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Abstract

A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two
neighbors are assigned the same color) such that any path of length 3 in G is not bicolored.
The star chromatic number of an undirected graph G, denoted by χs(G), is the smallest integer
k for which G admits a star coloring with k colors. In this paper, we give the exact value
of the star chromatic number of different families of graphs such as trees, cycles, complete
bipartite graphs, outerplanar graphs and 2-dimensional grids. We also study and give bounds
for the star chromatic number of other families of graphs, such as planar graphs, hypercubes,
d-dimensional grids (d ≥ 3), d-dimensional tori (d ≥ 2), graphs with bounded treewidth and
cubic graphs. We end this study by two asymptotic results, where we prove that, when d

tends to infinity, (i) there exist graphs G of maximum degree d such that χs(G) = Ω( d

3

2

(log d)
1

2

)

and (ii) for any graph G of maximum degree d, χs(G) = O(d
3

2 ).
Keywords : graphs, vertex coloring, proper coloring, star coloring.

1 Introduction

All graphs considered here are undirected. In the following definitions (and in the whole paper),
the term coloring will be used to define vertex coloring of graphs. A proper coloring of a graph
G is a labeling of the vertices of G such that no two neighbors in G are assigned the same label.
Usually, the labeling (or coloring) of vertex x is denoted by c(x). In the following, all the colorings
that we will define and use are proper colorings.

Definition 1 (Star coloring) A star coloring of a graph G is a proper coloring of G such that
no path of length 3 in G is bicolored.

We also introduce here the notion of acyclic coloring, that will be useful for our purpose.

Definition 2 (Acyclic coloring) An acyclic coloring of a graph G is a proper coloring of G such
that no cycle in G is bicolored.

We define by star chromatic number (resp. acyclic chromatic number) of a graph G the
minimum number of colors which are necessary to star color G (resp. acyclically color G). It is
denoted χs(G) for star coloring, and a(G) for acyclic coloring.

By extension, the star (resp. acyclic) chromatic number of a family F of graphs is the minimum
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number of colors that are necessary to star (resp. acyclically) color any graph belonging to F . It
is denoted χs(F) for star coloring and a(F) for acyclic coloring.

The purpose of this paper is to determine and give properties on χs(F) for a large number
of families of graphs. In Section 2, we present general properties for the star chromatic number
of graphs. In the following sections (Sections 3 to 7), we determine precisely χs(F) for trees,
cycles, complete bipartite graphs, outerplanar graphs and 2-dimensional grids and we give bounds
on χs(F) for other families of graphs, such as planar graphs, hypercubes, d-dimensional grids, d-
dimensional tori, graphs with bounded treewidth and cubic graphs. We end this paper by giving
asymptotic bounds for the star chromatic number of graphs of order n and maximum degree d.

2 Generalities

We note that for any graph G, any star coloring of G is also an acyclic coloring of G: indeed,
a cycle in G can be bicolored if and only if it is of even length, that is of length greater than or
equal to 4. However, by definition of a star coloring, no path of length 3 in G can be bicolored.
Hence, we get the following observation.

Observation 1 For any graph G, a(G) ≤ χs(G).

Proposition 2 [FGR03] For any graph G of order n and size m, χs(G) ≥ 2n+1−√
γ

2 , where
γ = 4n(n − 1) − 8m + 1.

Sketch of proof : Let us compute a lower bound for a(G), the acyclic chromatic number of
a graph G, with n vertices and m edges. Suppose we have acyclically colored G with k colors
1, 2 . . . k. Take any two of those colors, say i and j, and let Vi (resp. Vj) be the set of vertices
of G that are assigned color i (resp. color j). G[Vi ∪ Vj ], the graph induced by Vi ∪ Vj , is
by definition acyclic, i.e. it is a forest. Let eij be the number of edges of G[Vi ∪ Vj ] ; thus
eij ≤ |Vi| + |Vj | − 1 (Iij). If we sum inequality (Iij) for all distinct pairs i, j with 1 ≤ i 6= j ≤ k,

we get that
∑

1≤i6=j≤k eij ≤ n(k − 1) − k(k−1)
2 . Since

∑

1≤i6=j≤k eij = m, it now suffices to

solve the inequality k2 − (2n + 1)k + 2(m + n) ≤ 0. This gives
2n+1−√

γ

2 ≤ k ≤ 2n+1+
√

γ

2 , where
γ = 4n(n−1)−8m+1. However, the rightmost inequality does not give us any useful information,
since for any graph with at least one edge we always have γ ≥ 1 and thus k ≤ n + 1. Finally, we

obtain that a(G) ≥ k ≥ 2n+1−√
γ

2 . By Observation 1, we conclude that χs(G) also satisfies this
inequality. 2

Actually, we can note that the star coloring is an acyclic coloring such that if we take two color
classes then the induced subgraph is a forest composed only of stars. Star coloring was introduced
in 1973 by Grünbaum [Grü73]. He linked star coloring to acyclic coloring by showing that any
planar graph has an acyclic chromatic number less than or equal to 9, and by suggesting that this
implies that any planar graph has a star chromatic number less than or equal to 9 · 28 = 2304.

However, this property can be generalized for any given graph G, as mentioned in [BKW99,
BKRS00].

Theorem 3 (Relation acyclic/star coloring) [BKW99, BKRS00] For any graph G, if the
acyclic chromatic number of G satisfies a(G) ≤ k, then the star chromatic number of G satis-
fies χs(G) ≤ k · 2k−1.

As a corollary of this result, we can determine an upper bound for χs(P), where P denotes
the family of planar graphs. Indeed, Borodin [Bor79] showed that any planar graph has an acyclic
coloring using at most 5 colors (we also note that there exists a graph of order 6 such that
a(G) = 5). Thus we deduce that χs(P) ≤ 80. However, a result from [NOdM01], applied to
family P , yields χs(P) ≤ 30, and this result has later been improved in [ACK+02], where it is
shown that χs(P) ≤ 20. Concerning lower bounds, there exists a planar graph G1 for which any
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star coloring needs 6 colors (this graph is shown in Figure 1): indeed, we can first note that we
need at least 4 colors to assign to vertices v1, v2, v3 and v4, since the subgraph induced by those
4 vertices is isomorphic to K4. Let us then use colors 1,2,3 and 4 to color respectively v1, v2, v3

and v4. However, four colors are not enough to star color G1, because if we are only allowed 4
colors then c(v5) = 3, and in that case no color can be given to v6. Thus χs(G1) ≥ 5.

