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Partitionable graphs arising fromnear-fa
torizations of �nite groupsArnaud Pê
herLaBRI, domaine universitaire, 351 
ours de la Liberation, 33405 Talen
e, Fran
eAbstra
tIn 1979, two 
onstru
tions for making partitionable graphs were introdu
ed in [9℄.The graphs produ
ed by the se
ond 
onstru
tion are 
alled CGPW graphs. Anear-fa
torization (A;B) of a �nite group is roughly speaking a non-trivial fa
tor-ization of G minus one element into two subsets A and B. Every CGPW graph withn verti
es turns out to be a Cayley graph of the 
y
li
 group Zn, with 
onne
tionset (A�A) n f0g, for a near-fa
torization (A;B) of Zn. Sin
e a 
ounter-example tothe Strong Perfe
t Graph Conje
ture would be a partitionable graph [14℄, any 'new'
onstru
tion for making partitionable graphs is of interest.In this paper, we investigate the near-fa
torizations of �nite groups in general,and their asso
iated Cayley graphs whi
h are all partitionable. In parti
ular weshow that near-fa
torizations of the dihedral groups produ
e every CGPW graph ofeven order. We present some results about near-fa
torizations of �nite groups whi
himply that a �nite abelian group with a near-fa
torization (A;B) su
h that jAj � 4must be 
y
li
 (already proved in [7℄). One of these results may be used to speed upexhaustive 
al
ulations. At last, we prove that there is no 
ounter-example to theStrong Perfe
t Graph Conje
ture arising from near-fa
torizations of a �nite abeliangroup of even order.Key words: partitionable graph, perfe
t graph, near-fa
torization, group2000 MSC: MSC 05C17, MSC 05C25, MSC 20D60
1 Introdu
tionIn 1960, Claude Berge introdu
ed the notion of perfe
t graphs : a graph isperfe
t if for every indu
ed subgraph H of it, the 
hromati
 number of H doesnot ex
eed the maximum number of pairwise adja
ent verti
es in H. A holeEmail address: Arnaud.Pe
her�labri.fr (Arnaud Pê
her).Preprint submitted to Elsevier S
ien
e 1st July 2002



is a 
hordless 
y
le with at least four verti
es. Berge 
onje
tured that perfe
tgraphs are exa
tly the graphs with no indu
ed odd holes and no indu
ed
omplement of an odd hole, or equivalently that minimal imperfe
t graphs areodd holes and their 
omplements. This 
onje
ture is often 
alled the StrongPerfe
t Graph Conje
ture and has motivated many works.Lov�asz [12℄ and Padberg [14℄ gave some properties of minimal imperfe
t graphs.Following the paper of Bland, Huang and Trotter [3℄, a graph G is said to bepartitionable if there exist two integers p and q su
h that G has pq+1 verti
esand for every vertex v of G, the indu
ed subgraph G n fvg admits a partitionin p 
liques of 
ardinality q and also admits a partition in q stable sets of
ardinality p. Let ! denote the maximum 
ardinality of a 
lique of G and �denote the maximum 
ardinality of a stable set of G. Then it is 
lear thatp = � and q = !.With this de�nition, Lov�asz [12℄ and Padberg [14℄ proved that every minimalimperfe
t graph is partitionable. Thus a 
ounter-example to the Strong Perfe
tGraph Conje
ture would lie in the 
lass of partitionable graphs. Hen
e anapproa
h to Berge's 
onje
ture is to prove that a given 
lass of partitionablegraphs does not 
ontain any minimal imperfe
t graph whi
h is not an odd oddhole or anti-hole.In 1979, Chv�atal, Graham, Perold and Whitesides introdu
ed two 
onstru
-tions for making partitionable graphs [9℄. In 1996, Seb�o proved that there isno 
ounter-example to the Strong Perfe
t Graph Conje
ture in the �rst one[16℄. In 1984, Grinstead proved that there is no 
ounter-example to the StrongPerfe
t Graph Conje
ture in the se
ond one [11℄. A variant of a partitionablegraph is a partitionable graph with the same verti
es, the same maximum
liques and the same maximum stable sets. In 1998, Ba
s�o, Boros, Gurvi
h,Ma�ray and Preissmann [1℄ extended Grinstead's result to the wider 
lass ofthe variants of the se
ond 
onstru
tion.A graph with n verti
es is 
ir
ular if there exists a 
y
li
 numbering of itsverti
es (modulo n) su
h that, for every vertex x, for every maximum 
liqueC and for every maximum stable set S, the set f(
 + x) (mod n) j 
 2 Cgis a maximum 
lique and the set f(s + x) (mod n) j s 2 Sg is a maximumstable set.A normalized graph is a graph su
h that for every edge fi; jg, there exists amaximum 
lique 
ontaining both i and j.A partitionable graph produ
ed by the se
ond 
onstru
tion due to Chv�atal,Graham, Perold and Whitesides is 
alled a CGPW graph, where CGPW graphis the abbreviation of Chv�atal-Graham-Perold-Whitesides graph. Any CGPWgraph appears to be a 
ir
ular normalized partitionable graph. The 
onverseis not established but Ba
s�o, Boros, Gurvi
h, Ma�ray and Preissmann 
onje
-2



