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Partitionable graphs arising from
near-factorizations of finite groups

Arnaud Pécher

LaBRI, domaine universitaire, 351 cours de la Liberation, 33405 Talence, France

Abstract

In 1979, two constructions for making partitionable graphs were introduced in [9].

The graphs produced by the second construction are called CGPW graphs. A
near-factorization (A, B) of a finite group is roughly speaking a non-trivial factor-
ization of G minus one element into two subsets A and B. Every CGPW graph with
n vertices turns out to be a Cayley graph of the cyclic group Z,, with connection
set (A — A)\ {0}, for a near-factorization (A, B) of Z,. Since a counter-example to
the Strong Perfect Graph Conjecture would be a partitionable graph [14], any 'new’
construction for making partitionable graphs is of interest.

In this paper, we investigate the near-factorizations of finite groups in general,
and their associated Cayley graphs which are all partitionable. In particular we
show that near-factorizations of the dihedral groups produce every CGPW graph of
even order. We present some results about near-factorizations of finite groups which
imply that a finite abelian group with a near-factorization (A, B) such that |A| < 4
must be cyclic (already proved in [7]). One of these results may be used to speed up
exhaustive calculations. At last, we prove that there is no counter-example to the
Strong Perfect Graph Conjecture arising from near-factorizations of a finite abelian
group of even order.
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1 Introduction

In 1960, Claude Berge introduced the notion of perfect graphs: a graph is
perfect if for every induced subgraph H of it, the chromatic number of H does
not exceed the maximum number of pairwise adjacent vertices in H. A hole
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is a chordless cycle with at least four vertices. Berge conjectured that perfect
graphs are exactly the graphs with no induced odd holes and no induced
complement of an odd hole, or equivalently that minimal imperfect graphs are
odd holes and their complements. This conjecture is often called the Strong
Perfect Graph Conjecture and has motivated many works.

Lovasz [12] and Padberg [14] gave some properties of minimal imperfect graphs.
Following the paper of Bland, Huang and Trotter [3], a graph G is said to be
partitionable if there exist two integers p and ¢ such that G has pg+ 1 vertices
and for every vertex v of G, the induced subgraph G \ {v} admits a partition
in p cliques of cardinality ¢ and also admits a partition in ¢ stable sets of
cardinality p. Let w denote the maximum cardinality of a clique of G and «
denote the maximum cardinality of a stable set of G. Then it is clear that
p=aand ¢ = w.

With this definition, Lovész [12] and Padberg [14] proved that every minimal
imperfect graph is partitionable. Thus a counter-example to the Strong Perfect
Graph Conjecture would lie in the class of partitionable graphs. Hence an
approach to Berge’s conjecture is to prove that a given class of partitionable
graphs does not contain any minimal imperfect graph which is not an odd odd
hole or anti-hole.

In 1979, Chvatal, Graham, Perold and Whitesides introduced two construc-
tions for making partitionable graphs [9]. In 1996, Sebo proved that there is
no counter-example to the Strong Perfect Graph Conjecture in the first one
[16]. In 1984, Grinstead proved that there is no counter-example to the Strong
Perfect Graph Conjecture in the second one [11]. A wvariant of a partitionable
graph is a partitionable graph with the same vertices, the same maximum
cliques and the same maximum stable sets. In 1998, Bacso, Boros, Gurvich,
Maffray and Preissmann [1] extended Grinstead’s result to the wider class of
the variants of the second construction.

A graph with n vertices is circular if there exists a cyclic numbering of its
vertices (modulo n) such that, for every vertex z, for every maximum clique
C' and for every maximum stable set S, the set {(c+z) (modn) | c € C}
is a maximum clique and the set {(s +x) (modn) |s € S} is a maximum
stable set.

A normalized graph is a graph such that for every edge {i,j}, there exists a
maximum clique containing both ¢ and j.

A partitionable graph produced by the second construction due to Chvatal,
Graham, Perold and Whitesides is called a CGP W graph, where CGPW graph
is the abbreviation of Chvatal-Graham-Perold-Whitesides graph. Any CGPW
graph appears to be a circular normalized partitionable graph. The converse
is not established but Bacsé, Boros, Gurvich, Maffray and Preissmann conjec-



tured that it holds:

Conjecture 1 [1] Every circular normalized partitionable graph is a CGPW
graph.

We call it the circular partitionable graph conjecture.

In 1984, Grinstead claimed, through a computer check, that this conjecture
is true for graphs with a number of vertices at most fifty, or sixty-one [11].
In 1998, Bacsé, Boros, Gurvich, Maffray and Preissmann proved it for graphs
with size of maximum cliques et most 5 [1].

Let G be a finite group of order n with operation *. Two subsets A and B of
G of cardinality at least 2 are said to form a near-factorization of G if and
only if n = |A| x |B| + 1 and there is an element u(A, B) of G such that
Ax B = G\ {u(A,B)}. Let S be a symmetric subset of G which does not
contain the identity element e. The Cayley graph with connection set S is the
graph with vertex set G and edge set {{i,j}, i ' *j € S}. We denote by
Cay(G, S) this graph. Notice that the definitions of a Cayley graph given in
the literature may differ. The one we use in this paper is very close from the
definition given in the book ’Algebraic Graph Theory’ of Norman Biggs [2].
Since S is a symmetric set such that e ¢ S, the graph Cay(G, S) is a simple
graph without loops, as are all graphs in this paper.

Let I' be any circular normalized partitionable graph with n vertices. Let C
be a maximum clique of I' and let S be a maximum stable set of I'. Then it
is easy to see that (C,S) is a near-factorization of the group Z, and that I'
is the Cayley graph of the finite group Z, with connection set (C'— C) \ {0}.
The converse is true: if (A, B) is a near-factorization of Z, then the Cayley
graph with connection set (A — A)\ {0} is a circular normalized partitionable
graph [1].

Due to this equivalence, the second construction of Chvatal, Graham, Perold
and Whitesides had been first described by N.G. De Bruijn in 1956 [6], though
in a different context.

If (A, B) is a near-factorization of a finite group then the Cayley graph with
connection set (A~ % A) \ {e} is a normalized partitionable graph (Section
2). This observation has motivated this paper: the main aim is to produce
near-factorizations of some finite groups, so as giving rise to 'new’ partition-
able graphs. We give 'new’ near-factorizations for the dihedral groups but the
associated Cayley graphs turn out all to be CGPW graphs (Section 3). These
near-factorizations produce all CGPW graphs of even order. In Section 2,
we give several results about near-factorizations for finite groups in general,
which may be used to speed up exhaustive searches by computer. We give
tools to explain why many groups do not have any near-factorization at all.



We also prove that no Cayley graph associated to a near-factorization of an
abelian group of even order is a counter-example to the Strong Perfect Graph
Conjecture.

2 Near-factorizations of finite groups and partitionable graphs

A group is a non-empty set G with a closed associative binary operation x,
an identity element e, and an inverse a ! for every element a € G. If G has a
finite number of elements, then the cardinality of G is denoted by |G| and is
called the order of G'. To avoid a conflict of notation, we use the symbol x to
denote the standard multiplication between two integers. An abelian group is
a group G such that x is commutative, that is g * ¢’ = ¢’ x ¢ for all elements
g and ¢’ of G.

If X and Y are two subsets of G, we denote by X «Y the set {zxy, z € X, y €
Y'}. With a slight abuse of notation, if g is an element of G and X is subset
of G, we denote by ¢gX the set {g} * X and Xg the set X x {g}. Furthermore
| X'| is the cardinality of X, that is the number of elements of X. The subset
X is said to be symmetric if X = X~' where X~ is the set {z~!, z € X}.

Recall that two subsets A and B of cardinality at least 2 of a finite group G
of order n form a near-factorization of G if and only if n = |A| x |[B| 4+ 1 and
there is an element u(A, B) of G such that Ax B = G \ {u(4, B)}: u(A4, B)
is called the uncovered element of the near-factorization. Sometimes, we shall
write simply u instead of u(A, B). The condition about the cardinality of A
and B is required to avoid the trivial case A = G \ {u} and B = {e}. Notice
that every element x of G distinct from u may be written in a unique way as
x = a+*bwith a € A and b € B. Hence a near-factorization (A, B) may be
seen as a tiling of G \ {u(A, B)} with proto tile A.

The cyclic group of order n is the group which is generated by an element x of
order n. This group is denoted by Z,. For convenience, we use the following
representation of Z,: the elements of Z,, are the integers between 0 and n — 1
and the operation x is defined by =z xy = (z +y) (mod n). Due to this
definition of the operation of Z,, we denote this operation by 4+ rather than
*.

Example 2 Let Z13 be the cyclic group of order 13,
Let A ={0,1,2} and B ={0,3,6,9}.

Then A+0 = {0,1,2}, A+3 = {3,4,5}, A+6 = {6,7,8) and A +9 =
{9,10,11}. Thus A+ B = (713 \ {12}), that is (A, B) is a near-factorization



Of Zlg.