Now suppose we are allowed 5 colors. If c(v5) = 3, then c(v6) = 5 and c(v7) = 5 ; but in
that case, it is impossible to assign a color to v9. Thus c(v5) = 5. In that case, if c(v6) = 2,
then c(v7) = 5 and v8 cannot be assigned a color. Finally, if c(v6) = 5, then either c(v7) = 1 or
c(v7) = 5. In the first case, it is impossible to color v8, while in the second this implies c(v8) = 3,
and thus v9 cannot be colored. Thus, 5 colors do not suffice to star color G1 and consequently
χs(G1) ≥ 6 (we note that, on this example, it is possible to find a star coloring of G1 with exactly
6 colors).

G1

v1

v2 v3

v8 v9

v4
v5

v6

v7

Figure 1: A planar graph G1 for which χs(G1) ≥ 6

The girth g of a graph G is the length of its shortest cycle. In [BKW99], it is proved that if G
is planar with girth g ≥ 5 (resp. g ≥ 7), then a(G) ≤ 4 (resp. a(G) ≤ 3). Together with Theorem
3, we deduce:

Corollary 4 If G is a planar graph with girth g ≥ 5, then χs(G) ≤ 32. If G is a planar graph
with girth g ≥ 7, then χs(G) ≤ 12.

However, a result from [NOdM01] implies that χs(G) ≤ 14 for any planar graph G of girth
g ≥ 5. When the girth g satisfies g ≥ 7, then Theorem 1 in [NOdM01] implies that χs(G) ≤ 14,
which does not improve the bound of Corollary 4.

Several graphs are cartesian product of graphs (Hypercubes, Grids, Tori), so it is interest-
ing to have an upper bound for the star chromatic number of cartesian product of graphs. We
recall that the cartesian product of two graphs G = (V, E) and G′ = (V ′, E′), denoted by G�G′,
is the graph such that the set of vertices is V × V ′ and two vertices (x, x′) and (y, y′) are linked
by an edge if and only if x = y and x′y′ is an edge of G′ or x′ = y′ and xy is an edge of G.

Theorem 5 For any two graphs G and H, χs(G�H) ≤ χs(G) · χs(H)

Proof : Suppose that χs(G) = g and χs(H) = h, and let CG (resp. CH) be a star coloring of
G (resp. H) using g (resp. h) colors. In that case, we assign to any vertex (u, v) of G�H color
[Cg(u), Ch(v)]. This coloring uses gh colors, and this defines a star coloring. Indeed, suppose
that there exists a path P of length 3 that is bicolored in G�H , with V (P ) = {x, y, z, t} and
E(P ) = {xy, yz, zt}. Depending on the composition of the ordered pairs corresponding to the
vertices of the path, we have 8 possible paths. We will only consider 4 of them, because by
permuting the first and second component of each ordered pair, we obtain the others. The 4
possible paths are:

(1) x = (u, v), y = (u, v1), z = (u, v2), t = (u, v3)

(2) x = (u, v), y = (u, v1), z = (u, v2), t = (u4, v2)
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(3) x = (u, v), y = (u, v1), z = (u2, v1), t = (u2, v4)

(4) x = (u, v), y = (u, v1), z = (u2, v1), t = (u5, v1)

Clearly, in the first case P cannot be bicolored, since the path v, v1, v2, v3 is not bicolored in
H . For the second case: y and t have different colors (v1v2 is an edge of H). For the third case: x
and z have different colors (vv1 is an edge of H). The same argument works for the last case. 2

Observation 6 For any graph G and for any 1 ≤ α ≤ |V (G)|, let G1, . . ., Gp be the p connected
components obtained by removing α vertices from G. In that case, χs(G) ≤ maxi{χs(Gi)} + α.

Proof : Star color each Gi, and reconnect them by adding the α vertices previously deleted, using
a new color for each of the α vertices. Any path of length 3 within a Gi will be star colored by
construction, and if this path begins in Gi and ends in Gj with i 6= j, then it contains at least one
of the α vertices, which has a unique color. Thus the path of length 3 cannot be bicolored, and
we get a star coloring of G. 2

Remark 7 For any α ≥ 1, the above result is optimal for complete bipartite graphs Kn,m. Wlog,
suppose n ≤ m and let α = n. Remove the α = n vertices of partition Vn. We then get m isolated
vertices, which can be independently colored with a single color. Then, give a unique color to the
α = n vertices. We then get a star coloring with n + 1 colors ; this coloring can be shown to be
optimal by Proposition 12.

We recall that the independence number of a graph G, α(G), is the cardinality of a largest
independent set in G.

Observation 8 For any graph G, χs(G) ≤ 1 + |V (G)| − α(G), where α(G) is the independence
number of G.

Proof : Let S be a maximum independent set of G. Color each vertex of S with color c, and
give new pairwise distinct colors to all the other vertices. This coloring has the desired number of
colors. It is clearly a proper coloring, and it is also a star coloring, because there is only one color
which is used at least twice. 2

Remark 9 The above result is optimal for complete p-partite graphs Ks1,s2,...,sp .

3 Trees, Cycles, Complete Bipartite Graphs, Hypercubes

Proposition 10 Let Fr be the family of forests such that r is the maximum radius over all the
trees contained in Fr. In that case, χs(Fr) = min{3, r + 1}.

