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Abstract

In this paper, we give a relatively simple though very efficient way to color the d-dimensional
grid G(n1,n2 ...nq) (with n; vertices in each dimension 1 < ¢ < d), for two different types of
vertex colorings : (1) acyclic coloring of graphs, in which we color the vertices such that (i)
no two neighbors are assigned the same color and (ii) for any two colors ¢ and j, the subgraph
induced by the vertices colored 7 or j is acyclic ; and (2) k-distance coloring of graphs, in
which every vertex must be colored in such a way that two vertices lying at distance less than
or equal to k must be assigned different colors. The minimum number of colors needed to
acyclically color (resp. k-distance color) a graph G is called acyclic chromatic number of G
(resp. k-distance chromatic number), and denoted a(G) (resp. xx(G)).

The method we propose for coloring the d-dimensional grid in those two variants relies on

the representation of the vertices of G4(n1,...,nq) thanks to its coordinates in each dimen-
sion ; this gives us upper bounds on a(Gg4(ni,...,nq)) and xx(Ga(n, ..., nq)).

We also give lower bounds on on a(G4(n1,-..,nq)) and xx(G4(n1,...,n4)). In particular,
we give a lower bound on a(G) for any graph G ; surprisingly, as far as we know this result
was never mentioned before. Applied to the d-dimensional grid Gq(ni,...,nq), the lower
and upper bounds for a(G4(ni,...,nq)) match (and thus give an optimal result) when the
lengths in each dimension is “sufficiently large” (more precisely, if E?zl an < 1). If this is not
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the case, then these bounds differ by an additive constant at most equal to 1 — >
Concerning xi(Ga(n1,...,ng4)), we give exact results on its value for (1) k = 2 and any d > 1,
and (2) d=2 and any k > 1.

In the case of acyclic coloring, we also apply our results to hypercubes of dimension d,
H,, which are a particular case of G4(ni,...,nq) in which there are only 2 vertices in each
dimension. In that case, the bounds we obtain differ by a multiplicative constant equal to 2.

i=1n;d"
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In this paper, we consider two types of coloring : acyclic coloring and k-distance coloring.

Those two colorings are vertex colorings, and are formally defined in Definitions 1 and 2 below.

Definition 1 (Acyclic Coloring) Let G = (V,E) be a graph. An acyclic coloring of G is a
vertex coloring of G, satisfying the two following rules :

(a) No two neighboring vertices are assigned the same color (this is also denoted as proper
coloring).

(b) Let V, CV (resp. Vi, C V) be the set of vertices of G that are assigned color a (resp. color
b). Then, for any a # b, the subgraph G' of G induced by V, UV}, must be acyclic.



In other words, an acyclic coloring of G is a vertex coloring of G that is proper, and such that
any two classes of colors induce a graph G' which is a forest (that is, an acyclic graph).

Definition 2 (k-distance Coloring) Let G = (V, E) be a graph. A k-distance coloring of G is
a vertex coloring of G satisfying the following rule : no two vertices lying at distance less than or
equal to k in G are assigned the same color.

We note that proper coloring is a particular case of k-distance coloring, where k& = 1.

The minimum number of colors necessary to acyclically color G is called acyclic chromatic
number of G, and is denoted a(G). Similarly, the k-distance chromatic number of a graph G is
the minimum number of colors necessary to k-distance color G, and is denoted by xx(G). We also
note that x1(G) < a(G) < x2(G) for any graph G.

For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined
as the maximum a(G) over all graphs G € F ; and a similar definition holds for the k-distance
chromatic number of families F of graphs.

Acyclic coloring has been largely studied in the past 25 years ; in particular, several authors
have determined a(F) for several families F of graphs such as planar graphs [Bor79], planar graphs
with “large” girth [BKW99], outerplanar graphs (see for instance [Sop97]), graphs of maximum
degree 3 [Grii73], of maximum degree 4 [Bur79], etc. Whereas k-distance coloring has been mostly
studied in the case where k = 2 ; results on the k-distance coloring of the hypercube Hy are given
in [KDPOO], while some general asymptotic results about the order of x1(G) for any graph G, in
function of its maximum degree and its girth, are given in [AMO0].

