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, that the stable set polytopes of almost all webs with clique number ≥ 5 admit non-rank facets. This adds support to the belief that these graphs are indeed the core of Ben Rebea's conjecture. Finally, we present a conjecture how to construct all facets of the stable set polytopes of webs.

Introduction

Graphs with circular symmetry of their maximum cliques and stable sets are called webs: a web W k n is a graph with vertices 1, . . . , n where ij is an edge if i and j differ by at most k (mod n) and i = j. The webs W k 9 on nine vertices are depicted in Figure 1. Notice that webs are also called circulant graphs C k n in [START_REF]On the Strong Perfect Graph Conjecture[END_REF] and that similar graphs W (n, k) were introduced in [START_REF] Trotter | A Class of Facet Producing Graphs for Vertex Packing Polyhedra[END_REF]. Webs and line graphs belong to the classes of quasi-line graphs and claw-free graphs and are relevant w.r.t. describing the stable set polytopes of those larger graph classes [START_REF] Galluccio | The Rank Facets of the Stable Set Polytope for Claw-Free Graphs[END_REF][START_REF] Giles | On Stable Set Polyhedra for K 1,3 -free Graphs[END_REF]12]. (The line graph of a graph H is obtained by taking the edges of H as nodes and connecting two nodes iff the corresponding edges of H are incident. A graph is quasi-line (resp. claw-free) if the neighborhood of any node can be partitioned into two cliques (resp. does not contain any stable set of size 3).)

The stable set polytope STAB(G) of G is defined as the convex hull of the incidence vectors of all stable sets of the graph G. In order to describe STAB(G) by means of facetdefining inequalities, the "trivial" facets x i ≥ 0 for all vertices i of G and the clique constraints

i∈Q x i ≤ 1
for all cliques Q ⊆ G are necessary. These two types of facets are sufficient to describe STAB(G) for perfect graphs G only [START_REF]On Certain Polytopes Associated with Graphs[END_REF]. That are precisely the graphs without odd holes W 1 2k+1 and odd antiholes W k-1 2k+1 as induced subgraphs. A natural way to generalize clique constraints is to investigate rank constraints, that are 0/1-constraints of the form i∈G x i ≤ α(G ) associated with arbitrary induced subgraphs G ⊆ G where α(G ) denotes the cardinality of a maximum stable set in G (note α(G ) = 1 holds iff G is a clique). A graph is rankperfect if all non-trivial facets of its stable set polytope are rank constraints. The class of rank-perfect graphs contains all perfect graphs [START_REF]On Certain Polytopes Associated with Graphs[END_REF], odd holes and odd antiholes [START_REF] Padberg | Perfect Zero-One Matrices[END_REF], line graphs [START_REF] Edmonds | Facets of 1-Matching Polyhedra[END_REF], and the complements of webs [START_REF] Wagler | Antiwebs are rank-perfect[END_REF].

A characterization of the rank facets in stable set polytopes of claw-free graphs was given by Galluccio and Sassano [START_REF] Galluccio | The Rank Facets of the Stable Set Polytope for Claw-Free Graphs[END_REF]. They showed that all rank facets can be constructed by means of standard operations from rank constraints associated with cliques, certain webs, and special line graphs. Finding all facets of their stable set polytopes is a long-standing problem (Grötschel, Lovász and Schrijver [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF]), as claw-free graphs are not rank-perfect: Giles and Trotter [START_REF] Giles | On Stable Set Polyhedra for K 1,3 -free Graphs[END_REF], Oriolo [12], and Liebling et al. [START_REF] Liebling | On Non-Rank Facets of the Stable Set Polytope of Claw-Free Graphs and Circulant Graphs[END_REF] found non-rank facets which occur even in the stable set polytopes of quasi-line graphs.

A famous conjecture due to Ben Rebea (see [12]) claims that the stable set polytopes of quasi-line graphs admit only one type of non-trivial facets, so-called clique family inequalities. Let G = (V, E) be a graph, F be a family of (at least three inclusion-wise) maximal cliques of G, p ≤ |F| be an integer, and define two sets as follows:

I(F, p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| ≥ p} O(F, p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| = p -1}
The clique family inequality (F, p) is

(p -r) i∈I(F ,p) x i + (p -r -1) i∈O(F ,p) x i ≤ (p -r) |F| p (1) 
with r = |F| mod p and r > 0.

Oriolo [12] verified Ben Rebea's conjecture for line graphs and webs W 2 n (note: the latter graphs are rank-perfect due to [START_REF] Dahl | Stable Set Polytopes for a Class of Circulant Graphs[END_REF]). Chudnovsky and Seymour introduced recently the class of so-called fuzzy circular interval graphs and verified the conjecture for all quasi-line graphs which are not fuzzy circular interval graphs.

Let C be a circle and I = {I 1 , . . . , I m } be a collection of intervals

I k = [l k , r k ] in C s.t.
no interval in I is properly contained in another one and no two intervals in I share an endpoint. Moreover, let V = {v 1 , . . . , v n } be a finite multiset of points in C (i.e. v i ∈ C may occur in V with a multiplicity > 1). The fuzzy circular interval graph G(V, I) = (V, E 1 ∪ E 2 ) has node set V and edge set E 1 ∪ E 2 where (i.e., different endpoints of one interval are not necessarily joined by an edge).