The following figure shows the tiling of Z3 \ {12} given by (A, B).
A=1{0,1,2} u=12
B =1{0,3,6,9}
n =13

A+0  A+3  A46 A+9

I N
e

01 23 45 6 7 8 9 101112

VAE
Figure 1. Example of a near-factorization of Zi3

Note that if A and B are seen as sets of integers and + denotes the usual
addition between integers, then A + B is a tiling of the segment [0, 11]. This
connection is somewhat detailed in page 12.

The dihedral group Dy, of even order 2 x n (with n > 3) is the non-abelian
group generated by two elements r and s such that:

e 7 is of order n.

e s is of order 2.

e sxr =1 lxg

The problem of characterizing the near-factorizations of the dihedral groups
is addressed in Section 3.

Let g1, ..., g, be the elements of the group GG with g; = e. If R is any subset of
G, we denote by M(R) the square n x n (0, 1)-matrix defined by M(R); ; = 1
if and only if g; € g;R.

Let I be the n x n identity matrix and J be the n x n matrix with all entries
equal to 1. Then De Caen, Gregory, Hughes and Kreher [7] observed that
(A, B) is a near-factorization of G with uncovered element e if and only if
M(AM(B) = J — 1.

Since M(A)M(B) = J — I implies that M(B)M(A) = J — I ([5]), we have
the following property:

Lemma 3 [7] Let G be a finite group and A, B be two subsets of G. Then
(A, B) is a near-factorization of G with u(A, B) = e if and only if (B, A) is a
near-factorization of G with u(B, A) = e.



The hypothesis u(A, B) = e is actually necessary: consider the dihedral group
D¢ of order 16. Let A = {e,r®,sr%} and B = {e, s, r, sr,sr"}. A small calcu-
lation shows that A x B = Dy \ {r’}. Thus (A, B) is a near-factorization of
Dy, though (B, A) is not one as s7° = e * s7° = s % 1°.

The graph G(A, B) associated with a near-factorization (A, B) is the Cayley
graph with connection set (A~ x A) \ {e}.

If T is a graph, we denote by w(I') the maximum cardinality of a clique of T
and «(I') the maximum cardinality of a stable set of I'. We denote by V(I)
the vertex set of I' and F(T") the edge set of T

The graph T" with vertex set V' is isomorphic to the graph T with vertex set
V" if there exists a bijective map f from V onto V' such that {7, j} is an edge
of T if and only if {f(7), f(j)} is an edge of T".

If ¢ is an edge of I' we denote by I" — €’ the subgraph of I' with vertex set
V(T') and edge set E(T") \ {e'}. Likewise, if €’ is a non-edge of I', we denote by
[ + €' the graph with vertex set V(I') and with edge set E(I') U {€¢'}. If v is
any vertex of I, we denote by '\ {v} the induced subgraph of T with vertex

set V(') \ {v} and edge set {{z,y} | {z,y} € V(I), 2 # v, y # v}.
A perfect matching in a graph with 2n vertices is a set of n node-disjoint edges.

Obviously, distinct near-factorizations of a given group may give rise to the
same graph. In particular, we may left-shift A and right-shift B without al-
tering the associated graph:

Lemma 4 Let © and y be two elements of G. Then (A, By) is a near-

factorization of G such that u(zA, By) = x * u(A, B) xy and G(zA, By) is
isomorphic to G(A, B).

PROOF. The proof is straightforward. O

We say that (A, By) is shift-isomorphic to (A, B).

Thus due to Lemma 4, we may always assume that the uncovered element is
e, without altering the associated graph.

In the case of abelian groups, De Caen, Gregory, Hughes and Kreher gave a
useful property of near-factorizations:

Lemma 5 [7] Let G be an abelian group and (A, B) be a near-factorization
of G. Then there exist two elements x and y of G such that v A is symmetric
and that By is symmetric.



An automorphism of G is a bijective map h of G onto itself such that h(z x
y) = h(z) = h(y) for all z and y of G. An inner-automorphism h of G is an
automorphism of GG such that there exists an element g of G which satisfies
h(z) = g+ x * g~' for all z of G.

Then we have this obvious Lemma:

Lemma 6 Let Cay(G,S) be a Cayley graph with connection set S of a group
G. Let h be any automorphism of G. Then the Cayley graph Cay(G,h(S)) is
isomorphic to Cay(G,S).

If y is any element of G, we denote by (y) the cyclic subgroup of G generated
by y. The order of y is the smallest integer & such that y* = e and is denoted
by o(y). An involution of G is an element of G of order 2. The center of G is
the set of all elements in G' which commute with every element of G.

Let H be any subgroup of G and (A, B) be a near-factorization of G with
uncovered element .

A right coset of H is any subset Hx with © € G. A left coset of H is any
subset x*H with x € G. The proof of Lagrange’s Theorem asserts that for any
subgroup H of G, there exists a unique partition of GG in right cosets of H.
Likewise there exists a unique partition in left cosets of H. A subgroup H of
G is normal if for every g of G, we have gH = Hg.

A right-tile of A is the trace of A onto a right-coset of H, that is the subset T’
is a right-tile of A if and only if there exists g in G such that T = AN Hg. A
left-tile of A is the trace of A onto a left-coset of H-

The unique partition of GG in right cosets of H induces a unique partition of A
in right-tiles: let {Hg,, ..., Hgq} be the partition of G in right-cosets, then
the set of right-tiles of Ais {ANHgy, ..., ANHgy}. If T is a right-tile of A
which is equal to a whole right-coset, then T is called a H-right-coset.

Let 7 be the partition of A in right-tiles induced by a given subgroup H.
Clearly {Th, T € 7, b € B} is a partition of G \ {u}. Hence, given the
subgroup H, a near-factorization (A, B) may be seen as a tiling of G \ {u}
with the right-tiles of A as tiles. Let K be any such tile and b be any element of
B. Notice that Kb lies entirely in a right-coset of H. Thus this tiling of G\ {u}
induces a tiling for every right-coset of H distinct from Hwu and induces a tiling
of (Hu)\ {u}. Let Hg be any right coset of H: we shall say that the right-tile
K is used to cover H g if there exists an element b of B such that Kb C Hg.
The trick of many proofs in this paper is to collect enough informations about
the tiling of every right-coset of H so as being able to get informations about
the near-factorization (A, B).



Example 7 Let (A, B) be the near-factorization of the dihedral group Dig
given by A = {e,r®, sr%} and B = {s,r, sr,r?, sr?}.

Let H := {e, s} be the cyclic subgroup of Dig generated by s. Then {H, Hr,
Hr? ... Hr"} is the partition of Dyg in right cosets of H. Hence A splits in
exactly two right-tiles Ty and Ty with

le{e}:AﬁH
Ty = {r® sr°} = AN HrP

The tile Ty is a H-right-coset. The set B has 5 elements, this implies that Ts
is used to cover 5 of the 8 right-cosets of H, namely the right-cosets Hr3, HrS,
Hr*, Hr" and Hr® because Hr3 = Tys, Hr® = Tor, Hr* = Tysr, Hr" = Tyr?
and Hr® = Tysr?.

The tile Ty is used exactly twice to cover the right-coset Hr as Hr = {r, sr} =
Tir UTysr. The tile T} is used ezactly twice to cover the right-coset Hr? as
Hr? = {r? sr?} = Tyr?UTysr?. The last time T} is used, it is to cover H\ {e}
as H\ {e} = {s} = Tis.

The following figure represents this tiling of the right-cosets of H.

Hr Tir Hr® f Ty sr?
2 6

Hr? Tir> Hrb g Tor
3 7

Hr? g T,s Hr? g Tyr?

The unique partition of G in left cosets of H also induces a unique partition
of A in left-tiles. If T" is a left-tile of A which is equal to a whole left-coset,
then T is called a H-left-coset.

When the uncovered element is e, we know that (B, A) is a near-factorization
of G too. Thus we get a tiling of G\ {e} with the left-tiles of A as tiles. Let K
be any such tile and b be any element of B. Notice that bK lies entirely in a
left-coset of H. Hence we have a tiling for every left-coset of H distinct from
He and a tiling of (He) \ {e}. Let gH be any left coset of H: we shall say that
the left-tile K is used to cover gH if there exists an element b of B such that
bK C gH.



Example 8 We consider again the near-factorization (A, B) of the dihedral
group Dig given by A = {e,r5 sr’} and B = {s,r,sr,r% sr?} and the cyclic
subgroup H of Dig generated by s.

As u(A, B) = e, we know that (B, A) is a near-factorization of Dyg too.

Notice that {H,rH,r?H, ... ,v"H} is the partition of Dy in left cosets of H.
Hence A splits in exactly three left-tiles Ty, Ty and Tz with

le{e}:HﬂA

T2 = {7’5} = T5HﬂA

T3 ={sr"} =r*HNA
Thus no left-tile of A is a left-coset. This means that the tiling induced by
(B, A) is actually different of the one induced by (A, B).

Let Hgy, Hgs, ..., Hgy be a partition of GG in right-cosets of H. Let X be any
subset of G. We define the integer dispy (X) as

dispy (X) :==|{i, 1<i<d, 0 C HpNX C Hg,}|

The counter dispy; (X) is the number of right-cosets of H which meet X and
are not a subset of X.