In this paper, we consider d-dimensional grids G4(n1,...,nq), where each n; > 2. Our aim
here is to describe a somewhat general method to acyclically and k-distance color G4(n1,...,nq),
and thus, give an upper bound on the chromatic number for each of those two colorings. The
method varies in the details depending of the considered coloring, but remains the same in spirit

in both cases. It relies on the representation of each vertex of G4(n1,...,n4) by a vector of its
coordinates in each dimension.
We also give lower bounds on the acyclic and k-distance chromatic number of Gy4(ny, ..., ng),

that match with the upper bound given by our method in most cases ; when the bounds do not
match, they differ by an additive factor depending on the value of each n;, 1 <14 <d.

Our paper is organized as follows : in Section 1, we first give a lower bound for a(G) that ap-
plies for any graph G ; this bound is then be simplified in order to be used in general d-dimensional
grids G4(n1,...,nq). We then give an upper bound on a(G4(n1,-..,nq)), which we prove to be
optimal when the G4(n1,...,nq) is “sufficiently large”. We then turn to hypercubes of dimension
d, Hy for which we determine a(Hy) for any d up to a multiplicative factor equal to 2. In Section 2,
we turn to the case of k-distance coloring. Here, we consider two subcases : (1) k = 2 and general
d > 1, for which we give the exact result of x2(G4(n1,...,nq)) ; and (2) d = 2 and general k > 1,
for which we give the exact value of xx(G(n1,nz2)).

1 Acyclic Coloring

Before turning to d-dimensional grids G4(n1,...,ng), we first give a lower bound on a(G), for
any graph G. As far as we know, and to our great surprise, we were not able to find it mentioned
anywhere.

Theorem 1 For any graph G = (V,E), let n = |V|, m = |E| and A =4n(n—1) —8m + 1. In
that case, we have :
2 1-VA
a(G) > n+1-VA
2
Proof : Let a(G) = p. Let V;, 1 < i < p, be the set of vertices whose color is 7 in an acyclic
coloring of G using p colors. By definition, the subgraph of G induced by any V;UV;,1 <i < j <p,



is a forest. Let e;; be the set of edges covered by this forest. Clearly, for any two distinct pairs
(i1,51) and (i2, j2) with 1 <y < j1 <p, 1 <o < jia <, €4y,55 N €y 5o = 0.

It can be easily seen that the number of pairwise distinct pairs of colors is equal to
and that over those 22 R D) pairs of colors, each color 1 < k£ < p appears p — 1 times. Moreover,
for each pair (i, j), with 1 <1 < j < p, we have |e; ;| < |V;| +|V;| — 1. It also clearly holds that
Z(i,j) leij| = m.

Combining those two results, we then get : m < >7, o [Vil + [V;| — 1, that is m < (p —
(P, [Vil) — 2221 Since P, [Vi| = n, we then get : m < n(p — 1) — 221 which gives
PP—02n+1)p+2(m+n) <0. Let A =4n(n—1)—8m + 1. A > 1 in all the cases, since we
always have m < @ Thus we conclude that M <p< M. However, we can see
that the upper bound is not relevant, since we always have m < @, that is A > 1 ; hence the
w

p(p—1)
2

least value for is n + 1. However, it is obvious that p < n in all the cases. O

It is not difficult to see that this general lower bound is optimal for several different families
of graphs, such as trees (in that case, A = (2n — 3)2, and thus a(G) > 2), cycles ((in that case,
2n — 4 < VA < 2n — 3, and thus a(G) > 3), and complete graphs (in that case, A = 1, and thus
a(G) > n).

We will see in the following that it is also optimal in sufficiently large d-dimensional grids
G4(ny,...,ng). For this, we will use a slight approximation of the above expression ; though it
then loses precision, it will simplify our computations in the rest of the paper.

Proposition 1 Let G be a graph with n > 0 vertices and m > 0 edges. Then a(G) > 2+ [T*].