Proof : Let F be a forest contained in Fr. When r = 0, the result is trivial (F holds no edge).
When r = 1, F is composed of isolated vertices and of stars. Hence, we color each isolated vertex,
as well as the center of each star in F with color 1, and all the remaining vertices with color
2. This is obviously a proper coloring, and since in that case there is no path of length 3, it is
consequently a star coloring as well. Now we assume r ≥ 2. We then arbitrarily root each tree
composing F , and we color each vertex v, of depth dv in F , as follows: c(v) = dv mod 3. Clearly,
this is a proper coloring of F and it is easy to see that it is a star coloring. 2

Proposition 11 Let Cn be the cycle with n ≥ 3 vertices.

χs(Cn) =

{

4 when n = 5
3 otherwise
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Proof : It can be easily checked that χs(C5) = 4. Now let us assume n 6= 5. Clearly, 3 colors at
least are needed to star color Cn. We now distinguish 3 cases: first, if n = 3k, we color alternatively
the vertices around the cycle by colors 1,2 and 3. Thus, for any vertex u, its two neighbors are
assigned distinct colors, and consequently this is a valid star coloring. Hence χs(C3k) ≤ 3. Suppose
now n = 3k+1. In that case, let us color 3k vertices of Cn consecutively, by repeating the sequence
of colors 1,2 and 3. There remains 1 uncolored vertex, to which we assign color 2. One can check
easily that this is also a valid star coloring, and thus χs(C3k+1) ≤ 3. Finally, let n = 3k +2. Since
the case n = 5 is excluded here, we can assume k ≥ 2. Thus n = 3(k − 1) + 5, with k − 1 ≥ 1.
In that case, let us color 3(k − 1) consecutive vertices along the cycle, alternating colors 1,2 and
3. For the 5 remaining vertices, we give the following coloring: 2, 1, 2, 3, 2. It can be checked that
this is a valid star coloring, and thus χs(C3k+2) ≤ 3 for any k ≥ 2. Globally, we have χs(Cn) = 3
for any n 6= 5, and the result is proved. 2

Proposition 12 Let Kn,m be the complete bipartite graph with n+m vertices. Then χs(Kn,m) =
min{m, n} + 1.

Proof : Wlog, let n ≤ m. The upper bound of n + 1 immediately follows from Observation 6 (cf.
Remark 7 for a detailed proof).

Now let us prove that χs(Kn,m) ≥ n+1 : if each of the partite set contains at least two vertices
with the same color, then there exists a bicolored 4-cycle, and the coloring we have is not a star
coloring. If not, then the number of colors used is greater than or equal to n+1. Hence the result.
2

Theorem 13 (Star-Coloring of hypercube of dimension d, Hd) For any d-dimensional hy-
percube Hd, ⌈d+3

2 ⌉ ≤ χs(Hd) ≤ d + 1.

Proof : The lower bound is a direct application of Proposition 2, where n = 2d and m =

d · 2d−1. Indeed, we have χs(Hd) ≥ 2n+1−√
γ

2 , where γ = 4n(n − 1) − 8m + 1. Let us prove

now that χs(Hd) > d+2
2 . For this, let us show that f(n, d) =

2n+1−√
γ

2 − d+2
2 > 0. Note that

f(n, d) =
(2n−1−d)−√

γ

2 =
(2n−1−d)−√

γ

2 · (2n−1−d)+
√

γ

(2n−1−d)+
√

γ . That is, f(n, d) = (2n−1−d)2−γ
2((2n−1−d)+

√
γ) . However,

D(n, d) = 2((2n − 1 − d) +
√

γ) is positive for any d ≥ 1, since
√

γ ≥ 1 in all circumstances and
n = 2d. Hence, it suffices to show that f ′(n, d) = (2n−1−d)2−γ is positive in order to prove the
lower bound. f ′(n, d) = (2n−1−d)2−(4n2−4n−8m+1), thus f ′(n, d) = d2−4nd+2d−8m. Since
m = nd

2 , we conclude that f ′(n, d) = d(d + 2) > 0 for any d ≥ 1. Hence we have χs(Hd) > d+2
2 ,

that is χs(Hd) ≥ ⌈d+3
2 ⌉.

In order to prove the upper bound, we give the following coloring: suppose the vertices of
Hd are labeled according to their binary representation ; that is, every vertex u ∈ V (Hd) can be
labeled as follows: u = b1b2 . . . bd, with every bi ∈ {0, 1}, 1 ≤ i ≤ d. We then assign a color c(u)

to u according to the following equation: c(u) =
∑d

i=1 i · bi mod d + 1. We know by [FGR03] that
this coloring C is acyclic. Moreover, in [FGR03] it has been shown that any bicolored path in Hd

can only appear in a copy of a 2-dimensional cube H2. Since C is acyclic, we conclude that no
bicolored path of length strictly greater than 2 can appear, and thus C is a star coloring. 2

4 d-dimensional Grids

In this section, we study the star chromatic number of grids. More precisely, we give the star
chromatic number of 2 dimensional grids, and we extend this result in order to get bounds on the
star chromatic number of grids of dimension d.

We recall that the 2-dimensional grid G(n, m) is the cartesian product of two paths of length
n − 1 and m − 1. Wlog, we will always consider in the following that m ≥ n. A summary of the
results is given in Table 1 ; those results are detailed below.
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m = 2 m = 3 m ≥ 4

n = 2 3 4 4
n = 3 xxx 4 4
n ≥ 4 xxx xxx 5

Table 1: Star coloring of 2-dimensional grids G(n, m) (n ≤ m)

Proposition 14 χs(G(2, 2)) = 3, and for any m ≥ 4, χs(G(2, m)) = χs(G(3, m)) = 4.

Proof : The first result is trivial.
It is easily checked that χs(G(2, m)) ≥ 4 for any m ≥ 3, since star coloring of G(2, 3) requires

at least 4 colors, and since G(2, 3) is a subgraph of G(2, m) for any m ≥ 3. Moreover, as can be
seen in Figure 2 (left), it is possible to find a 4 star coloring of G(2, m). Thus χs(G(2, m)) ≤ 4,
and altogether we have χs(G(2, m)) = 4.

