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Abstract

Clique family inequalities a
∑

v∈W xv + (a − 1)
∑

v∈W ′ xv ≤ aδ form
an intriguing class of valid inequalities for the stable set polytopes
of all graphs. We prove firstly that their Chvátal-rank is at most a,
which provides an alternative proof for the validity of clique family in-
equalities, involving only standard rounding arguments. Secondly, we
strengthen the upper bound further and discuss consequences regard-
ing the Chvátal-rank of subclasses of claw-free graphs.

For any polyhedron P , let P I denote the convex hull of all integer points in
P . Chvátal [4] (and implicitly Gomory [9]) introduced a method to obtain
approximations of P I outgoing from P as follows. If

∑

aixi ≤ b is valid for
P and has integer coefficients only, then

∑

aixi ≤ ⌊b⌋ is a Chvátal-Gomory
cut for P . Define P ′ to be the set of points satisfying all Chvátal-Gomory
cuts for P , and let P 0 = P and P t+1 = (P t)′ for non-negative integers t.
Obviously P I ⊆ P t ⊆ P for every t. An inequality

∑

aixi ≤ b is said to
have Chvátal-rank at most t if it is a valid inequality for the polytope P t.
Chvátal showed in [4] that for each polyhedron P there exists a finite t ≥ 0
with P t = P I ; the smallest such t is the Chvátal-rank of P .

The fractional matching polytope is a famous example of a polytope
with Chvátal-rank one [4]. In this note, we consider the Chvátal-rank of
the fractional stable set polytope P = QSTAB(G). In particular, P I is the
stable set polytope STAB(G).
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The stable set polytope STAB(G) of a graph G is defined as the convex
hull of the incidence vectors of all its stable sets (in a stable set all nodes are
mutually nonadjacent). A canonical relaxation of STAB(G) is the fractional

stable set polytope QSTAB(G) given by all “trivial” facets, the nonnegativity
constraints xv ≥ 0 for all nodes v of G, and by the clique constraints
∑

v∈Q xv ≤ 1 for all cliques Q ⊆ G (in a clique all nodes are mutually

adjacent). Clearly, STAB(G) ⊆ QSTAB(G) and STAB(G)=QSTAB(G)I

holds for all graphs G. We say that a graph class G has Chvátal-rank t if t
is the minimum value such that QSTAB(G)t = STAB(G) for all G ∈ G. We
have STAB(G) = QSTAB(G) if and only if G is perfect [5], that is perfect
graphs form exactly the class of graphs with Chvátal-rank zero.

To describe the stable set polytopes of imperfect graphs, we consider
two natural generalizations of clique constraints: 0/1-constraints associated
with arbitrary induced subgraphs, and a/(a-1)-valued constraints associated
with families of cliques. Rank constraints are 0/1-inequalities

∑

v∈G′

xv ≤ α(G′)

associated with induced subgraphs G′ ⊆ G where α(G′) denotes the cardi-
nality of a maximum stable set in G′. Clique family inequalities (Q, p)

a
∑

v∈Vp

xv + (a − 1)
∑

v∈Vp−1

xv ≤ aδ (1)

rely on the intersection of cliques within a family Q, where Vp (resp. Vp−1)
contains all nodes belonging to at least p (resp. exactly p− 1) cliques in Q,

and a = p − r with r = |Q| mod p and δ = ⌊ |Q|
p
⌋ holds.

Both types of inequalities are valid for the stable set polytopes of all
graphs: rank constraints by the choice of the right hand side, and clique
family inequalities by [1, 11].

It is known from [6] that the Chvátal-rank of rank constraints of a graph

with n nodes is Ω((n/ log n)
1

2 ) and from [7] that the split rank of clique
family inequalities is one, that is, clique family inequalities are simple split
cuts (split cuts were studied in [2]).