Proof : By Theorem 1, we know that for any graph G = (V,E) with |V| = n and |E| = m,
we have a(G) > M, with A = 4n(n — 1) — 8m + 1. This gives the following inequality :

a(@) > %, that is a(G) > %. This can also be written as follows :

m-+n 4n
n 14+ 2n+ VA

Because A = (2n — 1)? — 8m, we have A < (2n — 1)2, that is 1 4+ 2n + VA < 4n. Hence
a(G) > 1+ 1. O

a(G) =

For instance, we can note that this bound is not tight anymore for complete graphs. However,
this approximation will be good enough for our purpose.

We now turn to the specific case of d-dimensional grids Gg4(n1,...,nq). We first recall for-
mally the definition of G4(n4,...,n4).

Definition 3 Letd € N and (n1,...,nq) € N?, withn; > 2 for any 1 < i < d. The d—dimensional
grid of lengths ny,...,ng, denoted by G4(ni,...,nq), is the following graph:

V(Ga(ni,...,nq)) = [1,n1] x[1,n2] X --- x [1,n4]

E(G4(n1,...,nq)) = {{u,v}|uv=(u1,...,uq),v = (v1,...,vq), and there exist ig such that

Vi # i0,u; = v, and |u;, — vi| = 1}

We recall that for any d-dimensional grid G4(n1,...,nq), we have :
[V(Ga(ni,...,ng))| = nix---xXng
1
|E(Ga(n1,...,nq))| = mnix---Xngx (d_;n—i)
If we now apply Proposition 1, a lower bound for G4(n1,...,ng) is then the following.



Corollary 1 Let ny,...,ng € N, with n; > 2 for any 1 <1i < d. For any grid Gg(na,...,nq) of
dimension d,

3|p—l

a(Gd(m,---,w))Z%{d—z J
i=1 "

We now give a coloring of any d-grid that uses d + 1 colors.

Theorem 2 Let ny,...,nqg € N with n; > 2 for any 1 < i < d. For any grid G4(ni,...,nq) of
dimension d,
a(Gg(ni,...,ng)) <d+1

Proof : Each vertex u of G4(n1,...,nq) is defined by its coordinates, ie u = (x1, 2 ...24), where
0 < z; < n; — 1. Let us define the following coloring : each vertex u = (z1,2 ...24) is assigned
color ¢(u) = (Zle i-x;) mod d+ 1. Clearly, this coloring uses no more than d + 1 colors.

Let us first show that this is a proper coloring. For this, assume that two neighbors u and v’
are assigned the same color ¢. Assume also that the coordinates of u and ' differ on the j-th
dimension. Since u = (z1,22...%j—1,Z;,Ljt1...2q) and v’ = (X1, 22...2j—1,2; £ 1,241 ... 24),
by definition of ¢(u) and ¢(u') we have j - z; + E;-i:l,i# irxi=(Gxl) -z + Z?:u#i - z; mod
d+ 1. Thus we end up with £5 = 0 mod d + 1. However, j € [1;d], hence this is impossible.

Now let us prove that this is an acyclic coloring. Let us take any two distinct colors ¢; and
¢ from this coloring, and assume two neighbors u; and wus in Gy4(nq,...,ng) are assigned colors
c; and cg, respectively. Suppose that the coordinates of u; and wus differ on dimension j. By
definition of the coloring, we end up with the following equality : ¢; — ¢2 = +j mod d + 1.
W.l.o.g., suppose that ¢; > ¢2. Thus there exists only one neighbor u} of u; which is not us, and
for which ¢(ub) = ¢(us) = co. This neighbor u!, differs in the (d + 1 — j)-th coordinate from wus.
Now, if we are looking for a neighbor of u!, which is not u; and which is assigned color ¢;, using
the same arguments, we see that it must differ from w; in the j-th coordinate. By induction, we
see that for any distinct pair of colors ¢; and ¢y with ¢; > ¢o, the vertices which are assigned
either ¢; or ¢, form a cycle iff they lie in the same 2-dimensional subgrid of G4(n1,...,nq) ; this
subgrid G2 (c1, ¢2) being induced by dimension j = ¢; —¢p and ' =d + 1 — j (cf. Figure 1).

