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Abstract

Knédel graphs of even order n and degree 1 < A < |logy(n)], Wa n, are graphs
which have been introduced some 25 years ago as the topology underlying a time op-
timal algorithm for gossiping among n nodes [26]. However, they have been formally
defined only 7 years ago [17]. Since then, they have been widely studied as intercon-
nection networks, mainly because of their good properties in terms of broadcasting
and gossiping [3,14]. In particular, Knédel graphs of order 2¥, and of degree k, are
among the three most popular families of interconnection networks in the literature,
along with the hypercube of dimension k, Hy, [28], and with the recursive circulant
graph G(2*,4) introduced by Park and Chwa, in 1994 [32]. Indeed, those three fam-
ilies are commonly presented as good topologies for multicomputer networks, and
are comparable since they have the same number of nodes and the same degree.

In this paper, we first survey the different results that exist concerning Knodel
graphs, mostly in terms of broadcasting and gossiping. We complete this survey
by a study of graph-theoretical properties of the “general” Knédel graph Wa 5, for
any even n and 1 < A < |log,(n)|. Finally, we propose a rather complete study of
Knodel graphs Wy, o, which allows to compare this topology to the hypercube of
dimension k, Hy,, and the recursive circulant graph G(2¥,4). We also provide a study
of the different embeddings that can exist between any two of these topologies.

Key words: Knodel graphs, broadcasting, gossiping, interconnection networks,
hypercubes, recursive circulant graphs, graph embeddings.

1 Introduction

Kndédel graphs have been originally introduced in 1975 [26] ; they were graphs
that were underlying Knodel’s construction of a time optimal algorithm for
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gossiping among n vertices, with even n. However, the family of Knodel graphs
has been formally defined some 20 years later, by Fraigniaud and Peters [17].
They are regular graphs of even order n and degree 1 < A < |log,(n)], and
they are denoted by Wa ,,. Since 1994, there have been several papers dealing
with Knddel graphs, especially because some subfamilies of Knddel graphs
tend to have good properties in terms of broadcasting and gossiping ; it also
appeared that many of the graphs given as examples of Minimum Broadcast
(resp. Gossip) Graphs, such as in [25,6,27], were in fact isomorphic to the
Knédel graphs [14].

In particular, for any n = 2%, the Knddel graph of order n and degree k, Wi ok,
turns out to be Minimum Broadcast (resp. Gossip, Linear Gossip) Graph. In
that sense, W}, o« compares to the hypercube of dimension k, Hy, and the re-
cursive circulant graph G(2F,4) introduced in 1994 by Park and Chwa [32].
It actually makes sense to compare those three topologies, since they all have
good properties in terms of interconnection networks, and since they also all
are of same order 2¥, and regular of same degree k.

In this paper, we propose to survey the main results known about Kndédel
graphs, and to give a better understanding of their structure. In particular,
we focus on three main topics :

e The properties of Knddel graphs in terms of broadcasting and gossiping,
which was historically the starting point of the study of these graphs.

e The graph-theoretical properties of the Knodel graph Wa ,,, for any even n
and 1 < A < |logy(n)].

e A deeper study of the particular case n = 2*¥ and A = k. Among others, we
provide a comparison, in terms of embeddings, between W), o, the hypercube
of dimension k, Hy, and the recursive circulant graph G(2%,4).

In Section 2, we give different definitions and notations necessary to introduce
the problem. We then survey in Section 3 the general known results concerning
the properties that Knodel graphs satisfy about broadcasting and gossiping.
A graph-theoretical study of Knodel graphs W 5, is then undertaken ; more
precisely, Section 4 deals with the “general” Knodel graph Wa , with even n
and 1 < A < |log,(n)|, while Section 5 only focuses on the particular case
n=2F and A = k.

2 Definitions

In this Section, we first give some definitions and notations concerning the
graphs we are going to deal with in this paper. The second part of this Section
is devoted to broadcasting and gossiping, as well as the different communi-



cation models that we will focus on, and the associated graphs of minimum
size.

2.1 The Knaddel graph Wa

Definition 1 (Knddel graph [17]) The Knddel graph on n > 2 wvertices
(n even) and of mazimum degree 1 < A < |logy(n)| is denoted Wa,. The
vertices of Wa, are the pairs (i, j) with i=1,2 and 0 < j < % — 1. For every
7, 0 < j < & —1, there is an edge between vertexr (1,j) and every vertex
(2,j+2" =1 mod %), fork=0,...,A—1.

For 0 < k < A—1, an edge of W, , which connects a vertex (1, j) to the vertex
(2,7 +2%—1 mod %) is said to be in dimension k. For a better understanding,
we give some examples of Knodel graphs in Figure 1.

We note that when A = 1, Wy, consists in 7 (disconnected) copies of K.
Actually, Wa 5, is connected iff A > 2, since in that case it suffices to alternate

edges in dimension 0 and 1 to get a Hamiltonian cycle.
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Fig. 1. W43 and (I‘ight) Ws3

Now let us define the notion of bipartite incident graph, which, we will see, is
related to Knodel graphs.

Definition 2 (Bipartite Incident Graph) Let G = (V, A) be a directed
graph of order n, with V- = {0,1,...,n—1}. The bipartite incident graph of G
is the bipartite graph H = (V1,Va, E) of order 2n, where V; = {0;,1;, ..., (n —
1);} for any i € {1,2}, and such that for any arc (z,y) € A, there corresponds
an edge 1y, € E, with x1 € V| and yy € Vo. Moreover, for all x € V, there is
an edge x1x5 € E, where x1 € Vi and x9 € V5.

Thanks to the definition above, it is not difficult to see that the Knodel graph
Wa,, is the bipartite incident graph of a digraph G = (V, A) of order %.
Indeed, let V= {j |0 < j <% —1},and V; = {(4,5) | 0 < j < § — 1} for
i € {1,2}. In order for G to be such that Wa, is the bipartite incident graph
of G, we see that every arc (z,y) in G must satisfy the following relation : 3
pef{l,...,A-1}st.y=2+2”—1mod 3.

More precisely, we see that Wa 5, is the bipartite incident graph of a circulant



digraph G ; we also say that W, is the bi-circulant graph of G. Below is a
definition of a circulant graph and digraph.