The aim of this note is to establish min{r, p − r} as upper bound of the
Chvátal-rank for general clique family inequalities. We close with remarks
regarding Chvátal-ranks of quasi-line graphs (where the neighbors of any
node split into two cliques), as their stable set polytopes are completely
described by nonnegativity, clique, and clique family inequalities [7].
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The Chvátal-rank of clique family inequalities. The following ob-
servation will be crucial for the proofs: summing up the clique inequalities
corresponding to the cliques in Q and possibly adding nonnegativity con-
straints −xv ≤ 0 for those nodes v ∈ Vp which are contained in more than p
cliques, we obtain that

p
∑

v∈Vp

xv + (p − 1)
∑

v∈Vp−1

xv ≤ p

⌊

|Q|

p

⌋

+ r (2)

is valid for QSTAB(G).

Theorem 1 Let (Q, p) be a clique family inequality and let r = |Q| (mod p).
For every 1 ≤ i ≤ p − r, the inequality h(i)

i
∑

v∈Vp

xv + (i − 1)
∑

v∈Vp−1

xv ≤ i

⌊

|Q|

p

⌋

has Chvátal-rank at most i and, thus, (Q, p) has Chvátal-rank at most p− r.

Proof: For every 1 ≤ i ≤ p− r, let H(i) be the assertion : ”The inequality
h(i) has Chvátal-rank at most i.” The proof is performed by induction on i:

H(1) is true: Inequality (2) implies that
∑

v∈Vp
xv ≤ |Q|

p
is valid for

QSTAB(G), hence
∑

v∈Vp
xv ≤

⌊

|Q|
p

⌋

has Chvátal-rank 1, as required.

Induction step: assume that H(i) is true and i < p − r. To prove that
H(i + 1) holds, we show that h(i + 1) is a Chvátal-Gomory cut from h(i)
and Inequality (2). Therefore, we have to find a pair of solutions (λ, µ) to
the following system of equations:

λi + µp = i + 1

λ(i − 1) + µ(p − 1) = i
⌊

λi

⌊

|Q|

p

⌋

+ µ

(

p

⌊

|Q|

p

⌋

+ r

)⌋

= (i + 1)

⌊

|Q|

p

⌋

Indeed, λ = p−i−1
p−i

, µ = 1
p−i

are solutions, as
⌊

λi
⌊

|Q|
p

⌋

+ µ
(

p
⌊

|Q|
p

⌋

+ r
)⌋

=
⌊

(λi + µp)
⌊

|Q|
p

⌋

+ r
p−i

⌋

= (i + 1)
⌊

|Q|
p

⌋

, since 0 ≤ r/(p − i) < 1. ✷

Note that the proof of Theorem 1 yields an alternative proof for the
validity of clique family inequalities for the stable set polytope of any graph,
involving only standard rounding arguments.
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Furthermore, we obtain that every rank clique family inequality has
Chvátal-rank one. This is particularly nice, as neither general rank con-
straints nor general clique family inequalities have this property [6, 11], but
the combination of both.

However, the upper bound established in Theorem 1 gets weaker if r gets
smaller; we therefore improve the upper bound for r < p/2.

Theorem 2 Every clique family inequality (Q, p) with r = |Q| (mod p) has

Chvátal-rank at most r if 0 ≤ r < p − r.

Proof: For every 0 ≤ i ≤ r, let G(i) be the assertion : ”The inequality

g(i): (p − i)
∑

v∈Vp
xv + (p − i − 1)

∑

v∈Vp−1
xv ≤ (p − i)

⌊

|Q|
p

⌋

+ r − i has

Chvátal-rank at most i.” The proof is performed by induction on i:
G(0) is true due to Inequality (2).
Induction step: assume that G(i) is true and i < r. To prove that

G(i+1) holds, we show that g(i+1) is a Chvátal-Gomory cut from g(i) and
h(i). Therefore, we have to find a pair of solutions (λ, µ) to the following
system of equations:

λ(p − i) + µi = p − i − 1

λ(p − i − 1) + µ(i − 1) = p − i − 2
⌊

λ

[

(p − i)

⌊

|Q|

p

⌋

+ r − i

]

+ µi

⌊

|Q|

p

⌋⌋

= (p − i − 1)

⌊

|Q|

p

⌋

+ r − i − 1

Indeed, λ = p−2i−1
p−2i

, µ = 1
p−2i

are solutions as
⌊

λ
[

(p − i)
⌊

|Q|
p

⌋

+ r − i
]