tured that it holds:Conje
ture 1 [1℄ Every 
ir
ular normalized partitionable graph is a CGPWgraph.We 
all it the 
ir
ular partitionable graph 
onje
ture.In 1984, Grinstead 
laimed, through a 
omputer 
he
k, that this 
onje
tureis true for graphs with a number of verti
es at most �fty, or sixty-one [11℄.In 1998, Ba
s�o, Boros, Gurvi
h, Ma�ray and Preissmann proved it for graphswith size of maximum 
liques et most 5 [1℄.Let G be a �nite group of order n with operation �. Two subsets A and B ofG of 
ardinality at least 2 are said to form a near-fa
torization of G if andonly if n = jAj � jBj + 1 and there is an element u(A;B) of G su
h thatA � B = G n fu(A;B)g. Let S be a symmetri
 subset of G whi
h does not
ontain the identity element e. The Cayley graph with 
onne
tion set S is thegraph with vertex set G and edge set ffi; jg; i�1 � j 2 Sg. We denote byCay(G; S) this graph. Noti
e that the de�nitions of a Cayley graph given inthe literature may di�er. The one we use in this paper is very 
lose from thede�nition given in the book 'Algebrai
 Graph Theory' of Norman Biggs [2℄.Sin
e S is a symmetri
 set su
h that e =2 S, the graph Cay(G; S) is a simplegraph without loops, as are all graphs in this paper.Let � be any 
ir
ular normalized partitionable graph with n verti
es. Let Cbe a maximum 
lique of � and let S be a maximum stable set of �. Then itis easy to see that (C; S) is a near-fa
torization of the group Zn and that �is the Cayley graph of the �nite group Zn with 
onne
tion set (C � C) n f0g.The 
onverse is true: if (A;B) is a near-fa
torization of Zn then the Cayleygraph with 
onne
tion set (A�A) n f0g is a 
ir
ular normalized partitionablegraph [1℄.Due to this equivalen
e, the se
ond 
onstru
tion of Chv�atal, Graham, Peroldand Whitesides had been �rst des
ribed by N.G. De Bruijn in 1956 [6℄, thoughin a di�erent 
ontext.If (A;B) is a near-fa
torization of a �nite group then the Cayley graph with
onne
tion set (A�1 � A) n feg is a normalized partitionable graph (Se
tion2). This observation has motivated this paper: the main aim is to produ
enear-fa
torizations of some �nite groups, so as giving rise to 'new' partition-able graphs. We give 'new' near-fa
torizations for the dihedral groups but theasso
iated Cayley graphs turn out all to be CGPW graphs (Se
tion 3). Thesenear-fa
torizations produ
e all CGPW graphs of even order. In Se
tion 2,we give several results about near-fa
torizations for �nite groups in general,whi
h may be used to speed up exhaustive sear
hes by 
omputer. We givetools to explain why many groups do not have any near-fa
torization at all.3



