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Abstract

In the feedback vertex set problem, the aim is to minimize, in a connected graph G =
(V, E), the cardinality of the set V(G) C V, whose removal induces an acyclic subgraph. In
this paper, we show an interesting relationship between the minimum feedback vertex set
problem and the acyclic coloring problem (which consists in coloring vertices of a graph G
such that no two colors induce a cycle in G). Then, using results from acyclic coloring, as
well as other techniques, we are able to derive new lower and upper bounds on the cardinality
of a minimum feedback vertex set in large families of graphs, such as graphs of maximum
degree 3, of maximum degree 4, planar graphs, outerplanar graphs, 1-planar graphs, k-trees,
etc. Some of these bounds are tight (outerplanar graphs, k-trees), all the others differ by a
multiplicative constant never exceeding 2.

Keywords: minimum feedback vertex set, acyclic coloring, planar graphs, outerplanar graphs,
1-planar graphs, k-trees.

1 Introduction and Preliminaries

In this paper, we address the minimum feedback vertex set problem in connected graphs. A
feedback vertex set, or FVS of a connected graph G = (V, E) is a subset V' of vertices of G such
that the (possibly disconnected) graph G’ induced by V\V' is a forest (that is, contains no cycle).
A minimum feedback vertex set, or MFVS in G is a FVS of minimum cardinality, and is denoted
V(G). The MFVS problem finds its motivation in several areas of computer science such as com-
binatorial circuit design [12], monopolies in distributed networks [17] or placement of converters
in optical networks [14, 19].

It has been shown that the problem of finding a MFVS in a graph G is NP-hard in general ;
however, a large literature shows that it becomes polynomial when addressed to specific families
of graphs such as interval graphs [15], permutation graphs [7] and co-comparability graphs [10],
among others. Moroever, several recent papers have developed methods to find bounds on the
minimum feedback vertex set in several families of graphs, such as d-dimensional grids and tori,
butterfly networks and hypercubes [2, 9, 16, 12]. For general graphs, the best known algorithm
has an approximation ratio of 2 [1]. We refer to [11] for a rather complete and recent survey on
the feedback vertex set problem.

In this paper, we establish an interesting connection between this problem and a coloring



problem on graphs, acyclic coloring. An acyclic coloring of a graph G = (V, E) is a coloring of its
vertices, satisfying the two following rules :

(a) No two neighboring vertices are assigned the same color (this is also denoted as proper
coloring).

(b) Let V, C V be the set of vertices of G that are assigned color a. Then, for any a # b, the
subgraph G" of G induced by V, UV} must be acyclic.

The minimum number of colors necessary to color G is called acyclic chromatic number of G,
and is denoted a(G). Similarly, for a family F of graphs, the acyclic chromatic number of F,
denoted by a(F), is defined as the maximum a(G) over all graphs G € F. Determining the acyclic
chromatic number of a graph G is also a NP-complete problem in general. It has been widely
studied in the past 25 years, and in particular, as we will see in the following, several authors
have been able to determine a(F) for several families F of graphs such as graphs of maximum
degree 3 [13], of maximum degree 4 [8], planar graphs [3], planar graphs with “large” girth [5],
outerplanar graphs (see for instance [18]), 1-planar graphs [4], etc.

Our main contribution here is to establish a direct connection between the acyclic chromatic
number of a connected graph G and the cardinality of a minimum feedback vertex set in G. Start-
ing from this, we will develop some techniques to determine lower and upper bounds on the MFVS
cardinality of several large families of graphs, such as graphs of maximum degree 3, of maximum
degree 4, planar graphs, planar graphs with girth greater than or equal to 5 (resp. 7), outerplanar
graphs, 1-planar graphs, k-trees, etc. In some of these cases, the given bounds are tight ; in all the
other cases, we are able to show that the lower and upper bounds differ by a multiplicative con-
stant at most equal to 2. Most of the time, this constant will be strictly less than 2. These upper
bounds might not always be tight, but they have the very interesting property that they apply
in very large families of graphs (consider planar graphs or graphs of maximum degree d € {3,4},
for instance). Until now, close bounds on the cardinality of a MFVS were given in much smaller
families (e.g. d-dimensional grids, butterfly networks, hypercubes).