The fact that χs(G(3, m)) ≥ 4 for any m ≥ 3 is trivial, since G(2, 3) is a subgraph of G(3, m).
Moreover, Figure 2 (right) shows a 4 star coloring of G(3, m)) for any m ≥ 3. 2

2 3

3

3

3

4 2 2 4 2 2

411 1 1 4 1

2 3 34 2 2 4 2 2

2 3 34 2 2 4 2 2

1 3 1 4 1 3 1 4 1

Figure 2: 4 star colorings of G(2, m) (left) and G(3, m) (right)

Theorem 15 (Star-Coloring of the 2-dimensional grid) For any n and m such that min{n, m} ≥
4, χs(G(n, m)) = 5.

Proof : By a rather tedious case by case analysis (confirmed by the computer), it is possible
to show that 5 colors at least are needed to color G(4, 4). Hence, for any n and m such that
min{n, m} ≥ 4, χs(G(n, m)) ≥ 5.
The upper bound is a corollary of Theorem 16 below. 2

We know that d-dimensional grids Gd are isomorphic to the cartesian product of d paths.
Hence, by Theorem 5 and Proposition 10, we get an upper bound for χs(Gd): χs(Gd) ≤ 3d for any
d ≥ 1. However, it is possible to do much better, and to prove that the star chromatic number of
the d-dimensional grid is linear in d: this is the purpose of the following theorem.

Theorem 16 (Star-Coloring of the d-dimensional grid Gd) Let Gd be any d-dimensional

grid, d ≥ 1. Then 2 +
⌊

d − ∑d
i=1

1
ni

⌋

≤ χs(Gd) ≤ 2d + 1.

Proof : The lower bound is a direct application of this inequality on the lower bound of Proposi-
tion 2, and is similar to a proof of [FGR03] concerning acyclic coloring in Gd. Indeed, Proposition 2

yields that for any graph G = (V, E) with |V | = n and |E| = m, we have χs(G) ≥ 2n+1−√
γ

2 , with

γ = 4n(n − 1) − 8m + 1. This can also be written as follows: χs(G) ≥ (2n+1)2−γ
2(2n+1+

√
γ) , that is

χs(G) ≥ 4(m+n)
1+2n+

√
γ , or a(G) ≥ m+n

n · 4n
1+2n+

√
γ .

However, γ = (2n − 1)2 − 8m, hence γ < (2n − 1)2, that is 1 + 2n +
√

γ < 4n. Thus we have
χs(G) > 1 + m

n .
Now, if we replace respectively n and m by |V (Gd)| and |E(Gd)|, we end up with the result.

Indeed, it is well known that |V (Gd)| = n1×· · ·×nd and |E(Gd)| = n1×· · ·×nd × (d−∑d
i=1

1
ni

).

6



We also note that this means that for “sufficiently large” grids (for instance, when each ni ≥ d),
we have χs(Gd) ≥ d + 1, and that the “worst” case appears when each ni = 2, 1 ≤ i ≤ d ; in that
case Gd is isomorphic to the hypercube of dimension d, Hd, and the lower bound of Theorem 13
applies.

Concerning the upper bound, we use here a proof that is close to the one given in [FGR03] con-
cerning acyclic coloring. Let us represent each vertex u of Gd = G(n1, n2 . . . nd) by its coordinates
in each dimension, that is u = (x1, x2, . . . xd) where each xi, 1 ≤ i ≤ d satisfies 0 ≤ xi ≤ ni − 1.
Now, we define a vertex coloring for Gd as follows: for each u ∈ V (Gd) such that u = (x1, x2, . . . xd),

we let c(u) =
∑d

i=1 i ·xi mod 2d + 1. First, we prove that this coloring is proper. Indeed, suppose
that 2 vertices u and u′, differing on the j-th coordinate, 1 ≤ j ≤ d, are assigned the same color
c(u) = c(u′). Hence we have u = (x1, x2, . . . xj , . . . xd) and u′ = (x1, x2, . . . xj ± 1, . . . xd). Then,

since c(u) = c(u′), we have j · xj +
∑d

i=1,i6=j i · xi = j · (xj ± 1) +
∑d

i=1,i6=j i · xi, that is ±j = 0
mod 2d + 1. Since 1 ≤ j ≤ d, we conclude that this cannot happen.

Now let us show that this coloring is a star coloring. More precisely, we show that it is a 2
distance coloring, that is, no two vertices at distance less than or equal to 2 are assigned the same
color. Consequently, no path of length 3 can be bicolored, and thus it is also a star coloring. We
have seen that no two neighbors are assigned the same color. Now let us prove that for any two ver-
tices u and u′′ lying at distance 2, we cannot have c(u) = c(u′′). Indeed, u and u′′ being at distance
exactly 2 in Gd, their coordinates differ (i) either in two dimensions j1 and j2 (ii) or in a single
dimension j. Case (ii) can be solved easily: we are in the case where u = (x1, x2, . . . xj , . . . xd) and
u′′ = (x1, x2, . . . xj ± 2, . . . xd), and by the same computations as above, we end up with ±2j = 0
mod 2d + 1, a contradiction since 1 ≤ j ≤ d. If we are in Case (i), the same argument applies,
and by a similar computation, we end up with ±j1 ± j2 = 0 mod 2d + 1, a contradiction too since
1 ≤ j1 6= j2 ≤ d. Thus our coloring is a 2 distance coloring of Gd, and consequently a star coloring
of Gd. We then conclude that χs(Gd) ≤ 2d + 1. 2

Remark 17 We note that for dimensions 1 and 2, the upper bound given by Theorem 16 for
d-dimensional grids is tight (cf. Proposition 10 when d = 1 and Theorem 15 when d = 2).

5 d-dimensional Tori

In this section, we give bounds on the star chromatic number of d-dimensional tori for any
d ≥ 2.

In the following, for any ni ≥ 3, 1 ≤ i ≤ d, we denote by TGd = TG(n1, n2, . . . nd) the toroidal
d-dimensional grid having ni vertices in dimension i. We recall that TGd is the cartesian product
of d cycles of length ni, 1 ≤ i ≤ d.