Definition 3 (Circulant graph/digraph) A circulant graph (resp. digraph)
on n vertices Cy(ay,ag,...ap) (resp. én(al,ag,...ap)), with a; € N* and
a; < ag < ... < ap, has vertex set V = {0,1,...,n — 1} and edge set (resp.
directed edge set) E = {xy | 3 a;, 1 <i < p such that x + a; =y (mod n)}.

2A—1 _

Consequently, we see here that Wa ,, is the bi-circulant of C—"% (1,3,...,

1). An example of such a relation between Wa ,, and C_"%(l, 3,...,2%7 1 - 1)is
given in Figure 2, where n = 14 and A = 3.

20 21 22 (23 24 (25 (26

Fig. 2. C+(1,3) and (right) W3 14, its corresponding bi-circulant

Finally, let us give here the definition of the recursive circulant graph G(n,d),
which will be useful in order to compare performances of the hypercube Hy,
the Knodel graph Wy, o« and G(2F,4) in Section 5. An example of a recursive
circulant graph G(2*%,4), with k = 4, is given in Figure 3.

Definition 4 (Recursive Circulant Graphs G(n,d) [32]) The recursive
circulant graphs G(n,d) with d > 2, are defined as follows. The vertex set is
V ={0,1,2,...n—1}, and the edge set is E = {uv | 34, 0 < i < [logs(n)] —1,
such that v+ d* = v (mod n)}.

Fig. 3. The recursive circulant graph G(16,4)
2.2  Broadcasting and Gossiping

In this Section, we define the notions of broadcasting and gossiping, as well as
the associated models and minimum graphs (for rather complete surveys on
the topic, we refer to [22,16,24]). This will allow us to survey in Section 3 the



properties of Knddel graphs with respect to these communication models.

Let us consider an interconnection network, where each node knows some
piece of information. We will model such a network by a graph, where vertices
represent the nodes and edges the communication links. Broadcasting (resp.
gossiping) refers to the task whereby one vertex (resp. every vertex) knows
a piece of information and needs to transmit it to every other vertex in the
network. Here, we will always consider a 1-port and store-and-forward model,
that is, respectively :

e one vertex communicates with only one of its neighbours at any given time ;

e messages progress in the network towards their destination, transiting in
intermediate vertices. Hence, at each step, the used link is immediately
freed.

We will then consider different cases :

e The model can be either unit cost or linear cost. In the latter, the time to
communicate between two vertices u and v includes a fixed start-up time
B, and also a propagation time L7 which is proportional to the length L of
the message exchanged ; while in the former, it will always take one time
unit to communicate, no matter how long the message is ;

e The model can also be either simplex or full-duplex. In the latter, when two
vertices communicate, the communication can flow in both directions. In
that case, the graph modelling the network is undirected.

In the former, a communication link can be used to send messages only
in a particular fixed direction ; hence the network is modelled by a directed
graph.

Note that in this paper, we will not consider the case of gossiping in the sim-
plex model.

Whatever the considered model, we have the following definitions. If we con-
sider a graph G :

e For a vertex u of G, the broadcast time of u, is the minimum time needed

by u to broadcast its information in the graph G. It is denoted by b(u) in
the full-duplez model, and by g(u) in the simplez model.
In the full-duplex model, the broadcast time of G, or b(G) is defined as
follows : b(G) = max{b(u) | u € V(G)}. Analogously, in the simplez model,
the broadcast time of G, or b(G), is defined as follows : b(G) = max{b(u) |
u e V(G)}.

e The gossip time of G defines the minimum time to gossip in G. It is denoted
by ¢(G) in the unit cost model, and by gs .(G) in the linear cost model.



Starting from this point, we will call broadcast graph any graph G such that
b(G) = b(K,), where K, is the complete graph of order n. Analogously :

e a broadcast digraph denotes a graph G such that b(G) = b(K?) (where K}
is the complete directed graph of order n) ;
e a gossip graph denotes a graph G such that ¢(G) = g(K,) ;

e a linear gossip graph denotes a graph G such that gz (G) = g5, (K,).

The following results give the minimum time to communicate in the complete
(directed) graph under the four models of communication defined above.

Property 1
* b(Ky) = [logy(n)] [7]
o b(K;) = [log,(n)] [29].

lo
9(K,) = [log2 n)] + odd(n), where odd(n) = 1 if n is odd, and O other-
wise [26].
o For any even n, gs.(Ky) = [logy(n)]|8+ (n — 1)7 [17].

Remark 1 We note that when n is odd, the optimal gossip time under the lin-
ear cost model gg - (n) has been determined in [13], but is much more complex.
Notably, it depends on the value of n in the range [2F71 + 1;2F —1].

However, in all these models, it is not always necessary to consider the com-
plete (directed) graph to get a broadcast (gossip (linear)) (di)graph. In that
case, we can define the following :

e a Minimum Broadcast Graph is a broadcast graph with a minimum number
of edges ;

o a Minimum Broadcast Digraph is a broadcast digraph with a minimum
number of arcs ;

o a Minimum Gossip Graph is a gossip graph with a minimum number of
edges ;

e a Minimum Linear Gossip Graph is a linear gossip graph with a minimum
number of edges.

3 Broadcasting and Gossiping in Knodel Graphs

Thanks to the definitions and notations given in the previous Section, we can
now survey the results obtained concerning Minimum Broadcast (Di)Graphs
and Minimum (Linear) Gossip Graphs in different models, with respect to
Knodel graphs. These results are summarized in Tables 1 and 2.



It appears that Knodel graphs are omnipresent in the models presented here.
Moreover, it has been shown that some of the graphs that were given in the
literature as examples of Minimum Broadcast (resp. Gossip) Graphs (cf. for
instance [25,6,27]), are in fact isomorphic to the Knddel graphs [14].

