
Ag. In that case c(ug) # c(vo). uo and vg are also connected by a path of (unoriented) length 3,
via u; and v;. Thanks to the above property of Ag, it remains possible to color u; and v; by a
homomorphism in Ag, such that c(ui) # ¢(vi). Thus, we can repeat the previous step as many
times as necessary, till we color u,_1 and v,_1. Hence, any orientation of G(2,n) can be colored
by a homomorphism in Ag. Since |V (A4g)| = 6, we get that ¥(G(2,n)) < 6 for any n > 2, and
altogether we have shown that ¥(G(2,n)) = 6 for any n > 4. O



We note that the method described above can be extended from grids of the form G(2,n) (or
ladders) to fat trees. Fat trees are graphs generated by intersection of several horizontal ladders
with several vertical ladders, in such a way that there do not exist two horizontal ladders H;
and H, which both intersect two vertical ladders V3 and Va» (an example of fat tree is given in
Figure 5).

I
|

Figure 5: An example of fat tree

Hence, we get the following corollary.

Corollary 1 Let Fr be the family of fat trees. Then, X(Fr) = 6.

Now, we turn to the case of grids of the form G(3,n), n > 3. Let us denote by C3 the graph

given in Figure 6.
I X I y I z

Figure 6: Graph Cs

We then have the following lemma.

Lemma 1 For any orientation of C3, and any given coloring of vertices x, y and z among colors
0 to 6, it is possible to find a coloring of vertices x',y' and z' that respects homomorphism into
T(7;1,2,4).

Proof : We recall that there exists in T(7;1,2,4) at least one path of length 2 between any
two distinct vertices whatever the orientation of the arcs forming this path [BKNT99]. Since in
T(7;1,2,4),d*(z) = d~(x) = 3 for any vertex z, it is easy to see that for any two distinct vertices
uw and v of T(7;1,2,4) there exits at least two paths P, = (u,u1,v1,v) and Py = (u,us,v2,v) of
(unoriented) length 3 for any orientation of the arcs forming this path, such that v; # vs.

In that case, it is possible to find a path P = (z,z',y’,y) of length 3 joining z to y, for
any orientation of the arcs forming this path, by a homomorphism in T'(7;1,2,4), and such that
c(y") # ¢(z) in C3. Since there also exists in T'(7;1,2,4) at least one path of length 2 between any
two distinct vertices, whatever the orientation of the arcs forming this path, it is possible to assign
a color to 2’ in C3 that respects homomorphism into 7'(7;1,2,4). Thus ¢(z'), ¢(y’) and ¢(z') are
assigned, and homomorphism to T'(7;1,2,4) is respected. m|

Proposition 2
e X(G(3,3))=6;
* X(G(3,4)) =6 ;
* X(G(3,5) =6 ;



e 6 <X(G(3,n)) <7 for anyn > 6.

Proof : For any n > 4, G(2,4) is a subgraph of G(3,n) ; since ¥(G(2,4)) = 6, it follows that
X(G(3,n)) > 6 for any n > 4. In the case n = 3, it is possible to show that the digraph G* of
Figure 7 cannot be colored with strictly less than 6 colors. Indeed, the 5 vertices v; to vs must be
assigned pairwise different colors. Now suppose that we want to use only 5 colors ; then, vg can
be assigned either color 4 or 5. If ¢(vg) = 4, then c(v7) = 5, c¢(vs) = 2 and thus it is impossible to
assign a color to ve. Similarly, if ¢(vg) = 5, then ¢(v7) =1, ¢(vg) = 1 and thus it is impossible to
assign a color to vg. Since G* is a given orientation of G(3,3), we conclude that ¥(G(3,3)) > 6.

v7 v3 v6
V2 v4
vl
v8 v5 v9

Figure 7: An orientation of G(3,3) that needs 6 colors

Let us now show that 6 is an upper bound for ¥(G(3,3)). First, if we do not have one of the two
situations depicted in Figure 8 (left and middle), then 6 colors are enough (cf. Figure 8(right)).