Chudnovsky and Seymour recently proved that nonnegativity constraints, clique constraints, and rank constraints coming from clique family inequalities (F, 2) with |F| odd are the only necessary inequalities to describe stable set polytopes of quasi-line graphs which are not fuzzy circular interval graphs.

Webs are obviously quasi-line graphs as well as fuzzy circular interval graphs; the problem of describing their stable set polytopes is still open. So far, it is only known that webs W1 n are as holes perfect or rank-perfect [START_REF]On Certain Polytopes Associated with Graphs[END_REF][START_REF] Padberg | Perfect Zero-One Matrices[END_REF]; the webs W 2 n are rank-perfect by Dahl [START_REF] Dahl | Stable Set Polytopes for a Class of Circulant Graphs[END_REF]. On the other hand, Kind [START_REF] Kind | Mobilitätsmodelle für zellulare Mobilfunknetze: Produktformen und Blockierung[END_REF] found (by means of the PORTA software [START_REF] Liebling | On Non-Rank Facets of the Stable Set Polytope of Claw-Free Graphs and Circulant Graphs[END_REF], and Pêcher and Wagler [START_REF] Pêcher | On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four[END_REF][START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF] presented further examples of such webs.

In this paper we prove, with the help of a construction for non-rank facets from [START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF], that there are only finitely many rank-perfect webs W k n for all k ≥ 4. Together with a result from [START_REF] Pêcher | On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four[END_REF] showing the same for the case k = 3 we obtain that, for any k ≥ 3, almost all webs W k n are not rank-perfect. This adds support to the belief that webs as subclass of fuzzy circular interval graphs are the core of Ben Rebea's conjecture.

The paper is organized as follows: the next section describes as our main results the construction of infinite sequences of not rank-perfect webs and discusses consequences. The three following sections are devoted to the proofs of the three main theorems. We close with a conjecture which clique family inequalities give rise to facets in the stable set polytopes of webs.

Main results

For proving that almost all webs are not rank-perfect, we make use of a construction for non-rank facets from [START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF], introduced in the sequel. For that, we need the notion of proper weak non-rank facets. A facet a T x ≤ cα(G ) of STAB(G) is a weak rank facet w.r.t. G ⊆ G, if a i = c for every vertex i of G and if G is rank facet-producing (i.e., i∈V (G ) x i ≤ α(G ) defines a facet of STAB(G )); any rank facet is a particular weak rank facet (with a i = c = 1 for every i ∈ V (G ) and a i = 0 otherwise). A weak rank facet is proper if G is not a clique and non-rank if it cannot be scaled to have 0/1-coefficients only (i.e., it is not a rank-constraint). Theorem 1. [START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF] 

(k + 1 -r) i∈I(Q,k +1) x i + (k -r) i∈O(Q,k +1) x i ≤ (k + 1 -r) α(W k n ) (2) 
where r = n mod (k + 1), 0 < r < k 2). 

+
x i + 1 i ∈W 2 10 x i ≤ 2α(W 2 10 )
due to r = |Q| mod p = 1 and yields a non-rank facet of STAB(W 5 25 ). The main results of this paper prove that several clique family inequalities (Q, k + 1) associated with different regular subwebs W k n induce proper weak non-rank facets (note

that (Q, k + 1) is a proper weak non-rank constraint if r < k ). A subweb W k n ⊂ W k n is called (b 1 , w 1 , . . . , b t , w t )-regular, if the vertices of W k n occur in W k n in equal blocks where b i consecutive vertices from W k
n alternate with w i consecutive vertices outside W k n , for 1 ≤ i ≤ t. The two subwebs W 2 10 ⊆ W 5 25 presented in Figure 2 show a (2,3)-regular and a (1,1,1,2)-regular subweb, resp. In Section 3, we show the following:

Theorem 3. For any k ≥ 5, consider a (k , k -k )-regular subweb W k lk ⊂ W k lk with 2 ≤ k ≤ k -3 and odd l ≥ 3. The clique family inequality 2 i∈W k lk x i + 1 i / ∈W k lk x i ≤ 2α(W k lk ) (3) associated with W k lk is a proper weak non-rank facet of STAB(W k lk ) if l = 2 (mod k +1) and α(W k lk ) < α(W k lk ).
As a consequence, we obtain many different infinite sequences of not rank-perfect webs, among them the required base sets for all even values of k ≥ 6 (but not for the odd values k ≥ 5 since all webs in the latter sequences have an odd number of vertices). For any even k ≥ 6, mod 4) and l = (k + 3) + (k + 1)2j for j ≥ 1 in both cases as odd values of l with l = 2 (mod k + 1) satisfies the precondition of Theorem 3. Thus, we obtain the following infinite sequences of not rank-perfect webs: Theorem 4. Let k ≥ 6 be even. Then for every integer j ≥ 1 holds

choosing k = k 2 if k = 0 (mod 4) and k = k 2 -1 if k = 2 (
-STAB W k ( k+6 2 +(k+2)j)k
has a proper weak non-rank facet if k = 0 (mod 4);

-STAB W k ( k+4 2 +kj)k has a proper weak non-rank facet if k = 2 (mod 4).
That means for, e.g., k = 6 that there is an infinite sequence W 

k + 6 2 + (k + 2)j k = - k + 6 2 -j (mod k + 1)
and k + 4 2 + kj k = - k + 4 2 + j (mod k + 1)
thus, the sequences contain the required base sets. Furthermore, if k ≥ 6 then

k + 6 2 + (k + 2)(k + 1) k < 2(k + 1) 3
follows and Theorem 4 and Corollary 1 imply together:

Corollary 2. For any even k ≥ 6, all webs W k n with n ≥ 2(k + 1) 3 are not rank-perfect.