No bicolored cycle can exist in that case, because in Ga(c1,¢2), the only authorized “moves”
between a given pair of colors will be either N and W, N and E, S and W, or S and E. Hence, the

path will be “stair-like”, and no cycle can be created. |
cl
c2

c2

j-th cl

coordinate
ul u'2
cl C

u2

c2

(d+1-j)-th coordinate

Figure 1: Ga(c1,c¢2), the subgraph of Gy4(ni,...,ng) induced by dimensions j = ¢; — ¢2 and
Jj'=d+1-j
Thanks to Theorem 2 above, we are now able to derive tight bounds on a(G4(ni,...,nq)),

when the grid of dimension d > 2 is “sufficiently large”.



Theorem 3 Let d > 2 and nq,...,ng € N, with n; > 2 for any 1 < i < d. For any grid
.
Ga(ni,...,na), if >y ni <1 then a(G4(n1,...,nq)) =d+ 1.

We note that this is true in particular when the minimal length is greater or equal to d.

If we now apply the above result to hypercubes of dimension d, H; (which are a particu-
lar case of d-dimensional grids G4(n1,...,nq) where each n; = 2, 1 < i < d), we get the following
bounds, that differ by a multiplicative factor 2.

Theorem 4 For any hypercube Hy of dimension d > 1, f%] <a(Hg) <d+1.

Table 1 shows where the actual values of a(Hy) stand compared to the bounds given in The-
orem 4, for 1 < d < 6. The middle column indicates the actual value of a(Hy) (obtained by
exhaustive search by computer), while the left (resp. right) column indicates the lower bound
(resp. upper bound) from Theorem 4. Bounds that match the actual results are given in bold
characters. Though the examples are limited to dimensions going from 1 to 6, this Table seems to
suggest that the lower bound is closer to the actual value than the upper bound.

d a(Hg) > a(Hq) = a(Hg) <
(Theorem 4) | (Computer) | (Theorem 4)
1 2 2 2
2 3 3 3
3 3 4 4
4 4 4 5
5 4 4 6
6 5 5 7

Table 1: Where the actual results for a(Hy) stand (1 < d < 6)

Remark 1 The above work on acyclic coloring has also given birth to results concerning a third
type of coloring, called star coloring. A star coloring of a graph G is a proper coloring of its
vertices, such that no path of length 8 in G is bicolored (in other words, any two classes of colors
induce a graph G' which is a forest of stars). xs(G) denotes the star chromatic number of a graph
G, that is the minimum number of colors necessary to star color G.

Thanks to the above work, in [FRR02] the authors have been able to prove the two following results :

o2+ [d—zjzl T%J < xs(Galni, ... ng)) <2d+1

o [42] < xy(Ha) <d+1

This shows that the star chromatic number of Gg(n,...,nq) is determined within a factor
never exceeding 4, and that when Gg(ni,...,nq) is “sufficiently large”, this factor is reduced to 2.
Concerning hypercubes of dimension d, Hg, the bounds differ by a factor 2.

2 k-Distance Coloring

In this section, we study the k-distance coloring of the d-dimensional grid. We note that k-
distance coloring can also be seen as a proper coloring of the k-th power of G, G* (we recall that
the k-th power of a graph G is the graph G to which we add edges between any pair of vertices
lying at distance less than or equal to k).

Here, we first study the particular case kK = 2. We give in this case the exact value of
X2(G4(n1,...,nq)), for any d > 1. Then, we turn to the case of 2-dimensional grids, for which we
give the exact value of xx(G2), for any k > 1.



Theorem 5 x2(G4(n1,...,nq)) =2d+1 for anyd > 1.

Proof : The lower bound comes from the fact that if n; > 3 for all 1 < ¢ < d, there exists in
G4(ny,...,ng) a vertex u for which there are 2d+1 vertices lying at distance 2 from u (u included).
Thus, if we denote by Bj(u) this set of vertices (the ball of radius 1 around u), we conclude that
any 2-distance coloring will require at least |Bj(u)| colors, since any two vertices u; and ug in
B (u) satisfy d(u1,u2) < 2. Thus x2(Ge(ni,...,nq)) > 2d + 1.