Undirected case

Minimum Broadcast Graph [8]
Wi ok Minimum Gossip Graph [26]

Minimum Linear Gossip Graph [17]

Minimum Broadcast Graph [6,25,14]
Wi_12k_9 Minimum Gossip Graph [27,14]

Minimum Linear Gossip Graph [17]

Wi_1,2k_4 Minimum Gossip Graph [27,14]

Minimum Linear Gossip Graph [17]

Wi_19k_6 Minimum Linear Gossip Graph [17]
Wi_on Broadcast Graph [11]
2k-142<n<3.2F2 4 Linear Gossip Graph [12]

Gossip Graph [11]
Wi—1n Broadcast Graph [11]

3-262_4<n<2k-2 Linear Gossip Graph [12]

Gossip Graph [11]

Table 1
Broadcasting and gossiping properties of Knodel graphs in the undirected case

In order to understand fully Table 2, which deals with the directed case, we
need to introduce the following notion.

Definition 5 Let G be an undirected graph. We will call the directed graph
G* (associated to G), the graph G to which every (undirected) edge uv has
been replaced by a pair of symmetric directed edges (u,v) and (v, u).

In Section 2.1, we have seen that Wa , is a bi-circulant graph. Moreover, for
n=2% n=2%—-1andn = 2¥—2, circulant digraphs én(l, 3,..., 28] 1)
have been shown to be Minimum Broadcast Digraphs [10]. We note that
if we take the bi-circulant of these graphs, we then get the Knodel graphs
W iog,(2n)],2n, Which are themselves Minimum Gossip Graphs and Minimum
Linear Gossip Graphs. For the first two cases, we also know that they are
Minimum Broadcast Graphs (and Digraphs when the edges are replaced by
arcs in both directions).



Directed case
§ ok Minimum Broadcast Digraph [10]
}:‘_1,2,0_2 Minimum Broadcast Digraph [10]
W,;LQ,” Broadcast
2k=1 1 92<n<3.282 ¢4 Digraph
W,j_l,n Broadcast
3.262 _4<n<2k—2 Digraph

Table 2
Broadcasting and gossiping properties of Knodel graphs in the directed case

Moreover, Bermond et al. [3] have studied Kndédel graphs and their rout-
ing, broadcasting and gossiping performances using at each step only edges
in a certain dimension 7. More precisely, they have studied what they called
Modified Knddel Graphs, which turn out to be isomorphic to Knodel graphs
W 10g,(n)],n according to Definition 1, for any n not a power of 2.

Their main goal was to study the performances of these graphs, when dimen-
sions are used alternatively. What they proved is that, in some sense, the
dimensions of Knodel graphs had a similar role than the ones of hypercubes,
with respect to routing, broadcasting and gossiping.

All these results have given us motivations to go further in the study of Knddel
graphs, and to compare them with other topologies such as the hypercube.
This study is undertaken in the following two sections.

4 Study of Knodel graphs Wa ,,

First, it is easy to see that, for any even n and 1 < A < |logy(n)], Wa,, is
A-regular and bipartite. This is always true by definition. Moreover, any Wa ,,
can be defined as a Cayley graph [23], as recalled in Proposition 1 below.

Proposition 1 ([23]) For any even n and 1 < A < |logy(n)|, Wan is a
Cayley graph on the semi-direct product G = Zg X Zz for the multiplicative
law : (z,y)(2",y") = (z + 2",y + (=1)%"), with z,2' € Zy and y,y' € Zz, and
with the set of generators S = {(1,2° —1),0 < < A —1}.

Corollary 1 For any evenn and1 < A < |logy(n) |, Wa, is vertez-transitive.

Proof : This follows directly from Proposition 1 above, since it is well-known
that any Cayley graph is vertex-transitive (see for instance [5]). a



Proposition 2 For any even n and 1 < A < |logy(n)|, the Knddel graph
WA,n N

(a) Has edge-connectivity \(Wa,) = A ;
(b) Has vertez-connectivity % < k(Wan) <A.

Proof : (a). It is well known that any vertex-transitive graph G satisfies
AMG) = d(G), where d(Q) is the degree of G (cf. for instance [5]). Since we
know that Wa , is vertex-transitive by Corollary 1, we have A(Wa ,) = A.

(b). It is also known that, for any graph G, k(G) < A(G). Hence we have
K(Wan) < A. Moreover, Watkins [35] has shown that in any vertex-transitive
graph @, regular of degree r, we have k(G) > %T Since Wa,, is vertex-
transitive and regular of degree A, we have k(Wa ) > 2. O

Now we show how to construct Wayi 9, from two copies of Wa ,,, for any
even m and 1 < A < [log,(m)]. This will imply several interesting properties,
as we will notably see in Section 5.

Proposition 3 For any even m and 1 < A < |log,(m)], it is possible to
construct Was1,.0m by taking two copies of Wa m and linking the vertices of
each copy by a certain perfect matching.

We note that, in particular, if 2m = 2¥ and A+1 = k, this gives us a recursive
construction of Wy, ox, which starts from K.

Proof : Let us take two copies Wi and W of Wa ,,,. We will use a bijection
f from the set of vertices of W;, i € {1,2}, to the set of vertices of Wa1,2m
(we refer to Figure 4 for a better understanding of the process). f is defined
as follows on the vertices of W :

e f((1,9)) = (1,2i) for every i € [0; 2 — 1] ;
o f((2,4)) = (2,2 + 1) for every i € [0; 5 — 1].

f is defined as follows on the vertices of W :

e f((1,7)) =(1,2¢ + 1) for every i € [0;
0

—1];
o f((2,7)) = (2,2i + 2) for every i € [0; 2 — 1].

p[Feo[3

Now let PM be the following perfect matching between the vertices of I; and
Wy : PM consists in adding edges f((1,4)) f((2,4)) for every i € [0;m — 1].

In that case, take a copy of W; and a copy of W, apply f on the vertices of
Wi and W5, and add the perfect matching PM : this gives a new graph that
is isomorphic to Wa412m- Indeed, applying f on the vertices of W; and W,
corresponds in reality to a shift in the dimensions : dimension 7 in W ,, will



become dimension ¢+1 in Wa 1 o, for every i € [0; A —1]. Indeed, for any two
adjacent vertices of Wy, (1,7) and (2, j), there must exist a r € [0; A — 1] such
that j =4 +2" —1 mod %. By f, we then must have 2j +1 = 2(i+2"—1) +1
mod m, i.e. 2j+1 = 2i+2""1 —1 mod m. It is easy to see that the same goes
for W5 : dimension ¢ in W, will become dimension ¢ + 1 in Wa 1.9

Hence it suffices to add dimension 0 (i.e. the perfect matching PM) to get
WA—l—l,Zm- O

,,,,, dimo0 p— ]|

Perfect Matching

@ Verticesof W1

® verticesof W2
2.2) (200(2.00 2D 2.1 (22

Fig. 4. Constructing Wa 1,2y, from Wa ,

Finally, we note the following Proposition, due to [4].