In section 2, we will first formalize the connections that exist between acyclic chromatic num-
ber and cardinality of a MFVS. In section 3 we will then determine lower and upper bounds on
the MFVS cardinality of the above mentioned families of graphs.

2 Connection between MFVS and acyclic coloring

In this section, we first make the connection between the acyclic chromatic number of a graph
G and the cardinality of a MFVS in G. Our results are the following.

Lemma 1 Let G = (V, E) be a graph of order |[V| = N. If a(G) < k, then |V (G)| < k—;Q -N.

Proof : Suppose we have an acyclic coloring of G = (V, E) that uses k colors. We then partition
the set V in k classes Vi, V5, ... V}, according to the colors given to the vertices of G. In that
case, by definition of acyclic coloring, for any 1 < ¢ < j < k, V; UVj induces a subgraph of G' that
is acyclic.

Now let s;; = [V;| + [V;] for all 1 <i < j < k. We then have 37, ;i< 8i,; = (k — 1)V, because
each |V;| appears k — 1 times in this sum. However, there are A = @ terms s; ; in this sum.

Thus, there exists a pair (ig,jo) such that s, j, > W, that is such that s;, j, > % Let
Vo = Vi, UV, ; in that case, V — V4 is a FVS and its cardinality is less than or equal to NV — %,

that is to £2N. O

Note that there exists an infinite number of cases for which this bound is tight, see Section 3.5.



We also have a simple lower bound for |V (G)|.

Lemma 2 For any non trivial graph G, |V (G)| > a(G) — 2.

Proof : Let V(G) be a feedback vertex set of G. We define the following coloring : each vertex of
V(G) is assigned a different color. The remaining vertices of V\V(G) (which induce a forest) are
colored by 2 new colors. This coloring is clearly proper and acyclic, and thus a(G) < |[V(G)| + 2.
O

We note that the bound given in Lemma 2 is also tight, see the MFVS cardinality of complete
graphs or complete k-partite graphs (cf. Tables 1 and 2).

Caragiannis et al. [9] proved a general lower bound for the MFVS cardinality of graphs of
maximum degree r. Their result, that we will use several times in the rest of this paper, is the
following.

Lemma 3 [9] Any feedback vertex set V(G) in a graph G = (V,E) with mazimum degree r
satisfies : |[V(G)| > W

3 Applications

Formally, the MFVS cardinality of a family F of graphs is defined as the maximum cardinality
of a MFVS over all the graphs that belong to F. Let V(F) denote this value. Using the result
of Lemma 1, it is now possible to exploit already known results about acyclic coloring in several
families of graphs, and incorporate them in Lemma 1 to get upper bounds results. Moreover,
using several different techniques, we will also prove lower bound results. Namely, we define by
lower bound on the MFVS cardinality of F any lower bound for V (F).

In some cases, those lower and upper bounds coincide, up to a small additive constant (outer-
planar graphs, k-trees), showing that Lemma 1 is tight ; in other cases, our lower bounds do not
meet the upper bound, but they differ by a multiplicative constant ¢ never exceeding 2. Most of
the time, ¢ will be strictly less than 2.

3.1 Graphs of Maximum degree 3
Theorem 1 [13] For any graph G with mazimum degree 3, a(G) < 4.

Applying Lemma 1 to the above result immediately gives the following proposition.

Proposition 2 (MFVS in Graphs of Maximum Degree 3 - Upper bound) For any graph
G of mazimum degree 3 and order N, |V(G)| < &.