It remains to construct the required base sets for k = 4 and all odd values of k ≥ 5. The case k = 4 is treated in Section 4 by constructing sequences of clique family inequalities associated with regular subwebs W 2 l ⊂ W 4 2l :

Theorem 5. The clique family inequality(Q, 3) For each odd k ≥ 5, we extend the result for k = 3 from [START_REF] Pêcher | On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four[END_REF] by considering the clique family inequality associated with the (k -1, 1)-regular subweb W k-1 l(k-1) ⊂ W k lk :

2 i∈W 2 l x i + 1 i ∈W 2 l x i ≤ 2 α(W 2 l ) (4 
Theorem 6. The clique family inequality (Q, k)

2 i∈W k-1 l(k-1) x i + 1 i ∈W k-1 l(k-1) x i ≤ 2 α(W k-1 l(k-1) ) (5)
associated with a (k -1, 1)-regular subweb W k-1 l(k-1) is a proper weak non-rank facet of STAB(W k lk ) for any odd k ≥ 5 if l = 3k + 2. The sequence of the k + 1 webs W k l k+2 with 3 ≤ k ≤ 3 + k webs is the required base set for any odd k ≥ 5, as

k(l k + 2) mod (k + 1) = (l -2) mod (k + 1)
Thus, Theorem 6 and Corollary 1 imply together:

Corollary 3. W k n with n ≥ ((k + 3)k + 1)
k is not rank-perfect for any odd k ≥ 5. In summary, all the above results show:

Corollary 4. A web W k n is not rank-perfect if -k = 3 and n ≥ 57, -k = 4 and n ≥ 46, -k ≥ 5 is odd and n ≥ ((3 + k)k + 1)k, -k ≥ 6 is even and n ≥ 2(k + 1) 3 .
Thus, for any k ≥ 3 there are only finitely many rank-perfect webs W k n implying: Corollary 5. Almost all webs with given clique size at least 4 are not rank-perfect.

The following three sections contain the proofs of the main results Theorem 3, Theorem 5, and Theorem 6.

Proof of Theorem 3

For any k ≥ 5, let W k lk be a (k , kk )-regular subweb of W k lk with 2 ≤ k ≤ k -3 and odd l ≥ 3. By assumption, we have l = 2 (mod k + 1) and α(W k lk ) < α(W k lk ). In order to prove Theorem 3, we have to establish that the inequality (3)

2 i∈W k lk x i + 1 i / ∈W k lk x i ≤ 2α(W k lk )
is valid and facet-inducing for STAB(W k lk ). Validity follows from Lemma 1: since l = 2 (mod k + 1), we have lk = -2 (mod k + 1) and therefore the remainder r of the division of lk by k + 1 is equal to k -1. Therefore the valid inequality (2) associated with the subweb

W k lk is 2 i∈I(Q,k +1) x i + i∈O(Q,k +1) x i ≤ 2 α(W k lk ) (6) 
where W k lk ⊆ I(F, p) holds. Therefore, inequality (3) is a valid inequality. To prove that inequality (3) is facet-inducing, we may define the set of vertices V of the (k , kk )-regular subweb W k lk w.l.o.g. as

V = 0≤j<l {k • j + 1, k • j + 2, . . . , k • j + k }
(where l ≥ 5 and l = 2 (mod k + 1))

For convenience, we call the vertices in V black vertices and all remaining vertices white vertices. A black set is a set of black vertices and likewise a white set is a set of white vertices.

The following lemma from [START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF] is essential for the proof. It provides a characterization when a valid inequality a T x ≤ b is a facet of the stable set polytope of a general graph G. For that we need the following notions. A root of a T x ≤ b is any stable set of G satisfying the inequality at equality. A pair i, j of vertices is a-critical in G if there are two roots S 1 and S 2 of a T x ≤ b such that {i} = S 1 \ S 2 and {j} = S 2 \ S 1 . A subset V of V (G) is a-connected if the graph with vertex set V and edge set {ij| i, j ∈ V , ij a-critical in G} is connected.

All matrices in this paper have rational entries (in fact integer entries). If M is any square matrix, then |M | stands for the determinant of M .

Lemma 2. [15] Let a T x ≤ b be a valid inequality for STAB(G) with b = 0. Consider a partition V 1 , . . . , V p of V (G) such that V i is a-connected for every 1 ≤ i ≤ p.
The inequality a T x ≤ b is facet-defining if and only if there are p roots S 1 , . . . , S p with

|S 1 ∩ V 1 | • • • |S 1 ∩ V p | . . . . . . |S p ∩ V 1 | • • • |S p ∩ V p | = 0
If the involved inequality a T x ≤ b is the full rank-constraint 1 T x ≤ α, we use the terms α-critical and α-connected instead of a-critical and a-connected respectively.