Let disp), (X) be the number of left-cosets of H which meet X and are not a
subset of X. When H is a normal subgroup then we use rather the notation
dispy (X) instead of displ; (X) or disps,(X). The notation dispy is related to
the word 'dispersion’.

Let y be any element of G. A subset W of G is a left-y-chain (respectively
right-y-chain) if [W| # |(y)| and W can be written w * {e, y, ..., ¥~}
(respectively {e, y, ..., y"I=1} xw).

If H is a cyclic subgroup (y), then it is useful to subdivide any tile of A in
right-y-chains. For conveniency, these right-y-chains will be considered again
as tiles. Let T:={e, y, ..., T b xtand T := {e, y, ..., yT "1} %t be
two maximal right-y-chains of A not necessarily distinct. Let b and b’ be two
elements of B. The tile T'V' is said to be used after the tile Tb if and only if
t' %« b = y'Tl « t « b. This implies that ' ' s« yTl s« ¢ = ¥ % b~ is an element of
B x B~!. When this relation is all we need, we say simply that the tile 7" is
used after the tile T' (see figure 2).

The fact that G(A, B) is a normalized partitionable graph may be deduced
from [9] and [7]. We give here a direct proof which shows how the near-



T ={e,y, y*} xt
T = {e,y} =t

are two right—y—chains of A

yg

Th T

Tb is used to cover (y)g T'' is used after T

th =yt
S S T N
Hy = y29
Figure 2. Fragment of the tiling of the coset (y)g

factorization (A, B) and the partitionable graph are closely related, by exhibit-
ing the partition in maximum cliques and the partition in maximum stable

sets of G(A, B) \ {x} for every z:
Lemma 9 If (A, B) is a near-factorization of a finite group G such that A x

B = G\ {e}, then the graph G(A, B) is a normalized partitionable graph with
mazimum cliques {zA, © € G} and mazimum stable sets {xtB~', = € G}.

PROOF.

Claim 10 For every x of G, A is a clique of G(A, B)

Let z; and x5 be two distinct elements of zA: there exist a; and a9 of A such
that ; = v *a; and 9 = = * ay. Then ;7' * 29 = a3 * ay is an element of
(A= % A)\ {e}. Thus {z;, 75} is an edge of G(A, B), and so x4 is a clique of
G(A,B) O

Claim 11 For every x of G, xB™' is a stable set of G(A, B).

Let x; and 25 be two distinct elements of 2B~': there exist b; and by of B

10



such that 27 = z % b, > and 29 = 2 % by '

If {21, 25} is an edge of G(A, B), then ;7' % x5 = by * by is an element of
A~" % A. Thus there exist a; and a5 in A such that b; by ' = a; ™" % ay. Hence
ay * by = ag * by. Since (A, B) is a near-factorization, this implies that a; = as
and by = by. Thus x1 = x5, a contradiction.

Hence {1, 75} is not an edge of G(A, B). This implies that zB~" is a stable
set of G(A,B). O

Claim 12 For every x of G, G(A, B) \ {z} is partitioned by the |B| cliques
{zbA, b € B} and is also partitioned by the |A| stable sets {zra 'B~!, a € A}.
Hence G(A, B) is a partitionable graph with w = |A| and o = |B.

If there exists b in B such that x € zbA then there is an element a in A
such that © = z % b*a thus e = bxa, hence b = ™' and so a xb = e in
contradiction with the hypothesis Ax B = G\ {e}. Hence Uy 2bA C G\ {z}.
If xbANzb' A # () with b and b’ in B, then there are a and @' in A such that
xxbxa=1x%b xa thus bxa = b xa’. This implies with Lemma 3 again that
a =a and b = 0. Hence |Upcp zbA| = Yy |2bA| = |B| * |A| = |G\ {z}].
Thus Upep 2bA = G\ {z} and {zbA, b € B} is a partition of G \ {z}.

If there exists a in A such that x € za~'B~! then there is an element b in B
such that x =z xa ' *b ! thuse=a 'xb ! and so e = b a : contradiction.
Hence Uyeqza 'B1 € G\ {z}. If za "B~ Nxa’ ' B! # () with a and o’ in
A, then there are b and ¥’ in B such that zxa ' b ' =z *a ' b ' thus
a ' xb ' = P« ! and so bxa = U x a'. This implies that a = &' and
b=1.Hence |Upenva ' B™'| =X calra™' B = |B|*|A| = |G\ {z}|. Thus
Uscara !B~ = G\ {z} and {za"'B~!, a € A} is a partition of G\ {z}. O

Claim 13 For every mazimum clique Q of G(A, B), there is an element x of
G such that QQ = x A, hence the set of the n mazimum cliques is {zA, € G}.
Likewise the set of the n mazimum stable sets of G(A, B) is {xB~', x € G}.

Since G(A, B) is a partitionable graph, we know that G(A, B) has exactly n
maximum cliques. Thus we are done if we show that for every pair of elements
x and y of G such that z # y, we have zA # yA. This is equivalent to show
that if A = zA then z = e. Suppose A = zA. Then for every element a of A,
we have that z % a is an element of A. Thus A admits a partition in (z)-right-
cosets. Hence w = 0 (mod o(z)) where o(2) is the order of z. Thus n = 1
(mod o(2)). As o(z) divides the number of elements of G, we also have n =0
(mod o(z)). Therefore o(z) = 1 and so z = e. This proof also works for the
maximum stable sets. O

Claim 14 G(A, B) is a normalized graph.

11



Let {z,y} be any edge of G(A, B). Then x ! xy € A~! x A, thus there exists
a € A such that y € za 'A. Obviously z € za 'A. Hence G(A4,B) is a
normalized graph.

O

Since the cardinality of a maximum clique of G(A, B) is equal to |A|, we denote
by w the value of |A|. Likewise, we denote by a the value of |B|.

A graph T' = (V,E) on aw + 1 vertices is called a web, if the maximum
cardinality of a clique of I" is w, the maximum cardinality of a stable set of
[' is a, and there is a cyclical order of V' so that every set of w consecutive
vertices in this cyclical order is an w-clique. Equivalently, normalized webs
with n vertices are graphs induced by any near-factorization (A, B) of Z,
such that A is an interval.

In 1979, V. Chvital, R.L. Graham, A.F. Perold and S.H. Whitesides [9] in-
troduced a method to produce a large class of near-factorizations of the cyclic
groups Z,.

Two subsets A; and B; of N are said to form a near-factorization in integers
if and only if A; + By = [0..(J]A;| x |By| — 1)]. Obviously, a near-factorization
in integers induces a near-factorization of Z, x|, |+1-

Let (A1, By) be a near-factorization in integers such that A; + B; = [0..n; —2].
Let k, k" be any positive integers.

One may obtain a near-factorization in integers (Ao, By) such that As + By =
[0..ny — 2] with
Nog 1= (‘Al‘ X k) X (|B1‘ X kl) +1

by defining:

AQ = Al + (TLl — 1) X [Ok — 1} and BQ = Bl + (Tll — 1) X k X [Ok’ — 1]

A CGPW graph is a graph G(A, B) where (A, B) is obtained with a finite
number of applications of this method starting from a basic factorization,
that is a near-factorization (A;, By) such that A; = [0..]A;] — 1] and B, =
|Ay| x [0..|By| — 1].

Explicitly, the CGPW graph G given by 2p positive integers ki, ..., ko, is
constructed in this way :

o take Al = [Okl — 1] and B1 = kl X [OkQ — ]_} Set ny, = kl X kQ + 1.
e take k = ks and k' = k, then calculate Ay and B,y. Set ny = ky X ky X k3 X
ks + 1.
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e take £ = k5 and k' = kg then calculate A3 and Bj starting from A, and B,.
Setn3:k1><k2><k3><k4><k5><k6+1.

e ...

e until £k = kgp,1 and £’ = k2p.

G is G(A,, By) and is denoted by C[ky, ..., kg,|. By construction, |A,| = k; X
k3><. . .Xk2p,1 = W, |Bp| = kQXI{;4X. . .Xl{;gp = o and ny = I{;1XI{;2X. . .Xk2p+1 =
axw+ 1.

Notice that normalized webs are CGPW graphs such that p = 1.

Following [1], a near-factorization produced by this method is called a De
Bruijn near-factorization.

Let X be any subset of the group G. We set

INT(X) = max {[zX NnyX]|}
y

reG, yeG, o

Notice that INT(A) denotes the maximum cardinality of the intersection be-
tween two distinct w-cliques of G(A, B) and that INT(B!) denotes the max-
imum cardinality of the intersection between two distinct a-stable sets.

An edge e of a graph T is said to be an «a-critical edge if and only if o(T —
e) > «(T'). Similarly, a non-edge €' is said to be co-critical if and only if
w(l'+€") > w(T). It is easy to check that a graph G(A, B) has a co-critical non-
edge (respectively a-critical edge) if and only if INT(A) = w — 1 (respectively
INT(B~) = a —1).