Proposition 3 (MFVS in Graphs of Maximum Degree 3 - Lower bound) For any inte-
ger N > 3, there exists a graph G of mazimum degree 8 and of order N, such that |V (G)| = L%J

Proof : Let N =3p+ ¢, 0 < ¢ < 2. In that case, construct a cycle of length 2p + ¢, Cy44, With
vertices 1, us, - . ., Usptq- Now add a vertex v; for every 1 <4 < p, and the edges (v;,u2;_1) and
(vi,u2;). The new graph G is clearly of maximum degree 3. Moreover, |V (G)| > p because there
are p edge disjoint K3 in G (those induced by vertices ua;—1, u2; and v; (1 <14 < p)). We have in
fact |[V(G)| = p because removing vertex ug;_1, 1 < i < p and their incident edges will result in a
forest, that is an acyclic graph. O



3.2 Graphs of Maximum degree 4

Theorem 4 [8](also independently shown by Kostochka) For any graph G with mazimum degree
4, a(G) < 5.

Applying Lemma 1 to this result immediately gives the following proposition.

Proposition 5 (MFVS in Graphs of Maximum Degree 4 - Upper bound) For any graph
G of mazimum degree 4 and of order N, |V (G)| < %

Proposition 6 (MFVS in Graphs of Maximum Degree 4 - Lower bound_) For any inte-
ger N > 4, there exists a graph G of mazimum degree 4 and of order N, such that |V (G)| > 2- L%J .

Proof : We will use 2 different “basic” graphs, that we will arrange together to form graphs G
of maximum degree 4 and order IV, that satisfy the given inequality. Those two basic graphs are
the complete graphs K3 and K4. We note that for any n > 3, |[V(K,)| = n — 2 (indeed, deleting
a vertex in K, and its incident edges yields K,—_1, which is acyclic iff n — 1 = 2). In particular,
|[V(K4)| =2 and |V(K3)| = 1.

Suppose now that N = 4p. In this case, construct G by taking p copies of K4 (call them the
K,;, 1 <i < p), and connect one vertex of K4, to a vertex of K411 by an edge e;, for every
1 <i < p-—1,in such a way that the resulting graph remains of maximum degree 4 (this is always
possible : it suffices that any vertex in K4 ; be involved in at most one connection to another Ky j,
j € {i —1,i+ 1}). The resulting graph G is of order N = 4p, and clearly we have |V (G)| > 2p,
because no edge e; participates in a cycle in G, and for every Ky ;, two vertices at least must be
removed in order to get an acyclic graph. When N = 4p+ 1 (resp. N = 4p + 2) add one
(resp. two) pendent edge(s) to G. In that case, |V (G)| > 2p. Finally, when N = 4p + 3, we take
a copy of K3 that we add to the original “chain of K4” by connecting any vertex v of G such that
deg(v) = 3 to any vertex of K3. In that case, [V(K3)| = 1, and thus one more vertex is to be
removed in order to get an acyclic graph. Thus |V (G)| > 2p+ 1. Globally, this gives the result. O

3.3 Planar Graphs

Borodin [3] has shown that for any planar graph G, a(G) < 5. He also showed an example of
a planar graph for which acyclic coloring needs 5 colors (cf. graph G5 of Figure 1), thus obtaining
optimality, and showing that if P denotes the family of planar graphs, then a(P) = 5. Combining
this deep result with the one of Lemma 1, we get the following proposition.

Proposition 7 (MFVS in Planar Graphs - Upper bound) For any planar graph G of or-
der N, |V(G)| < X,

We are also able to show a lower bound of |[V(G)| > |4 | for planar graphs of arbitrary order
N, thus showing that the multiplicative ratio between the upper and lower bound is equal to 1.2.
This is the purpose of the following proposition.

Proposition 8 (MFVS in Planar Graphs - Lower bound) For any integer N > 3, there
exists a planar graph G of order N, such that |V (G)| > L%J

Proof : We will use 4 different “basic” graphs, that we will arrange together to form graphs G
of greater order N, that satisfy |V(G)| > |5 ]. We will first detail the arguments for 4 basic
graphs : they are respectively K3, K4, and the graphs G; and G2 of Figure 1. As seen in proof of
Proposition 6, in the cases n = 3 and n = 4, we have respectively |V (K3)| = 1 and |V (K4)| = 2.
We also note that K3 and K, are both planar. We now consider G;. It is planar of order 5, and
|V (G1)| = 2. Indeed, removing one of the 5 vertices is not sufficient to get an acyclic graph, while
removing both vertices v; and u is. Finally, let us consider G2, planar and of order 6. We have
|V (G2)| = 3. It has been shown that a(G) = 5 [3]. Thus we have |V (G2)| > 3 by Lemma 2, and

actually we have |V (G2)| = 3 by Lemma 1.
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Figure 1: Graphs G; and G»