Notice that Chvátal [START_REF]On Certain Polytopes Associated with Graphs[END_REF] called α-critical edges simply "critical" and that Lemma 2 generalizes the well-known result of Chvátal [START_REF]On Certain Polytopes Associated with Graphs[END_REF] that a graph G is rank facet-producing if the set of its critical edges induces a conncted subgraph of G.

We now proceed to the proof that inequality (3) is facet-inducing, Claim. The black set V is a-connected w.r.t. the valid inequality (3).

Proof.

If lk = 0 (mod k + 1) then -l = 0 (mod k + 1) and therefore l = 0 (mod k + 1), in contradiction with l = 2 (mod k + 1), as k ≥ 2. Hence k + 1 is not a divisor of lk . Hence we have lk

= α(G[V ])(k + 1) + r with 1 ≤ r ≤ k . Let S 1 = {1, 2 + (k + 1), 2 + 2(k +1), . . . , 2+(α(G[V ])-1)(k +1)} and S 2 = {2, 2+(k +1), 2+2(k +1), . . . , 2+ (α(G[V ])-1)(k +1)}. Since 2+(α(G[V ])-1)(k +1) = 2+(lk -r)-(k +1) ≤ lk -k , S 1 and S 2 are both maximum stable sets of G[V ]. Hence, the edge {1, 2} of G[V ] is α-critical. By circular symmetry of G[V ], this implies that G[V ] is α-connected. Since α(G[V ]) = α , this implies that V is a-connected. 2 Claim. We have lk > (α -2)(k + 1) + 3k . Proof. Since l = 2 (mod k + 1), we have lk = k -1 (mod k + 1). Hence lk - α (k + 1) = k -1. It follows that lk -α (k + 1) > 3k -2(k + 1). Thus lk > (α -2)(k + 1) + 3k . 2 Claim. We obtain α(W k lk \ [1, 3k ]) ≥ α(W k lk ) -1.
Proof. By the previous Claim, the set

S := {3k + 1, 3k + (k + 1) + 1, . . . , 3k + (α - 2)(k + 1) + 1} is a stable set of size α -1 of W k lk \ [1, 3k
] and the result follows. 2

Claim. For every 0 ≤ i < l, the white set Proof. We are going to prove that V 1 is a-connected. By the previous Claim, there is a black stable set S of size α -

V i := ik + {k + 1, . . . , k} is a-connected. V 1 (a) k+q k 2k 3k S' V 1 (b) q+1 2k-1 2k S''
1 in G \ [k + 1, 4k]. For every k + k + 1 ≤ j ≤ 2k -1,
the set S j := S ∪ {3k, j} is obviously a root of (3), hence the edges {k + k + 1, k + k + 2}, . . . , {2k -2, 2k -1}, are a-critical (see Fig. 3(a)).

It remains to show that the edge {2k -1, 2k} is a-critical. By the previous Claim again, there exists a black stable set S of size α -

1 in G \ [k -k + 1, 3k]. The set S 1 := S ∪ {k + 1} ∪ {2k -1} is a root as k + 1 + k < 2k -1 (since k ≤ k -3). The set S 2 := S ∪ {k + 1} ∪ {2k} is also a root (see Fig. 3(b)). Hence {2k -1, 2k} is a-critical and, therefore, V 1 is a-connected.
Likewise, the sets V 0 , V 2 . . . , V l-1 are a-connected. 2

Claim. For every 0 ≤ i < l there exists a stable set S i such that S i meets V in exactly α -1 vertices, V i in exactly one vertex, and V i+1 in also exactly one vertex.

Proof. For every 0 ≤ i < l, there exists a black stable set S i of size α -1 in G \ [ik + 1, (i + 3)k]. Let S i be the stable set S i ∪ {ik + k + 1} ∪ {(i + 1)k + k + 2}. Then S 0 , . . . , S l-1 give the result. 2 Let S be a maximum stable set of G[V ].

Hence we have

|S ∩ V | |S ∩ V 0 | • • • |S ∩ V l-1 | |S 0 ∩ V | |S 0 ∩ V 0 | • • • |S 0 ∩ V l-1 | . . . . . . . . . |S l-1 ∩ V | |S l-1 ∩ V 0 | • • • |S l-1 ∩ V l-1 | = α 0 • • • 0 α -1 . . . C α -1
where C is the (2, l)-circulant matrix with top row (1, 1, 0, . . . , 0) of size l. The matrix C is invertible as l is odd. Hence the above determinant is non-zero.

Therefore, the proof of Theorem 3 is done due to Lemma 2.

Proof of Theorem 5

In order to obtain an infinite sequence of not rank-perfect webs W 4 n we consider, for any even n = 2l, the (1,1)-regular subweb W 2 l ⊂ W 4 2l . In the remaining part of this section, let V = {1, . . . , 2l} denote the vertex set of W 4 2l and

V o = {1, 3, . . . , 2l -1} V e = {2, 4, . . . , 2l} denote the subsets of vertices with odd resp. even index in V . Then both sets V o and V e induce a subweb W 2 l of W 4 2l , see Figure 4(a). 