The upper bound is obtained by the following coloring, inspired by the same kind of technique
as for the acyclic coloring : if any vertex u € V(Gg4(ni,...,nq)) is defined thanks to its coordi-
nates (that is, u = (%1,2,...24) with 0 < z; < m; — 1 for all 1 < 4 < d), then u is assigned
color c(u) = E?=1 iz; mod 2d + 1. We now show that this coloring is a 2-distance coloring of
G4(n1,...,nqg). This is done by contradiction : assume that there exist in Gg(ni,...,nq) two
distinct vertices u = (1,22 ...2q) and v = (2,25 ...2)), such that d(u,v) < 2, and such that
c(u) = ¢(v). We will show that this cannot happen. For this, we distinguish two cases :

Case 1 : d(u,v) = 1. This means that u and v differ on only one coordinate, say j (1 < j < d).

In other words, z; = z; £ 1. Thus, since c(u) = ¢(v), we have by definition of the coloring

Y& iw; =Y, iz} mod 2d+ 1. That is, jz; = jz’ mod 2d+1, or £ = 0 mod 2d+ 1. However,
1 < j < d, hence this is impossible.

Case 2 : d(u,v) = 2. This means that v and v differ on coordinates j; and j; (where we
possibly have ji = j»). In other words, z; = z} +1 and z;, = =z, = 1. Since we suppose
c(u) = c(v), we have jizj, + joxj, = j17}, + jaz}, mod 2d + 1, that is £ji + jo = 0 mod 2d + 1.
Since 1 < j1,j2 < d, the only possibility is when j; = jo ; however, when j; = j» and d(u,v) = 2,
then z;, = x}l +2, and we end up with +2j; = 0 mod 2d+ 1, which is impossible since 1 < j; < d.

We thus conclude that no two distinct vertices lying at distance less than or equal to 2 can
be assigned the same color by the above coloring ; hence, this is a 2-distance coloring and
x2(Ga(ni,...,nq)) < 2d + 1. Altogether, we then have x2(Gg4(ni,...,nq4)) = 2d + 1, and the
theorem is proved. O

Theorem 6 Let Gy be the 2-dimensional grid G(ni,ns), and k > 1 be an integer. Then, for
sufficiently large n1 and no :

_ (k1241
==

o if k is even, then x1(G2)

e if k is odd, then x(G2) = Lglﬁ
Proof : Suppose first that £ = 2m is even. In that case, it can be easily seen that for sufficiently
large n; and ny there exists a vertex v € V(G2) for which 2m? 4+ 2m + 1 lie at distance less than
or equal to m from v (v included). Thus, all those vertices, lying in a ball of diameter k, must
be assigned pairwise distinct colors. We then conclude that xx(G2) > 2m? + 2m + 1, that is
xk(Gp) > UL

The upper bound is given by the following coloring : let any vertex u € V(G2) be defined by
its coordinates in Go. That is, u = (z,y), with 0 <z <mn; —1 and 0 < y < ny — 1. Then every
vertex u = (z,y) is assigned color c(u) = z + (k + 1)y mod p, where p = 2m? + 2m + 1. Let
us now show by contradiction that this coloring is a k-distance coloring for G5. For this, let us
take two vertices u and v in V(G2) such that c(u) = ¢(v), and suppose that 1 < d(u,v) < k. Let
u = (z1,y1) and v = (22,y2) = (x1 £ s,y1 £ 1), with s,¢ > 0 such that s + ¢ = d(u,v). Then by
definition of the coloring, ¢(u) = ¢(v) is equivalent to 21 + (k+ 1)y1 = 1 £ s+ (k+1)(y1 £ ¢) mod
p. Hence, we have +s &+ (k+ 1)t = 0 mod p. Let kK = d(u,v) = s + ¢ (we recall that 1 < k < k).
We now distinguish two cases, depending on the signs of the expression :