Lemma 15
INT(X) = max {|X NgX
(X) geG\{e}{‘ gX1}

PROOF. The proof is straightforward. O

Next lemma will be used in the proofs of this article:

Lemma 16 Let G be a finite group having a near-factorization (A, B). Let H
be any normal subgroup of G. If there is a H-coset (Ha) in A, then in every
coset of H, a tile T of A may be used at most once.

PROOF. Let T be any tile of A: there exists y of G such that T'= AN Hy.
Let g be any element of G and let B, be the set {b € B, Tb C Hg}. We want
to show that |B,| < 1.
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If |[B,| > 2 then there exist two distinct elements b and o' of B such that
Th C Hg and TV C Hg. From T C Hy, we get Hg = Hyb and Hg =
Hyb'. Then Hab = ay~'Hyb because H is a normal subgroup. Thus Hab =
ay~'Hg = ay~'Hyb' = Hal'. Since (A, B) is a near factorization and Ha C A,
{b,b'} C B, this implies that b = b': a contradiction. Hence |B,| < 1. O

Notice that Example 7 shows that the hypothesis that H must be normal is
actually needed.

We are now ready to state the main result of this paper.

Theorem 17 Let G be a finite group admitting a near-factorization (A, B).
Let H be a non-trivial proper subgroup of G. Then

(1) displ;(A) > 0 and disp;(A) > 0.
(2) if dispy;(A) = 1 or dispy(A) = 1 then |H| = 2.
(8) if H is a normal subgroup, dispy(A) =2 and |A| # 2, then |H| = 3.

PROQOF. Since no special property is required for B, we may assume that
u(A, B) = e since otherwise all we have to do is to right-shift B by u(A, B) ™.
Hence we have Ax B =G\ {¢} = B x A (Lemma 3).

(1) If disp; (A) = 0, then every right-tile of A is a H-right-coset. Let T' be a
right-tile of A which is used to cover the right-coset He. There exists b
of B such that Tb C He. Since T is a H-right-coset, we have Th = He.
Hence e € A x B, a contradiction. Thus disp';(A4) > 0.

Likewise, we have disp’, (A4) > 0.

(2) Suppose that dispy(A) = 1. Let Hgy, Hga, ..., Hgq be a partition of G
in right-cosets of H. Since disp;(A) = 1 there exists a unique integer p
between 1 and d such that ) C ANHg, C Hg,. Let A’ := AN Hg,. Thus
the set of right-tiles of A is A" and some H-right-cosets.

Let b be an element of B such that A'0 C He. Then we have Hg,b =
He, which implies that (g, * b) € He. Thus, if for every b in B, we have
A'b C He, then g,B C He. We know that (B, A) is a near-factorization
with u(B, A) = e. Hence (g,B, A) is a near-factorization with uncovered
element g,. As g,B C He, g,B has only one right-tile. Since H is a proper
subgroup of G, there exists a right coset Hz distinct from He. Thus
|[Hz| =0 (mod |g,B|) =0 (mod «), which impliesn =0 (mod «),
contradicting the relation n = a x w + 1.

Hence there exists b in B such that A’b lies in a coset Hx distinct from
He. Obviously A’ is the only tile of A which can be used to cover Hzx
because the other tiles are H-right-cosets thus |[Hz| = 0 (mod |A']).
The tile A’ is again the only tile which can be used to cover He, thus
|[He] =1 (mod |A'|). Hence |A'| = 1.

14



Let H' be the conjugate subgroup g;ngp of H. Let H'gy, H'g,, ...,
H'g), be a partition of G in right-cosets of H'. For every i between 1
and d, let B, := BN H'g.. Then for every i between 1 and d, we have
(A"x B;) C (Hg, * gp_ngpgll') = Hyg,g;.

Let i be any integer between 1 and d. If B; # () then A’ is used at least
once to cover Hg,g;. Thus Hg,g; is covered with the right-tile A" only.
Hence we have (Hg,g;)\{e} = Usen, avcrg,qgA'b. Let b be any element of
B and let j be the integer such that b € B;. Thus A'b C Hg,g; = g,H'g:.
Hence, if b is not in B; then A'b is not a subset of Hg,g;. Thus we have
A'x«B; = (Hg,g!)\{e}. Since |A'| = 1, we must have |B;| = |(Hg,9;)\{e}|.

Hence we have for all i between 1 and d, |B;| = 0 or |B;| = |Hg,g. \
{e}|. Thus disp’;(B) < 1. We know that disp”,,(B) = 0 is impossible
according to the first section of the proof of this Theorem. Therefore we
have disp";,(B) = 1. There exists a unique integer p’ between 1 and d
such that B, # 0 and B, # H'g,. We set B' := B,. Then we get
|B'| =1 as we have seen for A’.

We have A’ x B' = (Hgyg,) \ {e}. If Hg,g,, # He, then we have
|H| = |A"x B'| = 1, hence H is the trivial subgroup: a contradiction.
Thus Hg,g, = He, which implies |H| = 2 as required.

If disp};(A) = 1 then the same proof may be applied to the quasi-
factorization (B, A) by working with the left-cosets of H.

Notice that H is assumed to be normal.

Since dispy (A) = 2, there exist two distinct cosets Hg; and Hgy of G
such that ) C ANHg; C Hgy and ) € ANHgy, C Hgy. Let Ay := ANHgy
and Ay := AN Hgs.

If there is a H-coset in A then by Lemma 16, A; (and As) cannot
be used twice on the same coset. Thus A; is used at least once on a
coset distinct from He otherwise we would have o« < 1. Let Hv be such
a coset. Obviously Hv is not covered with only A; because A; is not
a H-coset. Hence A; and A, are used exactly once to cover Hv. Thus
|Hv| = |A1] + |A2|. Hence n =0 (mod |A;| + |As]). If C' is any H-coset
of A, we have |C| = |H| = |A1| + |A3]. Thus w =0 (mod |A4;| + [As]).
Fromn =axw+1,wegetn=1 (mod |A;|+|As|) contradictingn =0
(mod |A;| + |As|). Therefore there is no H-coset in A.

Thus A = A;UA,. As H is a proper subgroup of GG, there exists z such
that HeN Hz = ().

If |A1| = | A2/, then due to the cover of Hx, we get n =0 (mod |A]).
From n = a x w+ 1, we have n =1 (mod |A;|). Thus |A;| = 1. This
means that |A| = 2, which is contradictory to the hypothesis of the
Theorem. Hence |A;| # |As| and we may assume that |A;| > |As|.

If z is any element of G, let n,(A;) (respectively n,(As)) be the number
of times the tile A; (respectively Aj) is used to cover the coset Hz, that
is n, (A1) = [{b € B| A;b C Hz}| (respectively n,(As) = |{b € B| Asb C
Hz}|). Let npmax (A1) := max,cq{n.(A1)}, Pmin (A1) := mincq{n.(A1)},
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Nmax (A2) := max,cq{n,(42)} and nyi, (As) := min,cq{n,(A4s)}.
Claim 18

Nmax (Al) = Nmax (AQ)
Nmin (Al) = Nmin (AQ)

PROOF. Let b be any element of B and z be any element of G.

If A\b C Hzthenb € Hg, 'z as A; C Hg, and H is a normal subgroup
of G. From Ay C Hg,, we get Asb C HgoHgy 'z = Hgogy 2.

Likewise, if Asb C Hgyg, 'z then A;b C Hz. Hence A; C Hz if and
only if Asb C Hgegi'2. And so for any z in G, there exists 2’ and 2"
such that n,(A;) = n,(As) and n,(Ay) = nn(A;).

Thus nmin (A1) = Nmin (A2) and nmay (A1) = Dmax (As). Let npayx =
Nmax (A1) and nypin 1= nmin (47). O

Claim 19
Tmax > Mmin

PROOF. If npax = Nmin then |Hz| = npin X (JA1] +]A42|) and son =0
(mod w), contradicting n = a xw+1. O

To simplify the notation, let a; = |A;| and let ay = | A,
Claim 20 Nyax = Nmin + 1, a1 = ag + 1 and |H| = Npax a1 + Nimin as.

PROOF. If g is any element of G, we set €(g) = 1 if Hg = H and we
set €(g) = 0 otherwise.

Let 2z be an element of G such that n,(As) = Ny (by definition such
an element exists), we first show that n,(A;) = nmin -

By definition there exists g in G such that n,(A;) = nmin. Let & > npin
and [ < nyay be integers such that |Hz| = kay + npaxas +€(2) = |Hg| =
Nmin @1 + las + €(g). We get that (k — nmin )ar = (I — imax )as + €(g) — €(2).
Since k — Npin > 0, a7 > a3 > 1, 1 — npax <0, €(g) — €(2) < 1, we get
that k& = n,(A1) = Nmin -

Now let h be an element of G such that n,(A41) = Nmax -

We have |Hz| = nupin @1 +Nmax aa+€(2) = |Hh| > nNmax @14 nmin aa+€(h)
and so €(z) — €(h) > (Pmax — Pmin) (@1 — @2). Since Nypax > Npin > 0,
a; > ay > 0 and €(z) —e(h) < 1, we get Nmax = Nmin + 1, a1 = az + 1,
€(z) =1, €(h) = 0 and npy(A2) = nmin. Notice that from these equalities
|H| = Nmax @1 4 Nmin @2 = Nmin @1 + Nmax o + 1. O

Claim 21 H s of cardinality 3
PROQOF. Let z be any element of G. From what precedes it is not pos-

sible that n,(A;) = n,(A3) = Nmax or (A1) = n,(A3) = Nmin, SO
either n,(A1) = Nmax, N.(A2) = nmin and Hz # He, or n,(A1) = Nmin,
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n,(As) = nmax and Hz = He. Let d be the number of cosets of H,
then (B = Scr,aty (A1) = iy, a1t (A2) = (d — Vit + i =
(d — D)Nmin + Nmax - SINCE Npax # Nimin, this implies that d = 2.