Theorem 18 (Star coloring of d-Dimensional Tori)

d + 2 ≤ χs(TGd) ≤
{

2d + 1 when 2d + 1 divides each ni

2d2 + d + 1 otherwise

Proof : The lower bound is obtained by Proposition 2, using arguments that are very similar
to the ones developed for hypercubes in proof of Theorem 13. Indeed, we know that χs(TGd) ≥
2|V |+1−√

γ

2 , where γ = 4|V |(|V | − 1)− 8|E|+ 1. Let N = |V | ; we know that |E| = dN where N =
∏d

i=1 ni. Now, if we prove that
2|V |+1−√

γ

2 − (d+1) > 0, this will imply that χs(TGd) > d+1. Let

f(N, d) =
2N+1−√

γ

2 −(d+1). Note that f(N, d) =
(2N−1−2d)−√

γ

2 =
(2N−1−2d)−√

γ

2 · (2N−1−2d)+
√

γ

(2N−1−2d)+
√

γ .

That is, f(N, d) = (2N−1−2d)2−γ
2((2N−1−2d)+

√
γ) . However, D(N, d) = 2((2N − 1 − 2d) +

√
γ) is strictly

positive for any d ≥ 1, since we always have
√

γ ≥ 1 and N ≥ 3d (in order to get a torus, the
number of vertices ni in each dimension i must be at least equal to 3). Hence, it suffices to show
that f ′(N, d) = (2N − 1 − 2d)2 − γ is positive in order to prove the lower bound. f ′(N, d) =

7



(2N − 1 − 2d)2 − (4N2 − 4N − 8Nd + 1), thus f ′(N, d) = 4d2 + 4d. Hence, we conclude that
f ′(N, d) > 0 for any d ≥ 1. Hence we have χs(TGd) > d + 1, that is χs(TGd) ≥ d + 2.

The upper bound in the case where 2d + 1 divides each ni comes from the study of the non-
toroidal grid Gd, and the coloring given in Theorem 16. It is easy to see that this coloring remains
a star coloring of TGd when 2d+1 divides each ni, 1 ≤ i ≤ d, and thus we have χs(TGd) ≤ 2d+1
in that case.

When 2d + 1 does not divide each ni, then consider the subgraph of TGd that consists of
a (non-toroidal) d-dimensional grid G′

d = G(n1 − 1, n2 − 1, . . . nd − 1). We can star color G′
d

with 2d + 1 colors as shown in Theorem 16. Now, in order to avoid a bicolored path of length 3
due to the wrap-around in each dimension, it suffices to use new colors to color the “borders” of
TGd (that is, the vertices of TGd that do not appear in G′

d). These vertices form a graph G0,
where V (G0) can be partitioned in d classes V1, . . . Vd, such that the subgraph Gi induced by Vi,
1 ≤ i ≤ d, is a (d − 1)-dimensional non-toroidal grid. Hence, if for any 1 ≤ i ≤ d, we use new
colors to star color Gi (using the coloring described in proof of Theorem 16), then we get a star
coloring of TGd ; indeed, by construction any bicolored path that could occur would be either (i)
between vertices of G′

d and vertices of Gi for some 1 ≤ i ≤ d, or (ii) between vertices of Gi and
vertices of Gj for some 1 ≤ i 6= j ≤ d. However, any vertex u of G′

d has only one edge leading to
a vertex of Gi, for any given 1 ≤ i ≤ d. Hence u cannot be connected to two vertices of Gi, and
thus cannot be connected to two vertices being assigned the same color c. We then conclude that
case (i) cannot occur. The same argument holds for case (ii): a given vertex u of Gi has at most
one connection leading to Gj , 1 ≤ i 6= j ≤ d. Overall, the suggested coloring uses 2d + 1 colors
(to color G′

d), to which we must add d times 2(d− 1)+1 colors (to color each Gi). Thus, globally,
this coloring needs (2d + 1) + d · (2(d − 1) + 1) colors, that is 2d2 + d + 1 colors. 2

6 Graphs with Bounded Treewidth

The notion of treewidth was introduced by Robertson and Seymour [RS83]. A tree decompo-
sition of a graph G = (V, E) is a pair ({Xi|i ∈ I}, T = (I, F )) where {Xi|i ∈ I} is a family of
subsets of V , one for each node of T , and T a tree such that:

(1)
⋃

i∈I Xi = V

(2) For all edges vw ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi

(3) For all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩ Xk ⊆ Xj

The width of a tree decomposition ({Xi|i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The treewidth
of a graph G is the minimum width over all possible tree decomposition of G.

We will prove the following theorem.

Theorem 19 If a graph G is of treewidth at most k, then χs(G) ≤ k(k + 3)/2 + 1

Actually we will prove Theorem 19 for k-trees, because it is well known that the treewidth of
a graph G is at most k (k > 0) if and only if G is a partial k-tree [Bod98].

We recall the definition of a k-tree [BLS99]:
(1) a clique with k-vertices is a k-tree
(2) If T = (V, E) is a k-tree and C is a clique of T with k vertices and x /∈ V , then T ′ =
(V ∪ {x}, E ∪ {cx : c ∈ C}) is a k-tree.

If a k-tree has exactly k vertices, then it is a clique by definition. If not, it contains at least a
(k + 1)-clique ; moreover, it is easy to see that the greedy coloring with k + 1 colors of a k-tree
gives an acyclic coloring. Hence we can deduce by Theorem 3 that for any k-tree Tk with at least
k + 1 vertices, k + 1 ≤ χs(Tk) ≤ k · 2k−1. However, a much better upper bound can be derived.
This is the purpose of Theorem 20 below.

Theorem 20 For any k ≥ 1 and any k-tree Tk:

8



• χs(Tk) = k if |V (Tk)| = k ;

• k + 1 ≤ χs(Tk) ≤ k(k + 3)/2 + 1 otherwise.