Proposition 4 ([4]) For all even n, there exists an algorithm to recognize
the Knodel graph Wiieg,(n)],n, with complezity :

e O(nlogy(n)) if n = 2F ;
e O(nlogy(n)) otherwise.

5 Study of Wy o«
5.1 General Properties of Wy ok

In this Section, we focus on the family of Knddel graphs Wy, 5x. Among others,
we will compare this family to the recursive circulant graph G(2*,4) and to
the hypercube Hp, mainly in terms of performances as interconnection net-
works. We refer to Figure 5 of Section 5.4 for a comparison between those
three families of graphs.

The problem of determining the diameter Dy of W o« has been undertaken
in [15]. The result, obtained by a non trivial proof using decomposition of
integers into sums of (positive or negative) powers of 2, is the following.

Theorem 1 ([15]) Let Dy, be the diameter of Wy qx. For any k > 2, Dy, =
ré2).

Now let us check that W) o+ is non isomorphic to the two other topologies.

10



Proposition 5 ([14])

(a) The Kndidel graph Wy or and the hypercube Hy, are non-isomorphic graphs
for any k > 4.

(b) The Knddel graph Wy o1 and the recursive circulant graph G(2¥,4) are
non-isomorphic graphs for any k > 3.

Proof : Note that for any & < 3, it can be checked that W) o« and Hj are
isomorphic. Similarly, for any k& < 2, W}, o and G(2%,4) are isomorphic.

(a). In order to prove the first part of the Proposition, we use Theorem 1, and
note that k > [££2] for any £ > 4. Since the diameter of Hy is equal to k
for any k > 1, we conclude that the diameters of Hy and Wy o« differ for any
k > 4, and thus those two graphs cannot be isomorphic.

(b). For the second part of the Proposition, it is not sufficient to use the
diameter argument, because diameter of G(2*,4) is equal to [2:=17, and for
instance this value coincides with [£32] in the case k = 4. However, we can
easily see that for any k > 3, W, o« is a bipartite graph, while G(2*,4) is not.
Indeed, for any k > 3, there exists in G(2%,4) a cycle of length 5, namely
0—-1—-2-3—-4-0. a

Proposition 6 The Knddel graph Wy o« is not edge-transitive for any k > 4.

Proof : First, note that W) 5« is edge-transitive for any k < 3, since in that
case W, or is isomorphic to the hypercube Hy.

Now suppose k > 4. The key idea here is the following : in W, 5, let us consider
an edge uv and let us compute N,,, the number of distinct cycles of length
4 that contain uw. If, for two edges uv and u'v’, this number differs, then the
graph W, o« cannot be edge-transitive. Now let us consider uv in dimension 0,
and u'v’ in dimension 1, and let us show that N,, # Ny .

Let us first consider wv in dimension 0. W.l.o.g., let v = (1,0) and v = (2,0).
Suppose this edge lies in a cycle of length 4, C;. Hence, this cycle is of the
form (1,0) —(2,p) — (1,9) — (2,0) — (1,0), with p # 0 and ¢ # 0. By definition
of the Knodel graph W), o, this means :

e p=2"—1mod % for some i #0 ;
e ¢g=p—2/+1mod % for some j # i ;
. 0:q+2l—1modgforsomel7é0.

Altogether, this gives 2° — 2/ + 2! —1 = 0 mod 2. Since ¢ # 0 and [ # 0,
this implies that 2/ — 1 is even, hence j = 0. Hence we have 2 + 2! — 2 =0
mod 5. There are only two solutions to this equation: 7 =1and / =k —1, or
1 =k—1and [ = 1. These solutions are distinct, since K —1 # 1 by hypothesis.
Consequently, N, = 2.

Now let us consider an edge u'v’ in dimension 1. W.lLo.g., let u' =
and v' = (2,1). If we are looking for a Cy of the form (1,0) — (2,p) — (1,

(1,0)
)_

11



(2,1) — (1,0) (with p # 1 and ¢q # 0), we get the following equations :

e p=2"—1mod % for some i # 1 ;
° q:p—2j+1mod%forsomej7éi;
e 1=¢+2"—1mod 2 for some [ # 1.

In that case, we can see that it is possible to find at least three distinct solutions
for the triplet (7, 7,1). They are the following : {(0,k — 1,0),(2,1,k — 1), (k —
1,1,2)}. Since k > 4, these 3 solutions are pairwise distinct. This shows that
Ny > 3, and consequently W o« is not edge transitive for any k > 4. O

Remark 2 It has been shown independently in [4] that for any even n such
that n # 2% — 2, Wy_1,, is not edge-transitive, while in the case n = 2% — 2,
Wi—1n is edge-transitive [23].

Moreover, when n = 2% — 2, it is possible to show that the vertez-connectivity
of Wi_1,n is mazimum, that is K(Wy_1 0k o) =k — 1 [23].

5.2 Forwarding Indices, Bisection Width and Optical Index

Definition 6 (Compound Graph [5]) A compound graph of a graph G by
a graph H is a graph obtained the following way : we replace the vertices of
G by copies of H, and we add edges to some of the vertices of two of these
copies iff the corresponding vertices of G are adjacent.

In the following, we will denote by G[H] any compound graph of a graph G by
a graph H, where there is exactly one perfect matching between two copies of
H iff the corresponding vertices of G' are adjacent. This operation clearly does
not define a unique graph ; however, in the following we will write G’ = G1[G]
if G' is a compound graph of the form G1[G5].

Remark 3

(a) Watiom = Ko[Wam] for any even m and 1 < A < |logy(m)] ;
(b) In particular, Wy or = Ky[Wy_1 ox-1] for any k > 2 ; by induction, this
gives Wiy o = Ko[K[Ko[. . ]| (k times).

These two statements are direct consequences of Proposition 3.