O

Example 22 Let (A, B) be the near-factorization of Dyg introduced in Exam-
ple 7: A ={e,r®,sr°} and B = {r,r?, s, sr, sr?}.

Let Hy := {e, sr®}. Since dispy, (A) =1, Hy must be of cardinality 2.

Let Hy == {e,r,r?,r*,r*, 7%, r% r7}. Since dispy, (A) = 2, |A| # 2 and H, is
normal, Hy must be of cardinality 12—6 = 8.

Theorem 17 may be used to decrease the number of cases to be investigated
when looking for a near-factorization for a given group with the help of a
computer. From the list of all subsets A of G of cardinality w, we may keep
only those satisfying Theorem 17 and then for every of these A check if there
exists a subset B of cardinality « such that (A, B) is a near-factorization. For
every group of small order (that is less than 1000), it is quite easy to get the
list of all subgroups of GG and the list of all normal subgroups of G using GAP
[10] for instance. Theorem 17 is an interesting filter because it may be applied
to any group. Our implementation [15] revealed that it performs quite well
when w or « is small as one might expect. In some groups, there is no subsets
at all satisfying Theorem 17 with the required cardinality. For instance, the
only groups of order 16 with a subset A of cardinality 3 satisfying Theorem
17 are the dihedral groups and cyclic groups.

We will use Theorem 17 to derive Lemma 24 and Lemma 28.

Lemma 23 [ Ifw =3, A is symmetric and n is odd then G(A, B) is a web.

PROOF. Since n is odd, there is no involution in G. This implies with A =
A" that there is @ in G such that A = {a™',e,a}. Let H be the cyclic
subgroup generated by a. Notice that A C H, thus disp’, (A) = displ, (4) = 1.
If H is distinct from G then by Theorem 17, we must have |H| = 2, which is
impossible as n is odd. Thus G is a cyclic group. Since w = 3, G(A, B) is a
web [1]. O

Andrds Sebdé proved in [16] that the minimal imperfect graphs containing
certain configurations of two a-critical edges and one co-critical non-edge are
exactly the odd holes or anti-holes.

S. Markossian, G. Gasparian, I. Karapetian and A. Markosian also studied in
[13] such edges and non-edges in conjunction with the Strong Perfect Graph
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Conjecture.

Recall that a graph G(A, B) has a co-critical non-edge if and only if INT(A) =
w — 1. Next Lemma partially characterizes graphs G(A, B) with a co-critical
non-edge.

Lemma 24 Let G be a finite group such that every involution z commutes
with every element of G. If (A, B) is a near-factorization of G such that
INT(A) =w — 1 then G is a cyclic group and G(A, B) is a web.

PROOF. Since INT(A) = w — 1, by Lemma 15 there exists an element y of
G such that [ANyA| = w—1. Let H be the cyclic subgroup of G generated by
y. Notice that A admits a unique partition in maximal right-y-chains and H-
right-cosets. Let k£ be the number of maximal right-y-chains in this partition.
Then we have |A N yA| = w — k. Thus there is exactly one maximal right-y-
chain in A. Let T := {e, y, v°, ..., y'71='} % ¢ be this maximal right-y-chain.
Notice that T is a subset of a H-right coset. Therefore we have disp}; (A) = 1,
as the right-tiles of A are T" and H-right-cosets,

Obviously y # e, hence H is not the trivial subgroup of G. Thus by Theorem
17, we have H = G or |H| = 2.

If |H| = 2 then y is an involution of G distinct from e, and we must have |T| =
1. Hence there must be some H-right-cosets in A. The element y commutes
with every element of G, hence H is a normal subgroup of G. If T is used
only on the coset Hu(A, B), then o < 1, which is impossible. Therefore T is
used in the cover of another coset Hx. As only T is used on Hz, it is used at
least twice, which is in contradiction with Lemma 16 because H is a normal
subgroup of G.

Therefore H = @, that is GG is a cyclic group.

Hence A =T and G(t7'A, B) is a web. Thus G(A, B) which is isomorphic to
G(t7'A,B) is a web. O

Lemma 24 is not true if the hypothesis that every involution is in the center
of G is not assumed. Indeed the dihedral groups are examples of non-cyclic
groups having near-factorizations (A, B) and INT(A4) = w — 1 (see Section
3). Besides we give in Section 4, a graph G(A, B) with 50 vertices such that
INT(A) = w — 1, which is not a web.

Corollary 25 If G is a non-cyclic finite abelian group then it admits no near-
factorization (A, B) such that INT(A) = w — 1.
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Corollary 26 If G is a non-cyclic finite group of odd order then it admits no
near-factorization (A, B) such that INT(A) = w — 1.

PROOF. Indeed there is no involution in a group of odd order. O

Example 27 Let G be any group of order 3 x p+1 (p a prime) such that its
center contains all its involutions, with a symmetric near-factorization (A, B).
We may assume that |A| = 3. Since |A| is odd and A is symmetric, there must
be an element w in A such that w? = e. Let a be another element in A. Thus
{a, w} C ANawA and so INT(A) > 2. Then by Lemma 24, G must be cyclic.
This implies for instance that 7 groups, out of the 14 groups of order 16, have
no symmetric near-factorizations.

There are many non-abelian groups containing in their center all their involu-
tions: according to GAP [10] there are 58 such groups out of the 267 groups of
order 6/, and 52 such groups out of the 231 groups of order 96. Notice that for
n =64 or 96, w or a must be prime, hence any CGPW graph of these orders
is a web. Thus if any of these groups has a near-factorization (A, B) then the
graph G(A, B) is not a CGPW graph. Notice that for n = 64, these groups do
not have any symmetric near-factorization (A, B) such that |A| = 3.

Lemma 28 Let G be a finite group such that all its cyclic subgroups are nor-
mal and admitting a near-factorization (A, B) such that INT(A) = w — 2.
Then

e If G is abelian then G s cyclic.
e If G is not abelian then the order of G is a multiple of 4, G has an element
y of order 3 and Y7 is the only involution of G .

PROOF. Since INT(A) = w — 2, we have w > 3 and there exists an element
y of G such that |[ANyA| =w — 2. Let T} := {e, y, y?, ..., y"I7"} x ¢, and
Ty = {e, y, y?, ..., y ™71} x £, be the two maximal right-y-chains of A. Let
u be the uncovered element. Let H be the cyclic subgroup generated by the
element y. Hence by assumption on G, H is a non-trivial normal subgroup of

G:

If G = H then G is abelian and cyclic, thus we are done. Hence we may assume
that H C G.

Since A is made of 7}, T, and some H-cosets, we have disp};(A) < 2. By
Theorem 17, we have dispy(A) > 0. If dispj;(A) = 1 then by Theorem 17
again, we get |H| = 2. Since disp, (A) = 1, T} and T, must lie in the same
right-coset of H. Thus T7UT5 is a H-coset, and this implies that disp’; (A) = 0,
a contradiction.
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Hence disp;(A) = 2 and by Theorem 17 again, H has cardinality 7. Therefore

y is an element of order  and there is no H-coset in A.

Claim 29 We have |Ty| # |Ts|.

PROOF. Suppose that |Ti| = |Ty|. As there is no H-coset in A, we have
|[H| =1 (mod |Ty]) due to the cover of the coset Hu(A, B). Then we also
have |[H| =0 (mod |T}|) due to the cover of the other coset. Hence |T;| = 1.
This implies that |A| = 2. This is impossible as w > 3. O

Thus |T1] # |T>| and we may assume that |T5| < [T}

Claim 30 The pair {Hty, Hty} is a partition of G in right cosets.

PROOF. If ¢; and ¢, lie in the same right coset then disp’;(A) < 1, contra-
dicting disp}; (A) = 2. Thus Ht; N Ht, = (. As |H| = %, we are done. O

Claim 31 We have (Ht;)™' = Ht, and (Hty)™' = Ht,.

PROOF. Suppose that H = Ht; then we obviously have (Ht;)™' = Ht,.
Since the inversion map is a bijective map, this implies that (Ht,)™' = Ht,.
The proof for the case H = Ht, is similar. O

Claim 32 If G is abelian then G is a cyclic group.