mod p (also equivalent to —s — (k + 1)t = 0 mod p). In other

Case 1: s+ t=20
) 0 mod p, that is k + kt = ap. Now let us discuss the possible values of

words, (s +t



a. Clearly, a cannot be equal to zero, since k > 1, kK > 1 and t > 0. If a > 2, then we have
k+kt > 2p, where p = 2m +2m+1, that is p = & +k+ 1. This gives £ +kt > k?+ 2k + 2, which
is impossible since k¥ < k and t < k (indeed, if ¢ > k, then d(u,v) > k). The only remaining case
is @ = 1. This then gives k + kt = % +k+1, that ist = % +1+ 1_7” We recall that k is even,
thus the only possibility for ¢ to be an integer is when b = I_T" is a (possibly negative) integer.
However, it is easy to see that this is the case only when x = 1 (otherwise, —1 < b < 0). Hence,
we have k = 1 and b = 0. But then, t = §+1+b becomes t = §+1. That is, t > &, a contradiction.

Case 2 : s — (k+ 1)t = 0 mod p (also equivalent to —s + (k + 1)t = 0 mod p). In that
case, we have (s +1t) — (k +2)t = 0 mod p, that is t = 55 + ap, where « is an integer. However,
it can be easily seen that p > k, and that ;75 <1 (since s < k). Thus, since ¢ must be positive
and less than or equal to k, the only possibility is a = 0. But in that case, t = 5, thus 0 <¢ <1
cannot be an integer, a contradiction.

Altogether, this proves that any two vertices © and v lying at distance less than or equal
to k in G4(n1,...,ng) cannot be assigned the same color. Thus, our coloring is a k-distance col-

2
oring. Since this coloring uses p = £ + k + 1 colors, we conclude that x;(Gs) < ®HUHL,

Altogether, we have that xx(G2) = % for any even k > 2.

When k& = 2m + 1 is odd, the proof method is similar. The lower bound is given by the follow-
ing observation : for n; and n, sufficiently large, there exists a vertex u for which 2m? + 2m + 1
vertices lie at distance less than or equal to m from v (u included). Let B,,(u) be this set of
vertices (the ball of radius m around ) ; it is possible to extend this ball such that it contains
2m+1 more vertices, yielding a set B, (u), in such a way that any two vertices u; and uy in BJ,, (u)
lie at distance less than or equal to k = 2m + 1 (cf. Figure 2). This is simply due to the fact that
k is odd. Hence, we need to color all the vertices of Bj, (u) with pairwise distinct colors in order
to get a k-distance coloring of G2. Thus xx(G2) = |B., (u)], that is xx(G2) = 2m? + 4m + 2, or

2
xx(G2) > @

m

| —
.

%

/ "B b
.

Figure 2: By, and B, in the case where k = 7 (ie, m = 3)

The upper bound is obtained using the following coloring : for any vertex u = (z,y) in V(G2),
u is assigned color ¢(u) = z + ky mod p, where p = 2m? + 4m + 2. We now prove by contradiction
that any two distinct vertices u; and us lying at distance less than or equal to k in G2 cannot be
assigned the same color by the above coloring. Suppose, to the contrary, that 1 < d(u,v) < k,
where u = (z1,y1) and v = (z2,y2) = (1 £ 5,y1 £ t), with s,¢ > 0 such that s + ¢t = d(u,v). Let
Kk =d(u1,us) = s+t (hence 1 < k < k). c¢(u1) = c(u2) is equivalent to z1 + ky1s = z1 £s+k(y1 £1t)
mod p, that is +s + kt = 0 mod p. We distinguish two cases here, depending on the signs of the
expression :