> 6 2 6
z 5 1
2 3 4

Figure 8: An oriented coloring (right) if the situations depicted (left and middle) do not appear

By symmetry (rotation of G(3,3)), we conclude that if at least one of the vertical or horizontal
“borders” of G(3,3) has not its two arcs oriented in the same direction, then 6 colors are always
enough. Now, suppose two opposite borders are also in the same direction, as shown in Figure 9
(left) ; then it is still possible to find an oriented coloring with 6 colors (cf. Figure 9 (right)).

— -

6 4 2
3 5 1
- - 4 2 3

Figure 9: Oriented coloring (right) if the situation depicted (left) does not appear

Thanks to the symmetries, we then end up with only 2 remaining cases. They are depicted in
Figure 10(left).

However, G; can be colored in 6 colors as shown in Figure 10(above, right) ; in G2, we first
assign the corners two different colors (a and b) as shown in Figure 10(below, right). Moreover,
whatever the orientations of the non already oriented arcs, we can show that there must exist 2
vertices z and y among the v;s (2 <4 < 5) such that :

e cither arcs (z,v;) and (y,v;) are both ingoing arcs for vy ;

e or arcs (v1,z) and (vy,y) are both outgoing arcs for v .



2 4 6

Gl
3 5 1
6 2 3
a v2 b

G2
V5 vl v3
3 b vd a

Figure 10: Last two possibilities

In both cases, ¢ and y can be assigned the same color, and thus there remains 3 colors to assign
to three vertices. In this situation, we conclude that 6 colors are enough to obtain an oriented
coloring.

Altogether, we have shown that for any orientation of G* of G(3,3), 6 colors suffice to color
G*, and thus Y(G(3,3)) < 6 ; hence, we finally have ¥(G(3,3)) = 6.

In the cases n =4 and n = 5, we have used the computer to show that for any orientation G*
of G(3,n), it is always possible to produce an oriented coloring of G* that uses 6 colors. Thus,
X(G(3,4)) = 6 and X(G(3,5)) = 6.

We finish the proof with the case n > 6. Here, we proceed by a homomorphism in 7'(7; 1, 2,4).
Indeed, let u; = (0,7), v; = (1,4) and w; = (2, ) for any 0 < j < n—1. First, we color ug, v and
wp, according to T'(7;1,2,4) (this is always possible). Now we use the result of Lemma 1 to color
ur, v1 and wy. If we repeat the same process n — 1 times, we finally color every vertex of G(3,n)
in 7 colors, by a homomorphism in 7'(7;1,2,4). This is feasible for any orientation of G(3,n), thus
X(G(3,n)) <7 for any n. O

As for Proposition 1, we note that the latter method can be extended from grids of the form
G(3,n) (or fat ladders) to fat fat trees, where fat fat trees are graphs generated from fat ladders,
the same way as fat trees are generated from ladders (an example of a fat fat tree is given in
Figure 11).

Figure 11: An example of fat fat tree

Hence, we get the following corollary.
Corollary 2 Let FFr be the family of fat trees. Then, 6 < X(FFr) <T.
Remark 1 We note for completeness that we were able to prove, thanks to the computer, that

X(G(4,4)) < 6. Since G(3,3) is a subgraph of X(G(4,n)) for any n > 3, and since Y(G(3,3)) =6
(cf. Proposition 2), we conclude that X(G(4,4)) = 6.



4 Conclusion

In this paper, we have studied the oriented coloring of 2-dimensional grids, as well as some
subgraphs of 2-dimensional grids (namely, fat trees and fat fat trees). It may be surprising that
the result is far from trivial : the oriented chromatic lies between 7 and 11, and tightening this
bound seems to be a challenging problem. However, as mentioned in this paper, we conjecture
that the actual answer is 7.
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