Now that we have determined the cardinality of a MFVS for our 4 basic graphs, we will use
these graphs to construct graphs G of arbitrary order N > 3 such that |V(G)| > L%J For this,
we distinguish four cases :

e N =4p, p> 1. As in proof of Proposition 6, we construct G by taking p copies of K, (call
them the K4, 1 < i < p), and we connect one vertex of K, ; to a vertex of K4 ;11 by an
edge e;, for every 1 < ¢ < p— 1. Here, we do it in such a way that the resulting graph
remains planar (which is always possible). The resulting graph G is of order N = 4p, and
for the same reasons as in proof of Proposition 6, we have |V (G)| > 2p.

e N =4p+ 1. Do the same, taking p — 1 copies of K4 and a copy of G1. We then see that
V()| >2p-1)+2

e N = 4p+ 2. Do the same, taking p — 1 copies of K4 and a copy of G2. We then see that
V(G| >2p-1)+3.

e N = 4p + 3. Do the same, taking p copies of K4 and a copy of K3. We then see that
V(G)| >2p+1.

In all the cases, we have shown that it is possible to find a planar graph G of arbitrary order
N > 2 such that [V(G)| > |4 ], which proves the above proposition. |

For any graph G, the girth of G, denoted by g, is the minimum chordless cycle in G. In [5],
the authors have proved the following theorem.

Theorem 9 [5] For any planar graph G with girth g :

(9a) If g > 5, then a(G) < 4.
(9b) If g > 7, then a(G) < 3.

Using the above result and the one of Lemma 1, we get the following result.

Proposition 10 (MFVS in Planar Graphs with girth g - Upper bound) For any planar
graph G of order N and girth g :

(100) g > 5, then [7(G)| < &.
(10b) If g > 17, then |V(G)| < &.

Similarly, we are able to derive lower bounds for the size of a MFVS in a graph G of arbitrary
order N, G belonging to the family of planar graphs with girth at least 5 (resp. with girth at least
7). This is the purpose of Propositions 11 and 12 below.

Proposition 11 (MFVS in Planar Graphs of Girth > 5 - Lower bound) For any integer
N > 20, there exists a planar graph G of girth 5 and of order N such that |V (G)| > 35 — 2.



Proof : Starting from the dodecahedron graph H of Figure 2, we will construct a graph G’
satisfying the above property. In order to prove this, we will use an argument similar to the one
of Proof of Proposition 8. H is planar and of girth 5. Moreover, it has 20 vertices, 30 edges and is
of maximum degree 3, thus by Lemma 3, we have |V (H)| > % In other words, |V (H)| > 6, and
it can be seen that the equality holds.

We will also use 3 other graphs for our construction : the cycle of length 5, Cs, and graphs
G5 and G§ of Figure 3(left and middle). Those three graphs are planar and of girth 5 and, by
Lemma 3, it is easy to check that [V (Cs)| =1, |V(Gs)| > 3 and |V(G5)| > 2.

Now, for any N = 20p+ ¢, p > 1 and 0 < ¢ < 19, construct a chain of p copies of H, to
which we add : 1) a path of order ¢ if 0 < ¢ < 4 ; 2) a copy of Cs plus a path of order ¢ — 5 if
5 < ¢ <73 3) graph G} of Figure 3(middle) plus a path of order ¢ — 8 if 8 < ¢ < 11 ; 4) graph G5
of Figure 3(left) plus a path of order ¢ — 12 if 12 < ¢ < 16 ; 5) graph G5 of Figure 3(left) plus a
copy of Cy plus a path of order ¢ — 17 if 17 < ¢ < 19. Call the resulting graph G'.