PROOF. If G is abelian then let b be any element of B distinct from ¢, x
y~Il s u, that is, Tbb is not followed by the uncovered element u. Hence
Tyb is followed by a tile To0' or by a tile Ti¥, that is to x b’ = y T2l x ¢, % b or
tyxb =y Tlstyxb. Thus b = yT2lxbor b = yT2lst ] xtyxb. If ' = 4y/T21xb then
txb =ty xyl™lxb. Since |Ty| < [Ty, y™! «t, is an element of T}. Thus 3"l x¢,
is an element of A and we have a contradiction. Therefore b’ = y/™2l st 1 xbxt,.
Let y' := 3™l x ;! % t,. We have seen that for every element b of B except
maybe one, y'b is an element of B. Thus INT(B) = « — 1. Since G is abelian,
(B, A) is obviously a near-factorization of G. Hence by Lemma 24, G must be
cyclic. O

Claim 33 If G is not abelian then n is a multiple of 4 and y7 is the only
involution of G .
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PROQOF. By assumption, G is not abelian.
Let ¢ be an element of G such that Hq # H.

If n is not a multiple of 4 then |H| is odd. Hence due to Fact 31 there exists at
least one element z in Hq such that 22 = e. Since (2) is a normal subgroup of
G, z must commute with every element of G and in particular with y. Since
z is an element of Hgq, there exists an integer i such that z = y’ * ¢. From
zxy =1yx*z, wegety xqg*xy =yt *q Thus ¢*y = y * q. Due to Fact 30,
G must be abelian, which is impossible. Thus n is a multiple of 4 and so y4
is an involution of G.

Obviously in the coset H there are exactly two involutions: the elements e and
y7. Thus if there is another involution in G then there must be an involution
z in Hgq, and we have seen that in this case G must be abelian, which is
impossible. Hence we are done.

O

Corollary 34 If (A, B) is a near-factorization of a finite abelian group G
such that |A| < 4 then G is cyclic [7] and G(A, B) is a CGPW graph.

PROOF. Let (A4, B) be a near-factorization of G such that |A| < 4. Since G
is abelian, we use the additive notation + to denote the operation of G.

If |A| < 3 then obviously INT(A) > w— 2. Thus G is cyclic by Lemma 28 and
Corollary 25. Then it is proved in [1] that G(A, B) must be a CGPW graph.

If |A| = 4 then n is odd and there is no involution in G. By Lemma 5, there
exist 2 and y in G such that (x + A, B+ y) is a symmetric near-factorization.
Let A" := 2+ A. Since A’ = — A’ and there is no involution, there are a and o’
in G such that A’ = {a,d', —a, —a'}. Then {a,a'} C A'N A"+ (a+ a'). Hence
INT(A") > w—2. By Lemma 28 and Corollary 25, G must be the cyclic group.
Thus G(A, B) ~ G(A', B') is a CGPW graph [1]. O

Example 35 The Quaternion group QQg of order 8 is an example of a non-
abelian finite group such that all its cyclic subgroups are normal.

There does not seem to be many non-abelian groups such that all their cyclic
subgroups are normal. According to GAP, there is only one (out of 267) such
group of order 64: the 262" group. As it has no element of order 32, we know
that is has no near-factorization (A, B) such that |A| = 7 and INT(A) > 5.
There is also only one (out of 231) such group of order 96: the 222" group.
This group does not have any element of order /8.
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In the remaining of this section, we study the problem of characterizing
the minimal imperfect graphs in the class of the graphs produced by near-
factorizations of finite groups. We first need to recall some results about min-
imal imperfect graphs.

A small transversal is a subset of vertices T such that T is of cardinality at
most w+a—1 and T meets every maximum clique and every maximum stable
set.

In 1976, V. Chvatal found a very useful property of minimal imperfect graphs
which states that a minimal imperfect graph contains no small transversal [8].

In 1998, G. Bacso, E. Boros, V. Gurvich, F. Maffray and M. Preissmann
[1] introduced a sufficient condition for partitionable graphs to have a small
transversal called the 'Parents Lemma’. A maximum clique K of G is a mother
of a vertex x € K if every maximum clique K’ containing x satisfies |[K NK'| >
2. Similarly, a maximum stable set S of GG is a father of a vertex x € S if every
maximum stable set S’ containing x satisfies |S N S'| > 2.

Lemma 36 The Parents Lemma’ [1] If a vertex of a partitionable graph
has a father and a mother then the graph has a small transversal.

Then we have the following result:

Lemma 37 Let G be a finite group of even order such that every involu-
tion y commutes with every element of G. If (A, B) is any symmetric near-
factorization of G then G(A, B) has a small transversal, hence is not minimal
imperfect.

PROOF. Since n is even, w and « are necessarily odd.

As w is odd, there is an element 3 of A such that y? = e. We are going to show
that A is a mother of y. Let pA be any w-clique containing y distinct from A.
Hence there is a in A such that y = pxa. Ifa™' =y thenp=ysxa ' =9y?>=c¢
and so pA = A, a contradiction. Thus a ! is not equal to y. We have a ™! =
y * p = p* 1y because y commutes with p. Thus a=' is an element of p * A.
Hence {a™', y} C AN pA. This means that A is a mother of y.

Likewise there exists an element x of B such that 22 = e and B = Bl is a

father of x. Hence yz !B = yx ' B! is a father of y. By applying the Parents
Lemma, we see that the graph G(A, B) has a small transversal. O

Corollary 38 Let G be a finite abelian group of even order. If (A, B) is any
near-factorization of G then G(A, B) is not minimal imperfect.
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3 Near-factorizations of the dihedral groups

In this section, we show how to carry any near-factorization of a cyclic group
of even order to the dihedral group of the same order.

We begin by introducing a map ¢ from Z,, into Dy, .

An even element of Z,,, is an element of 2Z,,. The odd elements are the other
elements of Z,,. Notice that if x is an even element of Zs,, then there exists
a unique integer y between 0 and (n — 1) such that z = 2 x y. We denote by
5 this integer.

If z and y are two even elements of Z,, then we have Z2¥ =2 + ¢ (mod n)

2
and if z is any element of Z,,, then we have 2 =2 (mod n).

Let ¢ be the bijective map of Zs,, onto Iy, defined by:

d): ZQn — D2n
T is even — 13

: z—1
z is odd +— sr—=

We now state some properties of ¢ which are useful for the proofs:

Lemma 39 For every x and y of Zs,, we have

e ify is even, ¢(z) * ¢(y)~

T d(r —y) and p(x 4+ y) = ¢(x) x P(y).
o if y is odd, ¢(z) * d(y)" = Py —

Y

PROOF. If z and y are even then we have ¢(z + y) = P RIS S g
riert = ¢(a)xd(y) and gz —y) = 17" =13 =3 = g(a)xo(y) "

If x is odd and y is even then we have ¢(x + y) = sp=l _ pipi+E
STzT_l * T% = d)(x) * d)(y) and d)($ - y) = 37"17371 = STZEI_% = srzgl * r%y

o(x) x dly) .

Hence, if y is even then we have ¢(z + y) = ¢(x) * ¢(y) and d(z) * ¢(y)”" =
¢(x —y).

If z is even and y is odd then we have ¢(x) * ¢(y)”" = 7% = (sr'7 ) =

sriE = é(y — x).
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If z is odd and y is odd then we have ¢(z) * ¢(y)™" = sr'T x (sr'7) =
y—z
re= = ¢y — ).

Hence, if y is odd then we have ¢(z) * qﬁ(y)f1 =¢(y—=x). O

From a near-factorization (A, B) of Zs,, we get a near-factorization of Dy,
this way:

Algorithm 1 Carrying a near-factorization of Zs, into Dy,

Input: a near-factorization (A, B) of Zy,

Output: a near-factorization (A', B') of Dy,
Step 1: find an element = of Z,, such that A + z is symmetric and let
Ay = A + z (exists by Lemma 5).
Step 2: take an element a; of A; and let Ay := A; + a,.
Step 3: let By be the set of the even elements of B and B; be the set of the
odd elements of B. Then take A" := ¢(As) and B’ := ¢(By) U ¢(By)r®.

We say that (A’, B') is a dihedral near-factorization associated to (A, B). We
call De Bruijn dihedral near-factorization any dihedral near-factorizations as-
sociated to a De Bruijn near-factorization.

Obviously one may get several distinct near-factorizations of Dy, through this
algorithm from one near-factorization of Z,, as x is not uniquely defined in
Step 1 and neither is a; in Step 2.

We first prove that any couple (A’, B") produced by this algorithm is indeed
a near-factorization of Dy, .

Theorem 40 Let (A, B) be a near-factorization of Zg,. Let (A', B') be an
output of algorithm 1 with input (A, B). Then (A', B') is a near-factorization
Of ]D)Qn.

PROOF. Recall that due to the algorithm, we have A’ = ¢(Ay) and Ay =
Ay 4 ay where A; is symmetric and a; is an element of A;.

Claim 41 For every b of B, there exists b' in B' such that ¢(Ay +b) = A'Y.