The vertex-forwarding index, edge-forwarding index and bisection width are
useful parameters to judge the routing performances of an interconnection
network. Those three notions are defined below.

The notion of forwarding index has been introduced in [18]. A routing R of a
graph G of order n is a set of n(n — 1) elementary paths R(u, v) specified for
all ordered pairs (u,v) of vertices of G. If all the paths of R(u,v) are shortest

12



paths from u to v, then the routing is said to be a routing of shortest paths.
Let the load of a vertex v in a given routing R of a graph G, denoted by
&(G, R,v), be the number of paths of R going through v (where v is not an
end vertex). A routing for which the load of all vertices is the same is called
a vertez-uniform routing. The vertez-forwarding index of a network (G, R),
denoted by £(G, R), is the maximum number of paths of R going through
any vertex v in V(G) : {(G, R) = maxyey(¢) {(G, R, v). The minimum vertex-
forwarding index over all possible routings of a graph G is denoted £(G) and
is called the vertez-forwarding indez of G : £(G) = ming (G, R).

Similar definitions hold for the edge-forwarding index of a graph G (cf. [30]) :
the load of an edge e in a given routing R of a graph G, denoted by II(G, R, ),
is the number of paths of R going through e. A routing for which the load of all
edges is the same is called an edge-uniform routing. The edge-forwarding index
of a network (G, R), denoted by II(G, R), is the maximum number of paths
of R going through any edge e in E(G) : II(G, R) = max.cg)I1(G, R, e).
The minimum edge-forwarding index over all possible routings of a graph
G is denoted II(G) and is called the edge-forwarding index of G : II(G) =
ming [1(G, R).

The edge-bisection width, Bisw(G), of a graph G of order N is defined as the
minimum number of edges whose removal splits the graph into two subgraphs
holding roughly half the number N of vertices. Formally, Bisw(G) is the min-
imum number of edges running between V; and V5, over all partitions of the
vertex set of G into two parts V; U Va such that V| = [Va| £ 1.

Proposition 7

(a) The edge-forwarding index of Wy or, II(Wy, o), satisfies I(Wy or) = 2F for
any k.

(b) The vertez-forwarding index of Wi, or, E(Wyor), satisfies
g(Wk,Qk) = QL’G Z(u,v)EVde(U’a U) - (2k o 1) fO’f‘ any k.

(c) The edge-bisection width of Wy o, Bisw(Wy o), satisfies Bisw (W or) =
2k=1 for any k.

Proof : (a). In [20], Gauyacq proved that if G’ is the compound graph of H
by G such that for every edge uv of H there is at least one perfect matching
between the corresponding copies G, and G, then we have :

ma2 < 11(G) < maz{ngIl(H), nyll(G)} (I1).
GI

where ng is the order of the graph G, e(GI,{) is the number of edges of type H
in the graph G', and where X(H) = ¥, ,yev (m)xv () A (U, v)-

In our case, we have seen that Wy o = Ko[Wy_; g¢-1] for any k& > 1. Since K,
has only one edge, it is not difficult to see that there is a perfect matching
between the two copies of Wy _;q:-1. Hence we can apply inequality (I1),
where H = Ky, G = Wy,_; or-1 and G’ = W}, ox. Note first that :
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° e(GI’Q) — 2]671 :
o II(K,) = 2.

In that case, I1 becomes : 28 < TI(Wj or) < max{2*,2 - TI(W}_; oe—1)} for
any k > 1 (I2). Now it is easy to prove by induction that IT(Wj ) = 2* for
any k > 1. Indeed, ITI(W,o¢) = 2* for any k < 3, since W), o« is isomorphic
to the hypercube Hj for any k < 3, and since II(H;) = 2* for any k [5].
Moreover, suppose we have II(1W, o) = 2? for some p. By (I2), we then have :
2P+ < TI(Wpyy,90+1) < max{2Pt! 2-2P} hence the result. Note that this value
is the same as for the hypercube Hy.

(b). Concerning the vertex-forwarding index, we have the following from [5].
Since Wy ox is a Cayley graph, there exists a vertex-uniform shortest-paths
routing, and consequently we have : £(Wy51) = 55 3y myevsv d(u, v) = (28 =1).
We refer to Table 3 for the comparison of {(H}) and §(Wj ox) for 2 < k < 6.

k|| € | W)
2 1 1

3 5 5

4 17 15

5 49 41

6 129 103

Table 3
Comparison between {(Hy) and {(Wj, ox) for 2 <k <6

(c). Finally, let us prove that the edge-bisection width satisfies Bisw(Wj, or) =
2F=1_ First, we have the following inequality from [5] : II(W}, o1 )- Bisw (W, o1) >
@. Since we know II(Wj ox) = 2%, we have Bisw(Wj 1) > 2571 Moreover,
it is easy to see that Bisw(Wj o) < 2%=1 since by Proposition 3 we know that
Wy ox can be constructed with two (disconnected) copies of Wj_; ox-1 joined
by a perfect matching PM. Since this perfect matching has 2¢~! edges, we

have the equality. O

The minimum number of wavelengths necessary to achieve all-to-all commu-
nications in a graph G is an essential parameter for optical networks [34]. A
good survey on the problems related to optical networks can be found in [2].
Consider the directed symmetric Knodel graph W, associated to Wy, or. Sup-
pose that we want to join each pair of vertices in W,: o« by a dipath, and that we
construct a routing which satisfies this request. Mo}eover, we suppose that we
give a color to every dipath of the routing, where several dipaths can have the
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same color. The main question here is to determine the optical index w(Wy or),
that is the minimum number of colors, over all the possible routings, which
are necessary to color all the dipaths, and such that two dipaths sharing the
same arc have different colors.

This corresponds to the number of wavelengths which are necessary for all-
to-all communications in an optical network using the WDM (Wavelength
Division Multiplexing) technique.

Proposition 8 The optical index of Wy e, w(Wyor), satisfies w(Wy o) =
2k=1 for all k > 2.