Case 1: s+ kt = 0 mod p (also equivalent to —s — kt = 0 mod p). Hence we have k+ (k—1)t =0
mod p. In other words, k + (k — 1)t = ap. However, it can be easily seen that a > 0, since k > 1,
k > 1and t > 0. Moreover, if @ > 2, then we would have k+ (k—1)t > (k+1)2, which is impossible

since t < k and k < k. Hence, the only possibility is a = 1, that is k + (k — 1)t = W Ifk=1,

this gives kK = 2, which contradicts the fact that x < k. Now if k£ > 3, we get the following equal-
ity : t= % +24 H However, ¢t must be an integer ; k being odd, we just have to check that
i_T'l“ is a (possibly negative) integer. It is easy to see that —1 < fc_T'f < 1, since k > 3. Thus, the
only possibility is 2=% = 0, that is £ = 2. In that case, we end up with ¢ = 21 + 2, that is ¢ > 2

since k > 3. However, k = s+t, with s > 0. Hence k > 2, a contradiction since we supposed k = 2.

Case 2 : s—kt = 0 mod p (also equivalent to —s+ kt = 0 mod p). Hence we have k — (k+1)t =0
mod p, that is t = ﬁ + ap, a being a (possibly negative) integer. However, since ¢t < k and
p > k, it follows that a < 1 ; and since ¢ > 0, it follows that & > —1. Thus @ = 0 ; but in that
case, t = 75, a contradiction since ¢ must be an integer and since 1 <« < k.
Thus, we conclude that, using the above coloring, no two vertices at distance less than or
equal to k in G4(n1,...,nq) can be assigned the same color. In other words, the proposed coloring
(k+1)®

is a k-distance coloring for Go. Since it uses p = 2m? +4m + 2 = ~—5— colors, we conclude that

xk(G2) < w Altogether, we have that xx(G2) = W and the theorem is proved. O

3 Conclusion

In this paper, we have determined the value of a(Gg) for the family G4 of d-dimensional grids,
d > 1 ; we have also determined the value of x2(G4), d > 1 and xx(G2), ¥ > 1. The results on
acyclic coloring are given by determining a universal lower for a(G) on any graph G, that meets an
upper bound given by an appropriate coloring. More precisely, the bounds meet for “sufficiently
large” grids G4(ni,...,nq), that is when 2?21 ni < 1. If this is not the case, the bounds differ

by an additive factor equal to 1 — LZ?:I nLJ Adapted to d-dimensional hypercubes Hy, these
bounds are a factor 2 away.

All the upper bound results (and also some results on star coloring mentioned in Remark 1) rely
on an appropriate coloring that makes use of the representation of each vertex of G4(n1,...,nq) by
its coordinates in each dimension. This coloring method is adapted depending on the considered
graph coloring, but remains the same in spirit. We suspect that it can be extended to other kinds
of coloring, or to more general results concerning k-distance coloring in d-dimensional grids, for
any k and d.

We end this article by the following open problem : what is the exact value of a(Hy) for
hypercubes of dimension d ? Table 1 suggests that 2 + ng is a good candidate ; we have not been
able to prove it so far.

References
[AMO00] N. Alon and B. Mohar. The chromatic number of graph powers. Combinatorics, Prob-
ability and Computing, 2000. To appear.

[BKW99] O.V. Borodin, A.V. Kostochka, and D.R. Woodall. Acyclic colourings of planar graphs
with large girth. J. London Math. Soc., 60 (2):344-352, 1999.

[Bor79] 0.V.Borodin. On acyclic colorings of planar graphs. Discrete Mathematics, 25:211-236,
1979.

[Bur79] M.IL Burstein. Every 4-valent graph has an acyclic 5 coloring (in russian). Soobsé¢. Akad.
Nauk Gruzin, SSR 93:21-24, 1979.



[FRR02] G. Fertin, A. Raspaud, and B. Reed. Star coloring of graphs. LaBRI, Technical report,
2002. Submitted for publication.

[Grii73] B. Griinbaum. Acyclic colorings of planar graphs. Israel J. Math., 14(3):390-408, 1973.

[KDP00] D.S. Kim, D.-Z. Du, and P.M. Pardalos. A coloring problem on the n-cube. Discrete
Applied Mathematics, 103:307-311, 2000.

[Sop97] E. Sopena. The chromatic number of oriented graphs. Mathematical Notes, 25:191-205,
1997.