+

µi
⌊

|Q|
p

⌋⌋

=
⌊

(λ(p − i) + µi)
⌊

|Q|
p

⌋

+ λ(r − i)
⌋

=
⌊

(p − i − 1)
⌊

|Q|
p

⌋

+

r − i − 1 + p−i−r
p−2i

⌋

= (p − i − 1)
⌊

|Q|
p

⌋

+ r − i − 1 since 0 ≤ p−i−r
p−2i

< 1. ✷

Thus, Theorem 1 and Theorem 2 together imply:

Corollary 3 Every clique family inequality (Q, p) has Chvátal-rank at most

min{r, p−r} where r = |Q| (mod p). In particular, a clique family inequality

(Q, p) has Chvátal-rank at most p
2 .

Consequences for quasi-line graphs. We now discuss consequences of
the above results for quasi-line graphs, as all non-trivial, non-clique facets
of their stable set polytopes are clique family inequalities according to [7].

Calling a graph G rank-perfect if STAB(G) has rank constraints as only
non-trivial facets, Theorem 1 implies that rank-perfect subclasses of quasi-
line graphs have Chvátal-rank 1. This verifies Edmond’s conjecture that the
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Chvátal-rank of claw-free graphs is one for the class of semi-line graphs, as
they are rank-perfect [3].

A semi-line graph is a line graph or a quasi-line graph without a rep-
resentation as fuzzy circular interval graph. A line graph L(G) is obtained
by turning adjacent edges of a root graph G into adjacent nodes of L(G).
Fuzzy circular interval graphs are defined as follows. Let C be a circle, I a
collection of intervals in C without proper containments and common end-
points, and V a finite multiset of points in C. The fuzzy circular interval

graph G(V, I) has node set V and two nodes are adjacent if both belong
to one interval I ∈ I, where edges between different endpoints of the same
interval may be omitted.

As the only not rank-perfect quasi-line graphs are fuzzy circular interval,
it suffices to restrict to this class in order to discuss the Chvátal-rank for
quasi-line graphs. Giles and Trotter [8] exhibited a fuzzy circular interval
graph with a clique family Q of size 37 such that (Q, 8) induces a facet. Ori-
olo noticed in [11] that this clique family inequality (Q, 8) has Chvátal-rank
at least 2. This example disproves Edmonds’ conjecture for fuzzy circular
interval graphs. On the other hand, Theorem 1 shows that this clique family
inequality (Q, 8) has Chvátal-rank at most 3, since r = 5 and so p − r = 3.

Furthermore, Giles and Trotter [8] introduced a sequence of fuzzy cir-
cular interval graphs Gk for k ≥ 1 and showed that each of them admits a
clique family facet (Q, k +2) with |Q| = 2k(k +2)+1 and coefficients k and
k + 1; Theorem 2 ensures that these facets have Chvátal-rank 1 since r = 1
holds in all cases.

Webs W k
n are special fuzzy circular interval graphs with nodes 0, . . . , n−1

and edges ij iff min{|i − j|, n − |i − j|} < k. Liebling et al. [10] exhibited

a sequence of webs W
2(a+2)
(2a+3)2

for a ≥ 1, each with a (a + 1)/a-valued clique

family facet (Q, a + 2) with |Q| = (a + 2)(2a + 3). Since (a + 2)(2a + 3) = 1
(mod a + 2), Theorem 2 shows that also these facets have Chvátal-rank 1.

The authors conjectured in [12] and Stauffer proved in [13] that all non-
rank facets of webs W k

n are clique family inequalities (Q, k′ + 1) associated
with subwebs W k′

n′ ⊂ W k
n where the maximum cliques {i, . . . , i + k} of W k

n

starting in nodes i of the subweb W k′

n′ yield the clique family Q of size n′

where (k′ + 1)6 | n′ and k′ < k. Thus, for any fixed k, the Chvátal-rank
of all webs W k

n is at most k−1
2 . However, it is very likely that there exist

sequences of webs inducing clique family facets (Q, p) with arbitrarily high
p and 2p = |Q| having Chvátal-rank p

2 . Thus, also the Chvátal-rank of webs
and, therefore, of quasi-line graphs could be arbitrarily large, as for general
claw-free graphs [6].
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