Q, 3) associated with W 2 l = W 4 2l [V o ] is, therefore, (3-r) 
i∈Vo

x i + (2-r) i∈Ve x i ≤ (3-r) α(W 2 l )
and it is a non-rank constraint if r = 1. Hence, (Q, 3) corresponds to the studied inequality (4) if l = 1 (mod 3). We prove that it is a facet for all l ∈ {13, 16, 19, . . .}.

For that, we have to present 2l roots of (4) whose incidence vectors are linearly independent. (Recall that a root of (4) is a stable set of W 4 2l satisfying (4) at equality.) It follows from [START_REF] Trotter | A Class of Facet Producing Graphs for Vertex Packing Polyhedra[END_REF] that a web W k n produces the full rank facet i∈W k n

x i ≤ α(W k n ) if and only if (k + 1) | n. Thus W 2
l is facet-producing as l = 1 (mod 3) and the maximum stable sets of W 2 l yield, therefore, already l independent roots of (4). We need a set S of further l roots of (4) admitting vertices from V o as well as from V e , called mixed roots, and are independent, too.

We construct, for all l ≥ 13 with l = 1 (mod 3), a set S of l mixed roots S of size

α o + 1 with |S ∩ V o | = α o -1 and |S ∩ V e | = 2 where α o = α(W 2 l ) = l 3 (notice that 2(α o -1) + 2 = 2α o
according to the coefficients of ( 4)).

For that, we use the following representation of stable sets S ⊆ W 4 2l of size α o + 1: choose a start vertex i ∈ S and the distance vector D = (d 1 , . . . , d αo+1 ) containing the distances between two consecutive vertices of S, i.e.,

S = S(i, D) = {i, i + d 1 , (i + d 1 ) + d 2 , . . . , (i + j<αo d j ) + d αo } where j≤αo+1 d j = 2l (i.e. i = i + j≤αo+1 d j mod 2l) and d j > k = 4 for 1 ≤ j ≤ α o + 1 (ensuring that S is a stable set in W 4 2l
). Claim. Let D = (d 1 , . . . , d αo+1 ) be a distance vector such that D has 4 entries d j equal to 5 and α o -3 entries d j equal to 6. Then S(i, D) is a stable set of W 4 2l for every vertex i for all l = 1 mod 3.

Proof. We have to show that dj ∈D d j = 2l holds. Recalling α o = l 3 and l = 1 (mod 3), we obtain and show that they produce the studied mixed roots of (4).

5 • 4 + 6(α o -3) = 2 + 6α o = 2 + 6 l 3 = 2 + 6 l -1 3 = 2 + 2(l -1) = 2l
Claim. For every i ∈ V e , S(i, D Hence, each set S(i, D 1 ) and S(i, D 2 ) with i ∈ V e is a mixed root of (4). We now have to choose a set S of l distinct mixed roots of (4) with linearly independent incidence vectors.

Assume that S is such a set and denote by A S the square matrix containing the incidence vectors of l linearly independent maximum stable sets of W 2 l = W 4 2l [V o ] as first l rows and the incidence vectors of the l mixed roots in S as last l rows. Order the columns of A S s.t. the first (resp. last) l columns correspond to the vertices in V o (resp. V e ), both in increasing order. Then A S has the block structure

A S = A 11 0 A 21 A 22
where the l×l-matrix A 11 is invertible since W 2 l is facet-producing by [START_REF] Trotter | A Class of Facet Producing Graphs for Vertex Packing Polyhedra[END_REF] (in the considered case with l = 1 (mod 3)).

In the sequel, we provide a set S of l distinct mixed roots s.t. A 22 (i.e. the intersection of the mixed roots with V e ) is an invertible l×l-matrix (then A S is invertible due to its block structure).

Claim. For every l ≥ 13, there is a set S of l mixed roots of (4) containing precisely 2 vertices of V e s.t. the l×l-submatrix A 22 of A S is invertible. Proof. For any i ∈ V e , both S(i, D 1 ) and S(i, D 2 ) are roots of (4) by the previous claim.

Chose S(i, D 1 ) with i ∈ {2, 4, . . . , 2l -10} as the first l -5 roots in S and S(i, D 2 ) with i ∈ {2l -24, 2l -22, . . . , 2l -16} as the last 5 roots in S. We have S(i, D 1 ) ∩ V e = {i, i + 10} and S(i, D 2 ) ∩ V e = {i, i + 16} by the previous claim. Take the incidence vectors χ S(i,D1) for i ∈ {2, 4, . . . , 2l-10} as the first l-5 rows and χ S(i,D2) for i ∈ {2l -24, . . . , 2l -16} as the last 5 rows of (A 21 |A 22 ). By construction, A 22 is the l×l-matrix shown in Figure 6 (0-entries are dropped and the columns represent the vertices in V e ).