Clearly, G’ can be constructed in such a way that it is planar. Moreover, it is of girth 5, and
it can be seen that :

o V(@) > FL if0< g <4;

o V(G >3840 4 1if5<q<T;
o V(G| > 321 4 2if8 < g <11
o V(G| >0 +3if12<¢<16;
o V(G >389 4 4if17 < g < 19.

In all the cases, it can be seen that |V (G")| > 38 — 2. O

Figure 2: The dodecahedron graph H

D

Figure 3: Graphs G5, G and G7



Proposition 12 (MFVS in Planar Graphs of Girth > 7 - Lower bound) For any integer
N > 12, there ezists a planar graph G of girth 7 and of order N such that |V (G)| > & — 1.

Proof : Similarly to Proof of Proposition 11, using graph G7 of Figure 3(right) as our “basic
graph”. G7 has 12 vertices, 14 edges, and is of maximum degree 3, thus by Lemma 3, we have
[V(G7)| > 3. In other words, |V(G7)| > 2, and it can be seen that the equality holds. Now, for
any N =12p+q, p > 1 and 0 < q < 11, construct a chain of p copies of G7, to which we add
either a chain with ¢ vertices if 0 < ¢ < 6, or a cycle of order q otherwise. Call the resulting graph
G'.

Clearly, G' is planar, of girth 7, and it can be seen that :

o V(@) > 5Lif0<q<6;

o V(G >N +1if7<g<1L

In all the cases, we see that [V(G")| > & — 1. i

3.4 Outerplanar Graphs and 1-Planar Graphs

An outerplanar graph G is a graph that can be drawn on the plane in such a way that it is
planar and all its vertices are lying on one face. The following is a well-known result, that can be
found for instance in [18].

Theorem 13 For any outerplanar graph G, a(G) < 3.

By application of Lemma 1 on the above result, we get the following proposition.

Proposition 14 (MFVS in Outerplanar Graphs - Upper bound) For any outerplanar graph
G of order N, |V(G)| < &.

Moreover, it is possible to show that the general lower bound given in Proposition 14 above is
tight.

Proposition 15 (MFVS in Outerplanar Graphs - Lower bound) For any integer N > 3,
there exists an outerplanar graph G of order N, such that |V (G)| = L%J

Proof: Consider the graph constructed in proof of Proposition 3. This graph is also an outerplanar
graph, thus we can conclude directly that [V(G)| = | & |. O

A graph G is said to be 1-planar if it can be drawn in the plane in such a way that every edge
crosses at most one other edge. We have the following result, proved in [4].

Theorem 16 [4] For any I-planar graph G, a(G) < 20.

By application of Lemma 1 on the above results, we get the following proposition.

Proposition 17 (MFVS in 1-Planar Graphs - Upper bound) For any I-planar graph G of
order N, [V(G)| < 2.

Proposition 18 (MFVS in 1-Planar Graphs - Lower bound) For any arbitrary N > 8,
there exists a 1-planar graph G of order N such that |V (G)| > % - 2.

Proof : Consider the hypercube of dimension 3, H3, to which all the diagonals have been added.
Call this graph H'. H' is 1-planar (cf. Figure 4), and has been shown to satisfy a(H;) = 7 [4], and
thus [V(H')| < 5 by Lemma 1. However, |V (H')| > 5 by Lemma 2. Thus |V (H')| = 5. Now, for
any N>8 N =8p+q (p>1and 0<q<7), we take p copies of H' (call them Hi, H;...H,),
and connect exactly one vertex of H; to a vertex of H;, ;, 1 <i < p—1. There remains g vertices



to add to this graph : if 1 < g < 6, then take a copy of K, and connect any of its vertices to
a vertex of H, (it is easy to see that K, is 1-planar when 1 < g < 6). If ¢ = 7, take a copy of
K¢ and connect it as described above, and add a new vertex connected by a pendent edge to the
construction. Call this new graph G. It can be easily seen that for any N > 8, G is 1-planar.
Moreover, for each copy of H' it contains, the cardinality of a MFVS must be increased by 5.
Finally, the ¢ “last” vertices we have added will increase the cardinality of a MFVS by q — 2 if
3<q¢<6,andg—3ifg="1.