PROOQOF. If bis even then let a be any element of A;. By Lemma 39, we have
d(a+b) = ¢(a) x ¢(b). Hence ¢p(Ay + b) C ¢(Az) x ¢(b). Since ¢ is a bijective
map, we get ¢(As +b) = ¢(As) * ¢(b) with ¢(b) € B'. Thus we are done.

If b is odd then let a be any element of A5. By definition of Ay, a — ay is an
element of A, which is a symmetric set. Hence a; —a is an element of A;. Thus
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2a; — a is an element of Ay. Notice that 2a; + b is odd. Let ' := ¢(2a; + b).
As ¢(2a; +b) = st = sp"5 « 19 ¥ is an element of B'. If a is even then

$(2a1 —a) x b = r®=% s« sr T = op™5 = ¢(a+b). Hence ¢(a+b) € AV
If a is odd then ¢(2a; — a) x 0 = st T =t = d(a +b).
Thus ¢(a + b) € A'b. Therefore we have ¢p(A; + b) C A'Y. This implies that
d(As +b) = A'Y because ¢ is a bijective map. O

Claim 42 The couple (A', B') is a near-factorization of Dy, .

PROOF. We have seen that {¢(As+b), b€ B} C{A'Y, i/ € B'}. Since ¢ is
a bijective map, there exists u in Dy, such that {#(As+b), b € B} is a partition
of Dy, \ {u}. As B and B’ are of equal cardinality, we get that {A'V, b’ € B'}
is a partition of Dy, \ {u}. Therefore (A’, B') is a near-factorization of Dy,,.

O

Example 43

A,=10,1,2,9,10,11,18,19, 20}
B={0,3,6,27,30,33,54,57,60}
A'={e, s, r,sr*, 05 sr° 1% 50 r10)

B' = {e,r3, srll p15 sp23 26 p27 ;30 381
The couple (A', B') is a near-factorization of Dgy induced by the near-factori-
zation (Ay, B) of Zgs

We now prove that the graph G(A’, B') is not altered by the choice of x in
Step 2 or by the choice of a; in Step 3.

Lemma 44 Let (A, B) be a near-factorization of Zs,. Let (A" ,B') and (A",
B") be two dihedral near-factorizations associated to (A, B). Then the graph
G(A', B') is isomorphic to the graph G(A", B").

PROQOF. By construction, there exist two elements = and y of Z,, such that
A'=¢(A+z) and A" = ¢(A + ).

We have

A= (A + )
={r'|0<i<n-—1,2 (mod?2n)ecA+ux}
U{sr'|0<i<n—1,2i4+1 (mod?2n)c A+z}
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and

A" =¢(A+y)
—{r'|0<i<n—1, 2 (mod2n)c A+y}
U{sri|0§i§n—1, 2i+1 (mod 2n) € A+y}

If y — x is even then by taking the unique integer j between 0 and n — 1 such
that 2j =2i+x —y (mod 2n), we get

A'={PtT 1 0<j<n—1,2j (mod2n) € A+a}
U{srﬂ'% |0<j<n-—1,25+1 (mod2n)€A+x}

y—=z 1 _y=z o, y—= .
Hence, A” = A'r5 . Thus we have A" "A" =r~"7 A" "A'r = . This means

that the connecting set (A” ' A”)\ {e} is the image of (A’""A’)\ {e} under the

inner automorphism g — ="z gr'z . Then Lemma 6 implies that the Cayley
graph G(A”, B") is isomorphic to the Cayley graph G(A’, B').

The case y — x is odd is slightly trickier.
Let k be an element of Zy, such that A + k is symmetric. Let Agm, := A+ k.
We have A" = ¢(Asym + (r — k)) and A" = ¢(Agym + (y — k)). Thus

A'=¢(Agym + (v — k)
={r'"[0<i<n—1,2 (mod2n)€ Aym+ (z—k)}
U{sr" [0<i<n—1, 2i+1 (mod2n)€ Agym + (v —k)}

and

A”:¢(Asym + (y - k))
:{ri|0§i§n—1, 2 (mod 2n) € Agym + (y — k)}

For every integer p between 0 and n — 1, we have:

Asr?={sr" [ 0<i<n—1,2 (mod2n)€ Aym+ (v k)]
U{r”’i|0§i§n—1, 20+ 1 (m0d2n)€Asym+(x—k)}
={sr""[0<i<n-1, 2 (mod2n)€ Aym+ (k- z)}
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U{rl’+i|0§i§n—1, 2i— 1 (mod?n)eAsymH’f—x)}
:{Srw\ogzgn—l,

2i+2—2k+y (mod2n) € Agym + (y — k)}
U{rio<i<n-t,

2i—1+z—2k+y (mod 2n) € Aym + (y— )}

Thus by taking p = —k + % (mod n), we have A’sr? = A”. Hence
A""A" = srP A7 A'srP . Therefore the connecting set (A"7'A”) \ {e} is the
image of (A'"'A")\ {e} under the inner automorphism g — sr?gsr?. This
implies that the Cayley graph G(A”, B") is isomorphic to the Cayley graph
G(A", B).

O

Thus from a near-factorization (A, B) of Zs,, we get a unique partitionable
graph G(A’, B') where (A’, B') is any dihedral near-factorization associated to
(A, B). It remains to know if we may get some 'new’ partitionable graphs this
way. We have not succeeded in proving that in general the graph G(A’, B')
is isomorphic to G(A, B) when (A, B) is any near-factorization of the cyclic

group.

Nevertheless, in Theorem 45 we prove that this is true for all the graphs
G(A, B) on cyclic groups known so far.

Theorem 45 If (A, B) is a De Bruijn near-factorization of Zs, then the graph
G(A, B) is isomorphic to the graph G(A', B') where (A', B') is a dihedral near-
factorization associated to (A, B).

PROOF. We first calculate a dihedral near-factorization (A’, B") associated
to (A, B). Notice that due to Lemma 44, we may proceed without having to
fear any loss of generality.

Let ki, ..., ko be the parameters of the graph G(A, B), that is G(A, B) =
Clky, ... kopl. As 2n is even, |A| and |B| must be odd. This implies that
the 2p parameters k; are all odd. Thus for every j between 1 and p, n; =
ki % kg x kg * -+ - * koj + 1 is even. We set ng := 2 in order to avoid a special
case in the proof.

Let at := (k; — 1)+ Z?;} (Hfilkl) (kgj+1 — 1). Notice that a™ is the greatest
element of A seen as a set of integers and that it is an even element of A such
at

that A — % is symmetric. Thus in Step 1, we may take z = —*-.
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A; ={0,1,2} B; = {0,3,6} w; =3, a; =3

B =1 1 9 ny =10
Ay ={0,1,2} +9%{0,1} Wo = wy * 2
s I B B2 18
TL2:19
By ={0,3,6} + 18« {0,1} Qg = ay %2
L B B B4 B B B4 B B B BEEE 36
n =37

Figure 3. The De Bruijn near-factorization given by a1 =3, as = 3, a3 = 2, a4 = 1,
a5 =1 and ag = 2

Since —x is an element of A — %, we may take A, := A in Step 2. Hence

by taking A" := ¢(A) and B’ as defined in Step 3, we get a dihedral near-
factorization associated to (A, B).

Claim 46 We have A'« A'”™' = ¢(A — A).

PROOF. We have to prove that ¢(A4) x ¢(A)™" = ¢(A — A).

We first prove the inclusion ¢(A) * ¢(A)™" C ¢(A — A). Let w be any element
of ¢(A)xp(A)~": there exist a and o’ in A such that w = ¢(a)*¢p(a’)”". Hence
by Lemma 39, we have w = ¢(a — a') or ¢(a’ — a). In both cases, w is an
element of ¢(A — A). Thus ¢(A) x ¢(A)" C ¢(A — A).

We now prove the converse inclusion. Let w be any element of ¢(A — A); there
exist a and a' in A such that w = ¢(a’ — a).

If a’ is even then w = ¢(a) * ¢(a’)~" hence it is an element of ¢(A) x p(A)~".

If ' is odd, then due to the definition of A, there exist integers dg, 01, ..., 0,1
and dy, 6}, ...,0, ; such that a = dg + (ny — 1)d1 + ... + (n, — 1)6, 1 and
a' =6+ —1)8+ ...+ (n, —1)0, | with 0 < 6;, 0; < (kgiy1 — 1) for every
i between 0 and p — 1. Since a' is odd, there must be an integer j between 0
and p — 1 such that 0 < §; < (kgjq1 — 1) because all the ko1 — 1 are even.
Thus k2j+1 > 1.
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If §; = 0 then a+(n;—1) is an element of A and @'+ (n;—1) is an element of A.
Then w = ¢(a—a') = ¢((a+n;—1)—(a’'+n;—1)) = ¢p(a+n;—1)*p(a’+n;—1)*
because ' +n; — 1 is even as n; = a; *ag * ag*...*ag; + 1 is even. Therefore
w is an element of ¢(A) * ¢(A)~!

If §; > 0 then a—(n;—1) is an element of A and @’ —(n;—1) is an element of A.
Then w = ¢(a—a') = ¢((a—nj+1)—(a'—n;+1)) = ¢p(a—n;+1)*¢(a'—n,;+1)~"
because a' — n; + 1 is even. Hence w is an element of ¢(A) * ¢(A) 1.