A 22 has only 1-entries on the main diagonal (coming from the first vertices in V e of S(i, D 1 ) for i ∈ {2, 4, . . . , 2l -10} and from the second vertices in V e of S(i, D 2 ) for i ∈ {2l -24, . . . , 2l -16}). The only non-zero entries of A 22 below the main diagonal come from the first vertices in V e of S(i, D 2 ) for i ∈ {2l -24, . . . , 2l -16}. Hence, A 22 has the form

A 22 =
A 22 0 A 22 where both matrices A 22 and A 22 are invertible due to the following reasons. A 22 is an (l -13)×(l -13)-matrix having 1-entries on the main diagonal and 0-entries below the main diagonal by construction; hence A 22 is clearly invertible. A 22 is the (2,13)-circulant matrix and, therefore, clearly invertible as well. (Note that l = 13 implies A 22 = A 22 .)

This completes the proof that A 22 is invertible for every l ≥ 13 with l = 1 (mod 3) if we choose the set S of l roots of (4) as constructed above. 2 Remark. Note that there are no mixed roots of (4) in the case l = 7 (since α(W 2 7 ) = 2 = α(W 4 14 ) implies that we cannot built stable sets of size > α(W 2 7 ) in W 4 14 ). In the case l = 10, there are only 5 mixed roots of size > α(W 2 10 ), namely S(i, D 1 ) with i ∈ {2, 4, 6, 8, 10} because of S(i, D 1 ) = S(i + 10, D 1 ); the sets S(i, D 2 ) can be constructed only if l ≥ 13. Hence, ( 4) is neither a facet of STAB(W 4 14 ) nor of STAB(W 2 20 ). Moreover, in the case l = 13, we would obtain the same set S by choosing the roots S(i, D 1 ) with i ∈ {2l -8, . . . , 2l} instead of S(i, D 2 ) with i ∈ {2l -24, . . . , 2l -16}.

Hence, we have shown that, for every l ≥ 13 with l = 1 (mod 3), there are 2l roots of (4) whose incidence vectors are linearly independent, completeing the proof of Theorem 5.

Proof of Theorem 6

The aim of this section is to prove that the clique family inequality(Q, k) associated with any (k -1, 1)-regular subweb W k-1 l(k-1) induces the facet (5) of STAB(W k lk ) for every odd k ≥ 5 whenever l ≥ 3k + 2.

For that, let l = l k + 2 with l ≥ 3 and n = lk = l k 2 + 2k. Denote the set of vertices of W k n by V = {1, . . . , n} and the subset of all vertices i ∈ V with i | k by V , i.e., let V = V \ {k, 2k, . . . , lk} be the vertex set of W k-1 l(k-1) . Then

Q = {Q i : i ∈ V } obviously implies I(Q, k) = V . As α(W k-1 l(k-1) ) = (k -1)l k = l -l - 2 k = l -l -1 = l (k -1) + 1
holds, the clique family inequality (Q, k) reads

2 i∈V x i + i∈V \V x i ≤ 2l (k -1) + 2
and is supposed to define a facet of STAB(W k lk ) for any odd k ≥ 5 if l = l k + 2 and l ≥ 3. In order to verify that we have to present lk roots, i.e., stable sets satisfying (Q, k) at equality, whose incidence vectors are linearly independent.

The maximum stable sets of W k-1 l(k-1) are independent by Trotter [START_REF] Trotter | A Class of Facet Producing Graphs for Vertex Packing Polyhedra[END_REF] as k | l(k -1) by l = 2 (mod k) and k odd.

This provides us already l(k -1) independent roots of (Q, k) containing vertices from V only. We are going to build l further mixed roots containing vertices from V as well as from V \V such that their incidence vectors are linearly independent, too.

For any vertex i ∈ V \V , denote by D i = {i, i + 1, . . . , i + k -1} resp. B i = {i, i+1, . . . , i+k 2 -1} the subset of V consisting of k resp. k 2 consecutive vertices starting in vertex i (with arithmetics performed modulo n). Furthermore, define S(B i ) ⊂ B i by

S(B i ) = {i + 1 + j(k + 1) : 0 ≤ j ≤ k -2}
as the black vertices in Figure 7 (the squares stand for nodes in V \V ). By construction, S(B i ) is obviously a stable set of W k lk consisting of nodes from V only. To build the mixed roots, we are going to use two types of partitions of V = {1, . . . , n} into 2 subsets D j of size k and l subsets B i of size k 2 (recall that n = 2k + l k 2 holds). We pick the first vertex from each subset D j and S(B i ) from the involved subsets B i and show that the so constructed vertex sets form roots of (Q, k).

For every 1 ≤ i ≤ l, the vertex ki belongs to V \V and

D ki ∪ B k(i+1) ∪ D k(i+1+k) ∪ j=1,...,l -1 B k(i+2+jk)
forms a partition of V = {1, . . . , n}, as

k(i + 2 + (l -1)k) + k 2 -1 = ki -1 (mod n) holds. Let S ki = {ki} ∪ S(B k(i+1) ) ∪ {k(i + 1 + k)} ∪ j=1,...,l -1 S(B k(i+2+jk) )
be the set consisting of the first vertices from D ki and D k(i+1+k) and the stable sets S(B j ) for the involved subsets B j . Furthermore, for every

1 ≤ i ≤ l, D ki ∪ j=0,...,l -3 B k(i+1+jk) ∪ D k(i+1+(l -2)k) ∪ B k(i+2+(l -2)k) ∪ B k(i+2+(l -1)k)
forms a second type of partition of V = {1, . . . , n}, as k

(i+2+(l -2)k)+k 2 -1 = ki-1 (mod n). Let S ki = {ki} ∪ j=0,...,l -3 S(B k(i+1+jk) ) ∪ {k(i + 1 + (l -2)k)} ∪ j=l -2,l -1 S(B k(i+2+jk) )
be the corresponding set consisting of the first vertices from D ki and D k(i+1+(l -2)k) and the stable sets S(B j ) for the involved subsets B j . (Note that S ki = S ki iff l = 3). We call ki the start vertex of S ki resp. of S ki .