Globally, we have |V (G)| > 5p + f(g), where f(q) = 0if 0

<g<2 flgg =¢-2if3<qg<6
and f(q) =4 if ¢ =7. In all the cases, we can see that |V (G)| > 2 N

- 2. O

Figure 4: Graph H' is 1-planar

3.5 k-Trees
We recall the definition of a k-tree [6] :

(a) A clique with k-vertices is a k-tree.

(b) f T = (V,E) is a k-tree and C is a clique of T with k vertices and z ¢ V, then T' =
(VU{z},EU{(c,z) : c € C}) is a k-tree.

It is well-known that 1-trees are trees, and that outerplnar graphs are partial 2-trees. We now
prove the following simple observation.

Observation 1 For any k-tree Gy, of order N > k+ 1, a(Gy) =k + 1.

Proof : By definition of a k-tree G, we know that at least k+ 1 colors are necessary to acyclically
color any Gy, of order N > k + 1, since in that case K41 is a subgraph of G. Moreover, we can
show that a(Gy) < k + 1 for any k > 1 using the following coloring : first, color the vertices of
K, with k pairwise different colors. Each time a new vertex is added (with edges (u,u;), where
ui, 1 <4 < k are vertices of a complete graph K}), use the only color among 1,2...%k + 1 that
is not used by any of the u;. This coloring is clearly proper (no two neighbors are assigned the
same color), and it is also acyclic. Indeed, no bicolored cycle can go through u, because for any
pair up, uq of neighbors of u, u, and u, are assigned pairwise different colors. This shows that for
any k-tree G, a(Gy) < k + 1. Altogether, we then get the result. O

By the above observation anf by appliaction of Lemma 1, we get the following result.

Proposition 19 (MFVS in k-Trees - Upper bound) For any k-tree Gy, of order N,
[V(Gr)| < & T L.N.

Remark 1 We note that in the very special case where k = 1, the result is optimal since I-trees
are trees, and thus |V (G1)| = 0.



Proposition 20 (MFVS in k-Trees - Lower bound) For any arbitrary k > 2 and N > k+1,

there ezists a k-tree Gy, of order N, such that |V (G},)| > L;} -N —2.

Proof: Forany k >2and any N > k+1,let N=p-(k+1)+¢, wherep>1and 0 < ¢ < k. We
will construct the k-tree Gy, using the following method : start by a copy of the complete graph
Kpy1, and call its vertices ug,us,. .. ug+1. Now, for every k + 2 < ¢ < N, connect vertex u; with
all vertices u;_1,U;_2,...uj—k. An example of this construction is shown in Figure 5 in the case
k =3 and N = 10. This construction clearly gives a k-tree, because one can see (by induction)
that for any k+ 2 < i < N, the graph induced by vertices u;_1,u;—2, ... u;—k is isomorphic to the
complete graph Kj,.

1 u3 u5s u7 u9

G3

ud ué us ulo
u2

Figure 5: The 3-tree G5 of order N = 10

In order to prove that [V (Gy)| > ;- N —2, it suffices to note that for any integer 0 <1 < p—1,
the set of vertices Vi = {uy(r41)41,Wi(kt1)42, - - - U(i41)(k+1) }, induces a graph that is isomorphic
to the complete graph K. However, we know that for any m > 2, |V(K,)| = m — 2 .
Thus, for any set V;, 0 < I < p — 1, it is necessary to remove at least k — 1 vertices in G},
in order to get an acyclic graph. However, if ¢ > 3, this is not sufficient. Indeed, let V' =
{up(k+1)+1,up(k+1)+2, .. .up(k+1)+q}. The graph induced by the vertices of V' is also isomorphic
to a complete graph, more precisely to K,. Thus it is necessary to remove also ¢ — 2 vertices to
G in order to get an acyclic graph. We then distinguish two cases :

e ¢€{0,1,2}. In thait case, |V (Gy)| > (k—1)-p. However, N =p-(k+1) +gq, thus p = %
and consequently |V (Gy,)| > &=L. N — ﬁ—jr} -q, which satisfies the inequality of Proposition 20
since kK > 2 and 0 < ¢ < 2.

e 3< ¢ <k. In that case, |V(G)| > (k—1)-p+ (¢ —2). Since N = p- (k + 1) + ¢, we then
get |V(Gg)| > Iler;i -N + % — 2. However, since 3 < ¢ < k, it can be seen that k%fl —2is
always greater than or equal to -2.