Proof : In [1], Amar et al. proved the following. Let p; be integers for i € [1; n]
such that 2 < p; < py < ... < p,, then we have w(K), [Ky,[...[Kp,l]...]) =
[T7=y pi- In our case, we know that Wy or = Ky[K,...[K,]]...] (k times) by
Remark 3. Hence each p; = 2 for i € [1;n], and we have w(Wjor) = 2571, O

5.8  Bipancyclicity
Definition 7 (Bipancyclicity) A graph of order n is said to be bipancyclic
when 1t holds cycles of any even length 4 < 2m < n.

Proposition 9 Wy, o is bipancyclic for any k > 2.

Proof : Note that since Wy o« is bipartite, it cannot hold any cycle of odd
length. Now let us show that for any even number 4 < 2m < n, it is possible
to find a cycle of length 2m. The key idea here is to use only three different
dimensions to get those cycles, namely dimensions 0, 1 and £ — 1. Now let us
detail two cases, depending on the parity of m :

e If m is odd, it is possible to get a cycle of order 2m, which is the following :

(150)_(2a0)_(151)_(2a2)_(1a3)_(2:4)_'"_(1:2p+1)_(252p+2)_
= (I,m=-1)—-2,m-1)—(1,m—-2)—(2,m—-3)—... —(1,2p) — (2,2p—
1) —...=(2,1) = (1,0). In other words, we use the following sequence of
dimensions :

dim 0-[dim (k — 1)-dim 1] -dim 0-[dim 1-dim (k — 1)]"7".
where [dim a-dim b]° means that we alternate edges in dimension a and
b, ¢ times.
e If m is even, it is possible to get a cycle of order 2m, which is the following :

(170)_(270)_(1a1)_(272)_(173)_(2:4)__(1:2p+1)_(272p+2)_
.- 2m-1)-1,m-1)-(2,m—-2)—(1,m—-3)—...—(2,2p+1) —
(1,2p) —...—(2,1) — (1,0). In other words, we use the following sequence

of dimensions :
dim 0-[dim (k — 1)-dim 1]> ~*-dim (k — 1)-dim 0-[dim 1-dim
(k —1)]2!-dim 1.
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For a better understanding of the method, we refer to Figure 5. O
10 1Ly 12 (Lm-1)
— dimO

— dim1l

fffff dim (k-1)

(20 21 @2 (2m-1)
Fig. 5. How to find a cycle of length 2m in Wy, o«

Definition 8 A graph G, regular of degree d, is said to be Hamiltonian de-
composable if it can be decomposed in |4| Hamiltonian cycles, plus a perfect

2
matching if d is odd.
Open Problem 1 Is Wy o« Hamiltonian decomposable for any k ¢

Remark 4 We note that the answer is positive for any k < 5. Indeed, if
k < 3, Wy or is isomorphic to the hypercube Hy, and we know that Hy can
be decomposed in Hamiltonian cycles for any k. Moreover, for k = 4, we
have shown the decomposition of Figure 6. This decomposition added to the
recursive construction of Wsso from two copies of Wyie (cf. Proposition 3)
also gives a Hamiltonian decomposition for k = 5.

10 (L1 1,2 1,3) 1,4) (1,5 (1,6 @,7)

S S
(NN |‘\\
\ N \ N
\ \
\ \
\ D
\ N
N N

20 21 @2 (@3 @4 @5 (26 @0

AN

Fig. 6. Decomposition of Wy 16 into two Hamiltonian cycles

Moreover, coming back to the case where n # 2*, we note that we have the
following Proposition concerning the Hamiltonian decomposition of Wj_; ox_5.

Proposition 10 W),_; ox_o is Hamiltonian decomposable for any k > 3.

Proof : We know by [23] that in the case n = 28 —2 and A =k — 1, Wa,,
is edge-transitive. In that case, since we know that edges in dimensions 0 and
1 form a Hamiltonian cycle, then any edges in dimensions ¢ and 7 + 1 (with
0 < i < k—3) also form a Hamiltonian cycle. If we repeat the process for any
even 0 <17 < k — 3, then we end up with two cases :

o If k —1 =2pis even, we get p Hamiltonian cycles and we have used all the
edges.

o If k—1=2p+1is odd, then the edges in dimension £ — 2 have not been
used ; however, they form a perfect matching, and thus Wj_, ox_, is also
Hamiltonian decomposable.
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5.4  Comparison between Wy or, Hy, and G(2%,4)

We know by Theorem 1 (cf.[15]) that the Knddel graph W) o« has a diame-
ter smaller (by a constant factor) than the one of the hypercube Hy, or of
the recursive circulant graph G(2F,4) (which was introduced by Park and
Chwa [32] as a topology which could compete with the hypercube). The di-
ameter is one of the parameters for which we can say that W), o« can compete
with Hjy and G(2%,4). In this Section, we continue the comparison between
the three topologies by studying some embeddings from one architecture into
another. To these three architectures, we have added a fourth one, namely
the recursive circulant graph G(2*,2), in order to complete a study that was
initiated in [33].

All these results are summarized in Table 4. Finally, we provide in Table 5, a
comparison between the three families of graphs.

We note that the embeddings below always take place between graphs having
the same number of vertices (that is, n = 2¥). Hence, the expansion is always
equal to 1.

Proposition 11

(a) For all k > 3, it is possible to embed Wy o1 into the recursive circulant
graph G(2*%,2) with dilation 2.

(b) For all k > 3, it is possible to embed the recursive circulant graph G (2, 2)
into Wy, or with dilation 2.

Proof : (a). Let us first embed W}, o« into G(2%,2), and let n = 2*. For this,
we define the bijection f from V(W 1) to V(G(2%,2)) as follows :

o f((1,4)) =2iforallie[0;2 —1];
o f((2,7) =2i+1forallie[0;5 —1].

An example of such an embedding, with & = 3, is illustrated in Figure 7.

Now, we show that this embedding has dilation 2. For this, for any vertex v in
Wy ox, and for all the neighbours v of u, we have to show that d(f(u), f(v)) < 2
in G(2*%,2). Let us distinguish two cases :

e u is of the form (1, ). Then the neighbours v of u in W}, o« are the (2,7+2'—1
mod %), with 0 <[ < k —1. In that case, f(u) =2i. If | =0, v = (2,4) and
f(v) = 2i+1. Thus, f(u) and f(v) are neighbours in G(2*¥,2). If [ # 0, then
f(v) = 2i + 241 — 2 mod n. But 27 is neighbour of 2i + 2 in G(2*,2), and
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@ 1(20))

(1)

f(21)

((1.2)

Fig. 7. Embedding of W3 g into G(8, 2)

2i + 2 is neighbour of 2i — 21 + 2 mod n. Hence the dilation is equal to 2
in that case.

o If u is of the form (2,4), the neighbours v of u in Wj, o are of the form
(1,i —2'+ 1 mod %) with 0 <1 < k — 1. It is easy to see that, as in the
previous case, we have d(f(u), f(v)) < 2 in G(2F,2), for all the vertices v
described as above.