Thus ¢(A — A) C ¢(A) * ¢(A) 7.

Therefore ¢p(A — A) = ¢p(A) x p(A)L. O

Claim 47 Let T be the graph with vertezx set Dy, and with edge set {{z,y}, xx*
y e (A« A7\ {e}}. Then G(A, B) is isomorphic to T

PROOF. Let {3, j} be any edge of G(A, B). Theni—j € (A— A)\{0}. Thus
j—1 € (A=A)\{0}. Hence ¢(i—j) € ¢((A— A)\{O}) and ¢(j— g € p((A—-A)\

{0}) Thus ¢(i)¢(j) " € (A= A)\{0}). So ¢(i)¢(j) " € (p(A)p(A)~1)\{e}.
Therefore {¢(i),#(j)} is an edge of T.

Let {¢(i), #(7)} be any edge of . Then ¢(i)p(7) ' € (p(A)d(A)~1)\{e}. Since
B(i)p(j)~" is equal to ¢(i — j) or ¢(j — 1), we get ¢(i — j) € d((A — A)\ {0})
or p(j —i) € ¢((A— A)\ {0}), by Fact 46. Hence i — j € (A — A) \ {0}, that
is {7,7} is an edge of G(A, B). O

Claim 48 There exists an element g such that gA' is a symmetric subset of
]D)Zn

PROQOF. Let k be an element of Zs,, such that A 4+ k is a symmetric subset
of ZQn-

Let Ay be the set of the even elements of A and let A; be the set of the odd
elements of A. Let H be the subgroup of D, generated by r.

If k is even then r3 A’ = r2¢(A) = r2p(Ag) Ursd(Ar) = ¢(Ag+ k) Urzp(A;).
Then r§¢(A1) is a subset of sH, thus it is a symmetric subset of Dy, as every
of its elements is an involution. The set ¢(Ay + k) is a symmetric subset of
Dy, because Ay + k is a symmetric subset of Z,,. Hence rs Al s symmetric.

If k is odd then sr="3 A’ = sr_%qﬁ(Ao) Usr— 5 #(A1). The set sr= ?(Ao)
is a symmetrlc subset of Dy, as it is a subset of sH. We have ¢(A + k)

sriT ¢(Ag) U st 3 ¢(Ay), hence st~ 5 ¢(Ay) = HN (A + k) = ¢(A; + k)_

29



Since A; + k is a symmetric subset of 2Z,, this implies that ¢(A; + k) is sym-
metric, thus Sr’%qﬁ(Al) is symmetric. Therefore sr—"3 A’ is symmetric. O

Claim 49 The graph G(A’, B') is isomorphic to the graph G(A, B).

PROOF. All we have to show is that G(A', B') is isomorphic to .
Let ¢g be an element of Dy, such that gA’ is symmetric and let A” := gA'.

Obviously, G(A’, B') is isomorphic to G(A", B'). Let I be the graph with
vertex set Dy, and with edge set {{z,y}, zxy~' € (A"« A" ")\ {e}}.

Let inv be the bijective map of Dy, onto itself which maps an element onto its
inverse. {x,y} is an edge of G(A”, B') if and only if 27" xy € (A" "% A")\ {e},
that is if and only if inv(z)inv(y) ™" € (A" A"7")\ {e} as A” = A”™", hence
if and only if {inv(z), inv(y)} is an edge of I". Hence G(A”", B') is isomorphic
to I'.

Let h denote the inner automorphism of D,, which maps an element x onto
g 'zg. Then {x,y} is an edge of " if and only if {h(x), h(y)} is an edge of T
Thus I is isomorphic to T'.

Therefore G(A’, B') is isomorphic to T.

O

In 1990, D. De Caen, D.A. Gregory, I.G. Hughes and D.L. Kreher [7] described
a class of near-factorizations of the dihedral groups: if w is any divisor of 2n—1,
then let o := Q"M—’l and define

. -1 . -1
A::{w, 1§i§w—}u{sr’,0§i§w—}
2 2
| 1 . 1
B::{r"“, ogigo‘T}u{er, 193%}

The graphs associated to these near-factorizations are a strict subset of the
CGPW graphs of even order:

Lemma 50 The graphs G(A, B) produced by this method are webs.

PROOF. We have A = {s, rysrr2 sr2 et ser_l}.



Consider the De Bruijn near-factorization of Z, given by Aq := {0,1,...,w—
1} and by By := w={0,...,a—1}. Let A" := ¢(Ap). We know that there exists
B’ such that (A’, B') is a near-factorization of Dy, with G(A’, B') isomorphic
to G(Ag, Bg). We have A" = {e,s,r,...,r%}. Thus A" = Asr“s . Hence

AL A" = sp"5 A='Asr®T . This means that the connection set of G(A, B)
is the image under an inner automorphism of Dy, of the connection set of
G(A’, B"). Thus G(A, B) is isomorphic to G(A’, B'). As G(A’, B') is isomorphic
to G(Ao, By) which is a web, we are done. O

4 Some open questions

This paper gives rise to several questions. We first recall the circular parti-
tionable graph conjecture:

Conjecture 51 If (A, B) is a near-factorization of the cyclic group Z,, then
there exists a De Bruijn near-factorization (A', B') such that G(A, B) is iso-
morphic to G(A', B').

Grinstead has verified by computer this conjecture for groups of order less
than 50, and Bacsé, Boros, Gurvich, Maffray and Preissmann have proved it
when A is of cardinality at most 5.

We do not know any near-factorization (A, B) of the dihedral groups whose
associated graph G(A, B) is not a CGPW graph. Thus we ask this question,
which may be seen as the circular partitionable graph conjecture in dihedral
groups:

Problem 52 If (A, B) is a near-factorization of the dihedral group Ds,, is
G(A, B) always isomorphic to a graph G(A', B") with (A', B') a De Bruijn
dihedral near-factorization ¢

We believe that this is not true because in a dihedral group, a tile may be
used 'backwards’, which is not possible in the cyclic group. Hence a tiling of
Dy, \ {u} does not behave in the same way than a tiling of Zs, \ {u}, whereas
a positive answer to Problem 52 would suggest the opposite.

With the help of Theorem 17, an exhaustive search by computer [15] revealed
that the only groups of order strictly less than 64 having a symmetric near-
factorization are the cyclic groups and the dihedral groups. Hence this leads
to this natural question:

Problem 53 Are the cyclic groups and the dihedral groups the only groups
having symmetric near-factorizations ¢
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Recently, Boros, Gurvich and Hougardy [4] introduced a construction of parti-
tionable graphs generalizing the first construction of Chvatal, Graham, Perold
and Whitesides. Let us call BGH-graphs the partitionable graphs produced by
this new method. All the BGH-graphs contain a critical w-clique, that is an
w-clique @ such that the critical edges of () induce a tree covering all vertices

of Q.

Our computer experiments revealed that the group Dy X Zs has a near-
factorization (A, B) below, such that the graph G(A, B) does not have any
critical w-clique. We denote this graph by I'sg.

A={(e,0), (5,0, (e,3), (5,3), (1, 4), (s51,4), (r*,4)}
B={(s,1),(r, 1), (sr%, 1), (s7%,3), (r*,3), (s73,4), (r*, 4)}

Lemma 54 The graph I'sy does not have any critical edge, whereas the critical
edges of I'sg form a perfect matching of T'sq.

PROQOF. If I'sy has a critical edge then there exists an element y such that
|IB~'NyB~! = 6. Let H be the cyclic subgroup generated by y. By Theorem
17 applied to the near-factorization (B~1, A1), we have |H| = 2, thus y must
be an involution.

The set of involutions is {(s, 0), (sr,0), (sr%,0), (sr3,0), (sr*,0)}. A quick com-
putation shows that y can not be any of these 5 values, thus we have a con-
tradiction: ['5q does not have any critical edge.

{i,j} is a critical edge of I'sy if and only if there exist & and %' such that
{i} =kA\ KA and {j} = KA\ kA. Thus |[ANk'k'A| = 6 and by Theorem
17 we get that k= 'k’ must be an involution. Then it is clear that &~ 'A’ must
be equal to (s,0). Thus if {i,j} is a critical edge then there exists k such
that {i} = kA \ k(s,0)A and {j} = k(s,0)A \ kA, that is i = k(r?,4) and
j = k(sr?4). This implies that j = i(sr*,0).

Hence any critical edge of I'sg is a left coset of the subgroup H' generated by
the involution (srt,0). As any left coset of H' form a critical edge of T5, we
have that the critical edges of I'sy form the perfect matching of T'so given by
the left cosets of H'. O

Thus this graph, as well as its complement, does not have any critical w-clique.
Therefore it is not a BGH-graph, and neither is it a CGPW-graph. Hence near-
factorizations of finite groups do produce 'new’ partitionable graphs.

Problem 55 Is it possible to describe a class of near-factorizations of a se-
quence of finite groups, whose associated graphs are ‘new’ partitionable graphs?
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