We also prove that no Cayley graph asso
iated to a near-fa
torization of anabelian group of even order is a 
ounter-example to the Strong Perfe
t GraphConje
ture.2 Near-fa
torizations of �nite groups and partitionable graphsA group is a non-empty set G with a 
losed asso
iative binary operation �,an identity element e, and an inverse a�1 for every element a 2 G. If G has a�nite number of elements, then the 
ardinality of G is denoted by jGj and is
alled the order of G. To avoid a 
on
i
t of notation, we use the symbol � todenote the standard multipli
ation between two integers. An abelian group isa group G su
h that � is 
ommutative, that is g � g0 = g0 � g for all elementsg and g0 of G.If X and Y are two subsets of G, we denote by X�Y the set fx�y; x 2 X; y 2Y g. With a slight abuse of notation, if g is an element of G and X is subsetof G, we denote by gX the set fgg �X and Xg the set X � fgg. FurthermorejXj is the 
ardinality of X, that is the number of elements of X. The subsetX is said to be symmetri
 if X = X�1, where X�1 is the set fx�1; x 2 Xg.Re
all that two subsets A and B of 
ardinality at least 2 of a �nite group Gof order n form a near-fa
torization of G if and only if n = jAj � jBj+ 1 andthere is an element u(A;B) of G su
h that A � B = G n fu(A;B)g: u(A;B)is 
alled the un
overed element of the near-fa
torization. Sometimes, we shallwrite simply u instead of u(A;B). The 
ondition about the 
ardinality of Aand B is required to avoid the trivial 
ase A = G n fug and B = feg. Noti
ethat every element x of G distin
t from u may be written in a unique way asx = a � b with a 2 A and b 2 B. Hen
e a near-fa
torization (A;B) may beseen as a tiling of G n fu(A;B)g with proto tile A.The 
y
li
 group of order n is the group whi
h is generated by an element x oforder n. This group is denoted by Zn. For 
onvenien
e, we use the followingrepresentation of Zn: the elements of Zn are the integers between 0 and n� 1and the operation � is de�ned by x � y = (x + y) (mod n). Due to thisde�nition of the operation of Zn, we denote this operation by + rather than�.Example 2 Let Z13 be the 
y
li
 group of order 13,Let A = f0; 1; 2g and B = f0; 3; 6; 9g.Then A + 0 = f0; 1; 2g, A + 3 = f3; 4; 5g, A + 6 = f6; 7; 8g and A + 9 =f9; 10; 11g. Thus A + B = (Z13 n f12g), that is (A;B) is a near-fa
torization4



of Z13.The following �gure shows the tiling of Z13 n f12g given by (A;B).
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PSfrag repla
ements

0 1 2 3 4 5 6 7 8 9 10 11 12
A = f0; 1; 2gA+ 0B = f0; 3; 6; 9gA+ 3n = 13 A+ 6u = 12 A+ 9

Z13Figure 1. Example of a near-fa
torization of Z13Note that if A and B are seen as sets of integers and + denotes the usualaddition between integers, then A + B is a tiling of the segment [0; 11℄. This
onne
tion is somewhat detailed in page 12.The dihedral group D 2n of even order 2 � n (with n � 3) is the non-abeliangroup generated by two elements r and s su
h that:� r is of order n.� s is of order 2.� s � r = r�1 � sThe problem of 
hara
terizing the near-fa
torizations of the dihedral groupsis addressed in Se
tion 3.Let g1; : : : ; gn be the elements of the group G with g1 = e. If R is any subset ofG, we denote by M(R) the square n� n (0; 1)-matrix de�ned by M(R)i;j = 1if and only if gj 2 giR.Let I be the n� n identity matrix and J be the n� n matrix with all entriesequal to 1. Then De Caen, Gregory, Hughes and Kreher [7℄ observed that(A;B) is a near-fa
torization of G with un
overed element e if and only ifM(A)M(B) = J � I.Sin
e M(A)M(B) = J � I implies that M(B)M(A) = J � I ([5℄), we havethe following property:Lemma 3 [7℄ Let G be a �nite group and A, B be two subsets of G. Then(A;B) is a near-fa
torization of G with u(A;B) = e if and only if (B;A) is anear-fa
torization of G with u(B;A) = e.5