Proof : Consider a k-tree G. We recall that a k-tree G is an intersection graph [MM99] and can
be represented by a tree T and a subtree Sv for each v in G s.t.:

(1) uv ∈ E(G) ⇐⇒ Su ∩ Sv 6= ∅

(2) for any t ∈ T , |{v : t ∈ Sv}| = k + 1

We can see that by considering the tree decomposition of the k-tree. The tree T is the one of
the tree decomposition and the subtree Sv for v ∈ V (G) is exactly the subtree of T containing the
nodes of T corresponding to the subsets of the tree decomposition containing v.

We root T at some node r and, for each vertex v of G, let t(v) be the first node of Sv obtained
when traversing T in preorder (i.e. t(v) is the “highest” node of Sv). We choose some fixed pre-
order and order the nodes as v1, v2, . . . , vn so that for any i < j, t(vi) is considered in the preorder
before t(vj). We color the nodes in this order, using k(k + 3)/2 + 1 colors.

For each i we let:

Xvi =
⋃

Svj
∋t(vi)

{vl 6= vi : Svl
∋ t(vj)}

We now show that |Xvi | ≤ k(k + 3)/2. Indeed let A = {a1, a2, · · · , ak, vi} be the subset of
vertices corresponding to t(vi). We assume that t(ai) is before t(ai+1) (i ∈ {1, . . . , k − 1}) in
the preorder. We first give an upper bound for the number of subtrees Svl

which contain t(ai)
(vl /∈ A). The number of Svl

(vl /∈ A) for i ∈ {1, · · · , k} which contain t(a1) is at most k, because
the corresponding subset can intersect A only in a1. The number of Svl

(vl /∈ A) which contain
t(a2) is at most k−1, a1 is in the subset corresponding to t(a2) and we do not count Sa1

. It is easy
to see that the number of Svl

(vl /∈ A) which contain t(ai) is at most k + 1− i, because the subset

corresponding to t(ai) contains {a1, a2, · · · , ai}. In total we have at most
∑i=k

i=1 i = k(k + 1)/2
subtrees Svl

with vl /∈ A containing t(ai) i ∈ {1, · · · , k}. Now we have to add the number of Sai ,
this gives |Xvi | ≤ k(k + 3)/2, without counting vi. We color vi with any color not yet used on
Xvi . This clearly yields a proper coloring, indeed if xy is an edge of G then Sx ∩Sy 6= ∅ and either
t(x) ∈ Sy or t(y) ∈ Sx, hence by construction x and y have different colors. We claim it also yields
a coloring with no bichromatic P4 (a path of length 3): assume the contrary, and let {x, y, z, w}
be this P4 labeled so that

(1) t(x) is the first of t(x), t(y), t(z), t(w) considered in the preorder,

(2) x and y have the same color,

(3) xz and yz are in E(G).

We have to notice that x, z, y are not in the same clique Kk+1 of the graph G corresponding
to a node of T , because by construction this would imply that the colors are different. Now
Sx ∩ Sy = ∅, Sz ∩ Sx 6= ∅, Sz ∩ Sy 6= ∅, so by (1) t(y) is in Sz . Further since zx ∈ E(G), by (1) we
have t(z) is in Sx. So x ∈ Xy, contradicting the fact that x and y get the same color. 2

We can notice that for 1-trees (i.e. the usual trees), the upper bound we obtain matches the
one given by Proposition 10. For 2-trees, the upper bound is optimal because of graph of Figure 3,
which has been shown by computer to have a star chromatic number equal to 6.

We also note for completeness that while this paper was submitted, it has been shown inde-
pendently in [ACK+02] that for any graph G of treewidth k, χs(G) ≤ k(k + 1)/2, and that there
exist graphs of treewidth k for which this bound is reached.

In the following, we will denote by O the family of outerplanar graphs.
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H

Figure 3: A 2-tree H that satisfies χs(H) = 6

Corollary 21 χs(O) = 6.

Proof : It is well-known that any outerplanar graph is a partial 2-tree: thus, by Theorem 20,
χs(O) ≤ 6. Moreover the graph in Figure 3, which is also outerplanar, has a star chromatic
number equal to 6. Thus, we conclude that χs(O) ≥ 6, which proves the corollary. 2

7 Cubic Graphs

Observation 22 Let G be a graph of order n and G2 be the square graph of G. In that case,
χs(G) ≤ χ(G2), where χ(G) denotes the (proper) chromatic number of G.

Proof : For any graph G = (V, E), take its square graph G2 = (V, E ∪ E), where E is the set of
edges joining any vertices at distance 2 in G. Any proper coloring C of G2 is a star coloring of G:
indeed G2 contains all the edges of G, thus C is also proper in G. Now take any path of length
2 in G, say (u, v, w). In G2, u, v and w are assigned 3 distinct colors by C. Hence, no path of
length 2 in G can be bicolored ; consequently, no path of length 3 is bicolored either, and C is a
star coloring of G. 2

It is a well known result that any graph of maximum degree d can be properly colored with
at most d + 1 colors (cf. for instance [Viz64]). Since G2 is of maximum degree d2 when G is of
maximum degree d, we deduce the following corollary.

Corollary 23 Let G be a graph of order n and of maximum degree d. Then χs(G) ≤ d2 + 1.

Now we turn to the case where d = 3, that is cubic graphs. By Corollary 23 above, we deduce
that for any cubic graph G, χs(G) ≤ 10. We also note that the result given in [NOdM01] yields
the same upper bound. However, it is possible to slightly improve this bound to 9, by using the
more general proposition below (which is itself an improvement of Corollary 23).

Proposition 24 For any graph of G maximum degree d ≥ 2, χs(G) ≤ d2.

Proof : Take G2, the square graph of G. Since G is of maximum degree d, G2 is of maximum
degree at most d2. If G2 is not isomorphic to the complete graph Kd2+1, then, by Brooks’ theorem,
we have directly χ(G2) ≤ d2. Hence, by Observation 22, we have χs(G) ≤ d2.

Now, if G2 is isomorphic to Kd2+1, then the independence number of G, α(G), satisfies α(G) ≥
2 (since 2 ≤ d < d2). Then, by applying Observation 8, and since |V (G)| = d2 + 1, we obtain
χs(G) ≤ 1 + (d2 + 1) − 2, that is χs(G) d2. 2

Proposition 25 Let C denote the family of cubic graphs. We have 6 ≤ χs(C) ≤ 9.