(b). Now let us realize the opposite embedding, that is from G (2*, 2) into Wy, g.
Let f be the bijection from V(G(2*,2)) to V (W}, o¢), defined as follows :

o f(2i) = (1,i) foralls € [0;2 — 1] ;
e f(2i+1)=(2,i) foralli e [O;g_”;

An example of such an embedding, with k£ = 3, is illustrated in Figure 8.

fO f2 (4 f(6)
dim0
/ 72— dim1
‘ dim2

o M B M

Fig. 8. Embedding of G(8,2) into W3 g

In order to show that the dilation of such an embedding is equal to 2 as well,
we show that for any vertex u in G(2¥,2) and for all the neighbours v of w,
we have d(f(u), f(v)) < 2 in Wy ox. As previously, we consider two cases :

e u is even (u = 2m). Then f(u) = (1, m). Moreover, the neighbours v of u
in G(2%,2) are of the form v = 2m + 2" mod n with 0 < [ < k — 1. We
distinguish two cases : first, if [ = 0, then v is odd (either v = 2m + 1 or
v=2m—1=2(m—1)+1). Then f(v) = (2,m) or f(v) = (2,m — 1)
depending on the cases. But we know that f(u) and f(v) are neighbours in
Wi.or. Now, if I # 0, then v = 2m=+2" mod n is even, and f(v) = (1, m£2""
mod 7). In that case, f(u) and f(v) are at distance 2, since (1,m) and
(2,m—1) (resp. (1,m) and (2,m+2' —1 mod %)) are neighbours in W .

e uis odd (u = 2m + 1). In that case, we proceed as previously, and we can
show easily that the dilation is also equal to 2.
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The embedding of G(2*,2) into W}, o« can then be realized with dilation 2. We
note that in this case, the dilation is optimal, since |E(G(2¥,2))| > |E(Wj o))
for all k > 2. O

Proposition 12 For all k > 4, there exists an embedding of the Knaodel graph
Wi or into the hypercube of dimension k, Hy, with dilation not exceeding 4.

Proof : For this, it suffices to combine the result of Proposition 11(a) with
the following result, coming from [33] : it is possible to embed G(2*,2) into
H; with dilation 2. In that case, if we first embed Wj o into G(2%,2), and
then G(2*,2) into Hy, we get an embedding of W}, or into Hy with dilation less
than or equal to 2-2 = 4. O

Proposition 13 For all k > 4, it is possible to embed the hypercube of di-
mension k, Hy, into Wy ox, with dilation 2.

Proof : First, we note that W o+ and Hj are isomorphic for any k¥ < 3.
For all k£ > 4, we know that Wy o« and Hj are not isomorphic (cf. [14] and
Proposition 5). Hence, the embedding we propose here is optimal with respect
to dilation.

Suppose that k£ > 4, and let us embed Hj, into Wy 5x. We suppose here that
the vertices of Hy, are the integers form 0 to 2¢ — 1. We consider the bijection
[ from V(Hy) to V(Wj or) defined as follows :

o f(i) = (1,9) for all i € [0;25~" — 1] ;
o f(i) = (2,i—2F1) for all 4 € [2F-1;2F —1].

An example of such an embedding, with & = 4, is illustrated in Figure 9.

fo (1) 2 f3 f4 (5 f(6 f(7)

f8) 9 f(10) f(11) f(12) f(13) f(14) f(15)
Fig. 9. Embedding of Hy into Wy 16

Let us consider a vertex v in Hy. For any neighbour v of u, we compute the
distance d(f(u), f(v)) in Wy, . For this, we distinguish two cases :

e 0 < u < 281 -1 ie. the most weighted bit of B(u) (where B(u) is the
binary representation of u) is equal to 0. In that case, f(u) = (1,u). Then,
if v = 281 + u, we have f(v) = (2,u), and the distance d(f(u), f(v)) in
Wi o is equal to 1. If v # 2k=1 4 y, this means that the most weighted bit
of B(v) is equal to 0, and there exists a 0 < [ < k — 2 such that v = u £ 2".
The distance from f(u) = (1,u) to f(v) = (1,u £ 2") in W}, o is then equal
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to 2 : indeed, (1,u) is neighbour of (2, u+2'—1), which is itself neighbour of
(1,u+2%. On the other hand, (1, u) is neighbour of (2,u —1) (in dimension
k — 1), which is itself neighbour of (1,u — 2).

e When 2¥71 — 1 < u < 2F (i.e., the most weighted bit of B(u) is equal to
1), we proceed the same way. By similar arguments, we can show that the
dilation is also equal to 2 in that case.

|

Proposition 14 For all k > 3, it is possible to embed the Knodel graph W, ox
into the recursive circulant graph G(2%,4) with dilation 3.

Proof : Suppose that k£ > 3 and let us embed W, o« into G(2%,4). In G(2*,4),
the vertices are the integers from 0 to 2¥ —1. Let us then consider the bijection
[ from V(W o¢) to V(G(2*,4)), defined as follows :

o f((1,4)) = 2i for all 4 € [0; 257! — 1] ;
o f((2,4)) =2i+1 for all ; € [0; 26~ —1].

An example of such an embedding, with k£ = 4, is given in Figure 10.