Claim. The sets S ki and S ki are mixed roots of (Q, k) for 1 ≤ i ≤ l.

Proof. By construction, we have ki, k(i + 1 + k) ∈ S ki and ki, k(i + 1 + (l -2)k) ∈ S ki (these vertices belong obviously to V \ V ). The remaining vertices of S ki and S ki come from the sets S(B j ) for each of the l subsets B j . Since S(B j ) contains only k -1 vertices from V by construction, we obtain

|S ki ∩ V | = |S ki ∩ V | = l (k -1) and |S ki \ V | = |S ki \ V | = 2.
Thus S ki as well as S ki satisfy (Q, k) at equality for every 1 ≤ i ≤ l.

It is left to show that S ki and S ki are stable. For that, recall first that S(B j ) is a stable set for any j. Second, the last k vertices of B j do not belong to S(B j ) by construction (see Figure 7), thus B j can be followed by any subset without introducing adjacencies in S ki or S ki . Finally, consider a subset D kj followed by B k(j+1) . By construction, the last k -1 vertices of D kj as well as the first vertex of B k(j+1) do not belong to S ki or S ki , thus no adjacencies are introduced again.

This implies that S ki and S ki are stable sets satisfying (Q, k) at equality. 2

We are now prepared to select a set of lk independent roots of (Q, k):

Claim. There are lk roots of (Q, k) whose incidence vectors are linearly independent: the l(k -1) maximum stable sets of W k-1 l(k-1) and the l stable sets S ki for 1 ≤ i ≤ l -(k + 1) resp. S ki for lk ≤ i ≤ l.

Proof. The maximum stable sets of W k-1 l(k-1) are linearly independent as mentioned above. Moreover, they contain only vertices from V whereas the stable sets S ki and S ki contain vertices from V as well as vertices from V \ V . Thus, we are done if we can show that the incidence vectors of S ki for 1 ≤ i ≤ l -(k + 1) and S ki for lk ≤ i ≤ l are linearly independent.

We construct an (l×lk)-matrix M having the incidence vectors of S k , . . . , S k(l-(k+1)) as first l -(k + 1) rows and the incidence vectors of S k(l-k) , . . . , S kl as last k + 1 rows. We show that the (l × l)-submatrix M of M containing all columns corresponding to the vertices in V \ V is invertible. For that, choose an ordering of the columns of M s.t. the first l columns correspond to the vertices k, . . . , lk in V \ V and the remaining l(k -1) columns correspond to the vertices in V (see Figure 5).

Each row of M has a 1-entry on the main diagonal (since ki is the start vertex of S ki as well as of S ki by construction), thus we have to discuss the second 1-entries of the rows coming from the vertices k(i + 1 + k) ∈ S ki resp. k(i + 1 + (l -2)k) ∈ S ki (see Figure 5).

Let l = l -(3k + 1) (we have l ≥ 1 since l = l k + 2 and l ≥ 3). We show that kl is the first column with a 1-entry below the main diagonal, namely in the row corresponding to S k(l-k) .

For our construction, we used clique family inequalities associated with certain subwebs yielding 1/2-valued facets; the construction from [START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF] does not change the involved coefficients and, therefore, the stable set polytopes of almost all webs admit 1/2-valued facets.

According to Ben Rebea's Conjecture [12], the stable set polytopes of quasi-line graphs (and therefore of webs) have clique family inequalities as only non-trivial facets. However, clique family inequalities constitute a large class of valid inequalities; even verifying Ben Rebea's Conjecture would provide no information about which inequalities are essential among them. The following conjecture addresses this problem for the subclass of webs. ). All non-rank facets known so far for webs are of type (iii). Note that a web W k n usually has subwebs W k n for all values 1 ≤ k < k. Hence, we expect that the stable set polytope of W k n admits (k -2)/(k -1)-valued facets. The conjecture implies in particular, that the stable set polytopes of all webs W 3 n have 1/2-valued facets only, where for all webs W k n with k > 3 larger coefficients are required. In fact, Liebling et al. [START_REF] Liebling | On Non-Rank Facets of the Stable Set Polytope of Claw-Free Graphs and Circulant Graphs[END_REF] proved recently that, for any odd k ≥ 5, the stable set polytope of W k k 2 has an (k -2)/(k -1)-valued facet. Hence, further effort is needed for having a complete description of stable set polytope of webs (and for the larger class of fuzzy circular interval graphs).
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 2 We define two different distance vectors with α o + 1 entries each by D 1 = (5, 5, 5, 6, . . . , 6, 5) D 2 = (5, 6, 5, 5, 6, . . . ,[START_REF] Edmonds | Facets of 1-Matching Polyhedra[END_REF][START_REF] Dahl | Stable Set Polytopes for a Class of Circulant Graphs[END_REF] 
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 25 Fig. 5. The mixed roots S(i, D 1 ) and S(i, D 2 )
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 7 Fig. 7. The stable set S(B i ) ⊂ B i in the case k = 5

Conjecture 1 .