In all the cases, we have shown that for any &k > 2 and N > k + 1, there exists a G, for which
we have |V (Gy)| > ﬁﬁ -N —2. O
Remark 2 We note that in the case k = 2, it is possible to refine this lower bound (more precisely
the additive constant between the lower and upper bound is no more than 1). Indeed, the construc-
tion of G2 in proof of Proposition 20 above in the case k = 2 yields a graph with N vertices, 2N — 3
edges and of mazimum degree 4. Using the lower bound of Lemma 3, we then get |V (G2)| > %

4 Conclusion

In this paper, our main contribution is to make an interesting connection between the acyclic
chromatic number of a graph G and the cardinality of its MFVS. This connection shows that graphs
“live” on a special region of the 2-D space <acyclic chromatic number, MFVS cardinality>. This
region delimited by Lemmas 1 and 2 is shown to be optimal since we have graph families on the
borders (outerplanar graphs and k-trees for the upper border, complete k-partite graphs for the
lower one).

We then have exploited already known deep results on the acyclic coloring of large families



of graphs to get new and good approximations on the MFVS cardinality for graphs belonging to
large families, such as graphs of maximum degree 3, of maximum degree 4, planar graphs, planar
graphs with given girth, 1-planar graphs, showing that the acyclic coloring approach gives fruitful
results for the MFVS problem. We note that, conversely, getting relevant results concerning the
acyclic chromatic number from known MFVS cardinality results remains an open question (the
only result being Lemma 2).

Tables 1 and 2 summarize the results presented here, as well some other results that we have
referred to in this paper (i.e. complete graphs, complete k-partite graphs). The numbers that
appear between parentheses refer to results coming from this paper. The ones that appear between
brackets are citations from which those results come from. In Table 1, the numbers displayed in
the column “Ratio” give the multiplicative ratio that exists between the lower and upper bounds
for the MFVS cardinality. When this ratio is equal to 1 (thus leading to an optimal result), it is
given in bold characters.

MFVS Cardinality Ratio
Family F V| Lower Bound | Upper Bound
Complete graphs Ky N N -2 1
Complete k-partite Ele n; Zle n; — max(n;) — 1 1
graphs Kn11n27---nk

Maximum Degree 3 N 2 (Prop. 3) T (Prop. 2) 1.5

Maximum Degree 4 N 2- L%J (Prop. 6) %(Prop. 5) 1.2
Planar N | 5[ (Prop. 8) 3N (Prop. 7) 1.2

Planar with girth = 5,6 N 3N — 2 (Prop. 11) X (Prop. 10a) 1.67
Planar with girth > 7 N & —1 (Prop. 12) & (Prop. 10b) 2

1-Planar Graphs N 3N — 2 (Prop. 18) 5% (Prop. 17) 1.44
Outerplanar Graphs N | Z] (Prop. 14 and 15) 1
2-Trees N>3 T=2 (Rem. 2) & (Prop. 19) 1
k-Trees, k > 3 N>k+1 | #55-N -2 (Prop. 20) | 451 - N (Prop. 19) 1

Table 1: MFVS cardinality of some families F of graphs

Acyclic Chromatic Number
Family F V] Lower Bound | Upper Bound
Complete graphs Ky N N
Complete k-partite graphs Kp, n,,..n. Zf:l n; Zle n; — max(n;) + 1

Maximum Degree 3 N 413]
Maximum Degree 4 N 5(8
Planar N 53
Planar with girth = 5,6 N 4[5
Planar with girth > 7 N 35

1-Planar Graphs N 7[4] | 20[4]
Outerplanar Graphs N 3[18]
2-Trees N>3 3 (Obs. 1)
k-Trees, k > 3 N>k+1 k+1 (Obs. 1)

Table 2: Acyclic chromatic number of some families F of graphs
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