W T
N~ < ’ f((1,3))
@ “' 23
@Y T ((23)

Fig. 10. Embedding of Wy 16 into G(16,4)

Let us show that the dilation of such an embedding is equal to 3. For this,
we show that for any vertex u of W 5+ and for any neighbour v of u, we have
d(f(u), f(v)) < 3in G(2*,4). Let us then distinguish two cases :

e u = (1,4). In that case, f(u) = 2i and the neighbours v of u in W}, o are of
the form (2,i+2' — 1 mod 2¥~!) with 0 <1 < k—1.1f 1 =0, v = (2,4) and
f(v) = 2i+1 is neighbour of f(u) in G(2%,4).1f | # 0, then v = (2,i+2'—1
mod 2¥71), and f(v) = 2i + 2! — 1 mod 2*. Depending on the parity of [,
the distance d(f(u), f(v)) is either equal to 2 or 3. Indeed, 27 and 2i — 1 are
neighbours. If [ +1 = 2¢ is even, then 2: — 1 and 27 — 1 4+ 47 are neighbours.
Otherwise, that is if [+ 1 = 2¢+1 is odd, we see that f(v) = 2i—1+47+47
which is at distance 3 from f(u).

e u = (2,7). In that case f(u) = 2i + 1, and the neighbours v of u are of the
form (1,7 — 2! + 1 mod 2%!) with 0 <1 < k — 1. Using similar arguments
as in the previous case, we can show here that the dilation is equal to 3.
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Proposition 15 For all k > 3, it is possible to embed the recursive circulant
graph G(2F,4) into Wy, o« with dilation 2.

Proof : We recall that W, o» and G(2*,4) are isomorphic for all k¥ < 2. For
all £ > 3, we know that those two graphs are not isomorphic (cf. [14] and
Proposition 5). Hence, the embedding proposed here is optimal with respect
to dilation.

In G(2%,4), the vertices are the integers from 0 to 2 — 1. We then consider
the bijection f from V(G(2*,4) to V(Wj, o), defined as follows :

o f(2i)=(1,i) foralli e [0;2¢1 — 1] ;
o f(2i+1)=(2,4) for all i € [0; 21 —1].

f0) ) f@ fe) 8 f10) 12 f(14)

fas  f) fd f® (0 {9 1) 13
Fig. 11. Embedding of G(16,4) into Wy 16

Figure 11 illustrates such an embedding, in the case k£ = 4.

In order to show that the dilation of such an embedding is also equal to 2,
let us show that for any vertex u of G(2¥,4) and for any neighbour v of u, we
have d(f(u), f(v)) < 2 in Wy o¢. For this, let us distinguish two cases :

e u = 2m is even. In that case, f(u) = (1, m) and the neighbours v of u in
G(2%,4) are of the form u + 4 mod 2%, with 0 <[ < k — 1. If [ = 0, then
v = 2m=1. In both cases (v = 2m+1 and v = 2m—1), we see that f(u) and
f(v) are neighbours in Wy, or. Now, if I # 0, v = 2m +4' mod 2 is even, and
consequently f(v) = (1, m42%~" mod 2*7!). In that case, we see that f(v)
is at distance 2 from f(u) in Wy or, because vertex (2,m — 1) (resp. vertex
(2,m+2%"1 —1 mod 2*!) is neighbour of both vertices f(u) = (1,m) and
(1,m — 2%=1 mod 2*~1) (resp. and (1, m + 2%~ mod 2*~1)).

o If u =2m + 1 is odd, we can show, by similar arguments, that the dilation
is also equal to 2.

Park and Chwa [33] have also studied several embeddings between H, G(2F, 4)
and G(2F, 2). The Propositions we gave here complete this study with embed-
dings among W, ox, Hy, G(2¥,2) and G(2*, 4). Note that our main goal was to
find embeddings with constant (and sometimes optimal) dilation, but that we
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have not considered the minimization of the congestion of these embeddings.
Table 4 summarizes the results obtained here and in [33]. In the “Dilation”
column, the asterisk (x) indicates that the result is optimal.

Embedding of | Into Dilation | Reference
G(2%,2) G (2%, 4) 2* [33]
G(2*%,2) Hj, 2* [33]
G(2%,2) Wi, o 2* Prop. 11(b)
G(2*,4) G(2*,2) 1 [33]
G(2*,4) Hy, 2* [33]

G (2%, 4) Wi, o 2* Prop. 15

Hjy, G(2%,2) 1* [33]

Hjy, G(2*,4) 2* [33]

Hy, Wy, ok 2" Prop. 13
W), ok G(2%,2) 2 Prop. 11(a)
W), g G (2%, 4) 3 Prop. 14
Wi ok Hy, 4 Prop. 12

Table 4
Summary of the results : embeddings among W (2%,2), Hy, G(2,4) and G(2*,2)

Properties H;, | G(2F,4) Wy, ox
Number of vertices | 2* 2k 2k
Vertex-connectivity || & k €)% ; k]
Edge-connectivity k k k

Degree k k k
Diameter k [%%11 [%]
Vertex-transitivity | Yes Yes Yes
Edge-transitivity Yes No No
Spanning subgraph
Hamiltonian cycle || Yes Yes Yes
Spanning subgraph
Binomial Tree Yes Yes Yes

Table 5
Comparison between Hj, G(2F,4) and Wi ok
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6 Conclusion

In this paper, we have provided a survey of the known properties of Knodel
graphs, mainly in terms of broadcasting and gossiping. To this survey, we have
added some new results, that essentially deal with graph-theoretical properties
of Knodel graphs. This study begins with the “general” Kndodel graph Wa ,,
and then focuses more particularly on Wy, ox.

Finally, we have provided some elements of comparison between the hyper-
cube of dimension k, Hy, the recursive circulant graph G(2¥,4) and W ox.
This comparison mainly includes embedding one architecture into another.

The study of the Knddel graphs, and more particularly of Wy ox, was moti-
vated by the fact that these graphs had good properties concerning gossiping
and broadcasting, as recalled in Section 3. Though it seems quite difficult to
get general results concerning Wa ,, for any A and n, the study of the Knodel
graphs W, o1 proves to be very instructive.

Thanks to this extended study of Knodel graphs, we hope to have given an
overlook of many of the properties of this family which allows to understand
better its structure and behaviour, in terms of communication as well as graph-
theoretically speaking.

However, there remains many unanswered questions about this family. In par-
ticular, we have determined many properties in the case Wj ox, but several
others remain undetermined in the general case. Among others, determining
the diameter of the general Knddel graph Wa , (for any even n > 2 and
1 < A <|logy(n)]) seems to be one of the most challenging problems.
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