Proof : The upper bound is a direct consequence of Proposition 24, applied to the case d = 3.
The lower bound is given by the cubic graph Gs given in Figure 4 (note that this graph turns

out to be a snark, that is a nontrivial cubic graph whose edges cannot be properly colored by
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three colors). We now show that its star chromatic number is equal to 6. Indeed, suppose that
χs(Gs) ≤ 5. Then, take 5 vertices in Gs that induce a C5. There are now two options: either 4 or
5 colors are used to color those 5 vertices (we know by Proposition 11 that at least 4 colors are
needed to color this C5). Let us detail each of those two cases:

Gs

1

2

1

3

4

u

v

w

x

y

Figure 4: A cubic graph Gs such that χs(Gs) = 6

• Case 1: only 4 colors are used. In that case, one of these colors (wlog, say color 1) must be
used twice in this C5, and thus be assigned on two non-neighboring vertices x and y (hence,
x and y are at distance 2) ; the three other colors are used exactly once for each of the three
remaining vertices in C5. Wlog, let those vertices be colored as shown in Figure 4. In that
case, u can be assigned either color 4 or 5. If c(u) = 4, then c(v) = 5 and no color can be
given to w. If c(u) = 5, then v can be assigned either color 3 or 4. But in both cases, no
color can be assigned to w. Hence this case cannot happen.

• Case 2: Since Case 1 cannot appear, this means that any C5 in Gs must be colored with 5
different colors. By a somewhat tedious but easy case by case analysis, it can be seen that
it is not possible to star color Gs in 5 colors satisfying this property.

We conclude that χs(Gs) ≥ 6, and equality holds by respectively assigning to the vertices of
the outer cycle the colors 1,2,3,4,5,3,1 and 6. 2

8 Asymptotic Results

In this section, we give asymptotic results that apply to graphs of order n and maximum degree
d. They rely heavily on Lovász’s local Lemma, and are shown thanks to proofs that are similar
to the ones given by Alon et al. [AMR91] about acyclic coloring.

We first recall Lovász’s local Lemma below ([EL75], see also [Spe87]).

Lemma 26 (Lovász’s local Lemma [EL75]) Let A1, A2, . . . An be events in an arbitrary prob-
ability space. Let the graph H = (V, E) on the nodes {1, 2 . . . n} be a dependency graph for the
events Ai (that is, two events Ai and Aj will share an edge in H iff they are dependent). If there
exist real numbers 0 ≤ yi < 1 such that for all i we have

Pr(Ai) ≤ yi ·
∏

{i,j}∈E

(1 − yj)

then

Pr(∩Āi) ≥
n

∏

i=1

(1 − yi) > 0

Theorem 27 Let G = (V, E) be a graph with maximum degree d. Then χs(G) ≤ ⌈20d
3

2 ⌉.
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Proof : Let x = ⌈20d
3

2 ⌉, and let us color V (G) with x colors, where for each vertex v of V (G),
the color is independently chosen randomly according to a uniform distribution on {1, 2, . . . x}.
Let C define this application. What we want to show here is that with non zero probability, C is
a star coloring of G.

For this, we define a family of events on which we will apply Lovász’s local Lemma. This will
imply that with non zero probability, none of these events occur. If our events are chosen so that
if none of them happens, then our coloring is a star coloring of G, the theorem will be proved.
Let us now describe the two types of events we have chosen.

• Type I: For each pair of adjacent vertices u and v in G, let Au,v be the event that c(u) = c(v).

• Type II: For each path of length 3 uvwx in G, let Bu,v,w,x be the event that c(u) = c(w)
and c(v) = c(x).

By definition of star coloring, it is straightforward that if none of these two events occur, then
C is a star coloring of G. Now, let us show that with strictly positive probability none of these two
events occur. We will apply here the local Lemma : to this end, we construct a graph H whose
nodes are all the events of the two types, and in which two nodes XS1

and YS2
(X, Y ∈ {A, B})

are adjacent iff S1 ∩ S2 6= ∅. Since the occurrence of each event XS1
depends only on the color

of the vertices in S1, H is a dependency graph for these events, because even if the colors of all
vertices of G but those in S1 are known, the probability of XS1

remains unchanged. Now, a vertex
of H will be said to be of type i ∈ {I, II} if it corresponds to an event of type i. We now want to
estimate the degree of a vertex of type i in H . This is the purpose of the following observation. 2

Observation 28 For any vertex v in a graph G of maximum degree d, we have:

(1) v belongs to at most d edges of G ;

(2) v belongs to at most 2d3 paths of length 3 in G.

Proof : (1) Is straightforward since the maximum degree in G is d.
(2) Suppose first that v is an end vertex of such a path. Then v belongs to at most d(d− 1)2 ≤ d3

paths of length 3. Now suppose v is not an end vertex of such a path. Then one of its neighbors
x must be an end vertex of this path. There are d ways to choose x, and the number of paths of
length 3 with end vertex x going through v is at most (d − 1)2. Thus there are d(d − 1)2 ≤ d3

paths of length 3 for which v is an internal vertex. Globally, we have that v belongs to at most
2d3 paths of length 3 in G. 2

Lemma 29 For i, j ∈ {I, II}, the (i, j) entry matrix M given below is an upper bound on the
number of vertices of type j which are adjacent to a vertex of type i in the dependency graph H.