 1 Every facet of STAB(W k n ) belongs to one of the following classes: (0) nonnegativity constraints, (i) clique constraints, (ii) full rank constraint, (iii) clique family inequalities (Q, k +1) associated with proper subwebs W k n where (k + 1) | n and α(W k n ) < α(W k n

  Thus, Theorem 2 and Corollary 1 imply that all webs W 3 n with n > 56 are not rankperfect. The aim of this paper is to provide such a set W k n0 , . . . , W k n k of not rank-perfect webs for each value k ≥ 4. For that, we consider special clique family inequalities giving rise to proper weak non-rank facets. A clique family inequality (Q, p) is associated with a proper subweb W k n of a web W k n if Q = {Q i : i ∈ W k n } is chosen as clique family and p = k + 1, where Q i = {i, . . . , i + k} denotes the maximum clique of W k n starting in vertex i. Note that the clique number of a web W k n is k + 1 and the stability number is

	n k+1 .
	Lemma 1. [14] Let W k n ⊂ W k n be a proper induced subweb. The clique family inequality (Q, k + 1) associated with W k n
	If STAB(W k n ) possesses a proper weak non-rank facet then also n+k+1 ) has a proper weak non-rank facet. STAB(W k
	Therefore, if STAB(W k n ) has a proper weak non-rank facet then all webs W k n+l(k+1) (l ≥ 0) are not rank-perfect, too. Hence Theorem 1 implies the following corollary:
	Corollary 1. [15] If there are k + 1 webs W k n0 , . . . , W k n k such that
	-STAB(W k ni ) has a proper weak non-rank facet -n i = i (mod k + 1) for 0 ≤ i ≤ k then all webs W k n with n ≥ max{n 0 , . . . , n k } -k are not rank-perfect.
	For k = 3, such a set W 3 33 , W 3 42 , W 3 51 , W 3 60 is presented in [14], as consequence of the following theorem.
	Theorem 2. [14] If l = 2 (mod 3) and l ≥ 11 then STAB(W 3 3l ) has a proper weak non-rank facet.

  1 ) (resp. S(i, D 2 )) contains precisely the 2 vertices i, i+10 (resp. i, i + 16) from V e and α o -1 vertices from V o .Proof. By the choice of D 1 and D 2 and the previous claim, both stable sets have size α o +1 and start with a vertex in V e (due to i ∈ V e ). The parity of the distances d j in D 1 and D 2 implies that the third vertex i + 10 of S(i, D 1 ) and the fourth vertex i + 16 of S(i, D 2 ) is in V e again, whereas all remaining α o -1 vertices belong to V o (see Figure5, vertices in V

e (resp. V o ) are drawn in white (resp. black)). 2
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The first l -(k + 1) rows of M do not have any 1-entry below the main diagonal, since the second vertex of S kj in V \ V is k(j + 1 + k) and k(j + 1 + k) ≤ kl holds due to j ≤ l -(k + 1). (In fact, the row corresponding to S k(l-(k+1)) has its 1-entries in the columns k(l -(k + 1)) and kl.)

Consider now the row lk corresponding to S k(l-k) . We have

Hence the row given by S k(l-k) has indeed a 1-entry at column kl.

The matrix M is invertible, if its (3k + 2) × (3k + 2)-submatrix M consisting of the colums kl, . . . , kl of the rows corresponding to S kl , . . . , S k(l-(k+1)) , S k(l-k) , . . . , S kl is invertible (since the previous part of M has 0-entries below the main diagonal only).

We complete the proof of this claim by showing that M is a (3k + 2, 2)-circulant matrix: The 1-entries below the main diagonal start in column kl, as seen above, and end in the last row in column k(l -(2k + 1)) since

holds as l = l k+2, whereas the 1-entries above the main diagonal start in column k(l-2k) due to

and end with kl in the row corresponding to S k(l-(k+1)) as shown above. This implies that M is a (3k +2, 2)-circulant matrix and, therefore, invertible as k is odd by our hypothesis. This complets the proof that the choosen stable sets are lk independent roots of (Q, k). 2

Hence (Q, k) is, for any odd k ≥ 5, a proper weak non-rank facet (5) of STAB(W k kl ) if l ≥ 3k + 2 completing the proof of Theorem 6.

Concluding remarks and open problems

In this paper, we presented infinite sequences of not rank-perfect webs W k n for k = 4 (Theorem 5), all even k ≥ 6 (Theorem 4), and all odd k ≥ 5 (Theorem 6). Before, the case k = 3 was settled in [START_REF] Pêcher | On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four[END_REF]. Applying the construction from [START_REF] Pêcher | A construction for non-rank facets of stable set polytopes of webs[END_REF] yields that there are only finitely many rank-perfect webs W k n for all values of k ≥ 3 (Corollary 4), implying that almost all webs with fixed clique number at least 4 are not rank-perfect (Corollary 5).