I II

I 2d 4d3

II 4d 8d3

Proof : Take a vertex vI of type I in H , and let us give an upper bound on the number of
vertices of type I in H that are neighbors of vI . vI corresponds to an event Au,v that implies
two vertices u and v in G. Thus, by definition of the event graph H , vI is connected to all the
vertices that correspond to events Au,y and Az,v for all vertices y that are neighbors of u in G and
all the vertices z that are neighbors of v in G. Since by Observation 28(1), there are at most d
vertices that are neighbor of u in G (resp. of v in G), the entry M(I, I) is upperly bounded by 2d.
The entries M(I, II), M(II, I) and M(II, II) are computed in a similar way, using the results of
Observation 28(1) and (2). 2

Now, let us come back to our coloring C. The following observation is straightforward.
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Observation 30

(1) For each event A of type I, Pr(A) = 1
x

(2) For each event B of type II, Pr(B) = 1
x2

Now, in order to apply Lovász’s local Lemma, there remains to choose the yi, i ∈ {1, 2}, where
0 ≤ yi < 1. For this, we choose that yi = 2

xi , i ∈ {1, 2}. In order to be able to apply Lovász’s
local Lemma, it is necessary to prove that:

1

x
≤ 2

x
(1 − 2

x
)2d(1 − 2

x2
)4d3

and

1

x2
≤ 2

x2
(1 − 2

x
)4d(1 − 2

x2
)8d3

Clearly, if the second inequality is satisfied, the first is satisfied too. In order to prove that

it is satisfied, let S = (1 − 2
x)4d(1 − 2

x2 )8d3

. We have that S ≥ (1 − 8d
x )(1 − 16d3

x2 ), that is
S ≥ (1− 2

5
√

d
)(1 − 1

25 ). It is easy to check that in that case 2S ≥ 1 for any d ≥ 1. Hence Lovász’s

local Lemma applies, which means that C is a star coloring of G with non zero probability. This
proves Theorem 27.

We note that this result improves the one given by [NOdM01] or the easy Observation 22,
that yields a star coloring with O(d2) colors, while Theorem 27 yields a star coloring with O(d3/2)
colors.

Theorem 31 There exists a graph G of maximum degree d such that

χs(G) ≥ ε
d

3

2

(log d)
1

2

where ε is an absolute constant.

Proof : First, we note that we make no attempt to maximize the constant here.
Let us show that, for a random graph G (with the “random” notion to be defined later) of order
n, we have

Pr{χs(G) > n
2 } → 1 as n → ∞. (P1)

For this, we put

p = c

(

log n

n

)
1

3

where c is independent of n, to be chosen later. Now let V = {1, 2 . . . n} be a set of n labeled
vertices ; for our purpose, we put n divisible by 4. Let G = (V, E) be a random graph on V , where
for each pair (u, v) in V 2 we choose to put an edge with probability p. If d denotes the maximum
degree of G, then it is a well-known fact that Pr{d ≤ 2np} → 1 as n → ∞ [Bol85]. With our
choice of p, this gives here:

Pr{d ≤ 2cn
2

3 (log n)
1

3 } → 1 as n → ∞.

Now, in order to prove (P1), we show the following lemma.

Lemma 32 For any fixed partition of V in k ≤ n
2 color classes, the probability that this partition

is a star coloring of G is upperly bounded by (1 − p3)

0

@

n
4
2

1

A

.
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Proof of Lemma 32 Let V1, V2 . . . Vk be the parts of the partition of the set V of vertices of
G. For any Vi of odd cardinality, we omit one vertex. Thus we end up with at least n − k ≥ n

2
vertices altogether, that lie in k even disjoint parts. We partition each of those even parts in sets
of 2 vertices U1, U2 . . . Ur, where r ≥ n

4 ; in that case, the two vertices in each Ui are colored with
the same color. Now take any pair (Ui, Uj): if 3 edges connect this pair, then there exists a path
of length 3 in G that is bicolored, and our coloring is not a star coloring. However, it is easy to
see that the probability for which this case happens is equal to 4p3 − 3p4, which is always greater

than or equal to p3. Since there are at least

(

n
4
2

)

pairs of the form (Ui, Uj), the probability

that our coloring is a star coloring does not exceed:

(1 − p3)

0

@

n
4
2

1

A

2

Since there are less than nn partitions of V , we see that the probability that there exists a star
coloring of G with at most n

2 colors does not exceed

nn(1 − p3)

0

@

n
4
2

1

A

< nn · exp

{

−
(

n
4
2

)

p3

}

= exp

{

n log n −
(

n
4
2

)

c3 log n/n

}

With the right choice of c, this probability is in o(1) as n → ∞. Indeed, it suffices here that
c3 > 32 (for instance, c = 4).

Thus, we end up with the following two statements: Pr{d ≤ 2cn
2

3 (log n)
1

3 } → 1 as n → ∞,
and Pr{χs(G) > n

2 } → 1 as n → ∞.
Now, it suffices to see that x

log x is an increasing function of x, for any x > e. Thus, for any

a, b such that e < a < b, we have a
log a < b

log b . In other words, if we have d ≤ 2cn
2

3 (log n)
1

3 , then

we have d3 ≤ 16c4n2(log n), or d3

3 log d ≤ (2c)4n2(log n)
4 log 2c+2 log n+log log n . That is, d3

3 log d ≤ (2c)4n2 log n
2 log n . Thus

d3

3 log d ≤ (2c)4n2

2 and we conclude that n > ε d
3

2

log d
1

2

, where ε is an absolute constant. This proves

the result. 2

9 Conclusion

In this paper, we have provided many new results concerning the star chromatic number of
different families of graphs. In particular, we have provided exact results for trees, cycles, complete
bipartite graphs, outerplanar graphs and 2-dimensional grids. We have also determined bounds
for the chromatic number in several other families of graphs, such as planar graphs, hypercubes,
d-dimensional grids (d ≥ 3), d-dimensional tori (d ≥ 2), graphs with bounded treewidth and cubic
graphs. We have also determined several more general properties concerning the star chromatic
number: notably, using the techniques of [AMR91], we have shown that the star chromatic number

of a graph of maximum degree d is O(d
3

2 ) and that for every d, there exists a graph of maximum

degree d whose star chromatic number exceeds ε. d3/2

log d
1

2

for some positive absolute constant ε.

A large number of problems remain open here, such as getting optimal results for other families
of graphs, or refining our non optimal bounds ; getting one or several methods to provide good
lower bounds for the star chromatic number is also another challenging problem.
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