The hypothesis u(A;B) = e is a
tually ne
essary: 
onsider the dihedral groupD 16 of order 16. Let A = fe; r5; sr5g and B = fe; s; r; sr; sr7g. A small 
al
u-lation shows that A � B = D16 n fr7g. Thus (A;B) is a near-fa
torization ofD 16 , though (B;A) is not one as sr5 = e � sr5 = s � r5.The graph G(A;B) asso
iated with a near-fa
torization (A;B) is the Cayleygraph with 
onne
tion set (A�1 � A) n feg.If � is a graph, we denote by !(�) the maximum 
ardinality of a 
lique of �and �(�) the maximum 
ardinality of a stable set of �. We denote by V (�)the vertex set of � and E(�) the edge set of �.The graph � with vertex set V is isomorphi
 to the graph �0 with vertex setV 0 if there exists a bije
tive map f from V onto V 0 su
h that fi; jg is an edgeof � if and only if ff(i); f(j)g is an edge of �0.If e0 is an edge of � we denote by � � e0 the subgraph of � with vertex setV (�) and edge set E(�) n fe0g. Likewise, if e0 is a non-edge of �, we denote by� + e0 the graph with vertex set V (�) and with edge set E(�) [ fe0g. If v isany vertex of �, we denote by � n fvg the indu
ed subgraph of � with vertexset V (�) n fvg and edge set ffx; yg j fx; yg 2 V (�); x 6= v; y 6= vg.A perfe
t mat
hing in a graph with 2n verti
es is a set of n node-disjoint edges.Obviously, distin
t near-fa
torizations of a given group may give rise to thesame graph. In parti
ular, we may left-shift A and right-shift B without al-tering the asso
iated graph:Lemma 4 Let x and y be two elements of G. Then (xA;By) is a near-fa
torization of G su
h that u(xA;By) = x � u(A;B) � y and G(xA;By) isisomorphi
 to G(A;B).PROOF. The proof is straightforward. 2We say that (xA;By) is shift-isomorphi
 to (A;B).Thus due to Lemma 4, we may always assume that the un
overed element ise, without altering the asso
iated graph.In the 
ase of abelian groups, De Caen, Gregory, Hughes and Kreher gave auseful property of near-fa
torizations:Lemma 5 [7℄ Let G be an abelian group and (A;B) be a near-fa
torizationof G. Then there exist two elements x and y of G su
h that xA is symmetri
and that By is symmetri
. 6



An automorphism of G is a bije
tive map h of G onto itself su
h that h(x �y) = h(x) � h(y) for all x and y of G. An inner-automorphism h of G is anautomorphism of G su
h that there exists an element g of G whi
h satis�esh(x) = g � x � g�1 for all x of G.Then we have this obvious Lemma:Lemma 6 Let Cay(G,S) be a Cayley graph with 
onne
tion set S of a groupG. Let h be any automorphism of G. Then the Cayley graph Cay(G,h(S)) isisomorphi
 to Cay(G,S).If y is any element of G, we denote by hyi the 
y
li
 subgroup of G generatedby y. The order of y is the smallest integer k su
h that yk = e and is denotedby o(y). An involution of G is an element of G of order 2. The 
enter of G isthe set of all elements in G whi
h 
ommute with every element of G.Let H be any subgroup of G and (A;B) be a near-fa
torization of G withun
overed element u.A right 
oset of H is any subset Hx with x 2 G. A left 
oset of H is anysubset xH with x 2 G. The proof of Lagrange's Theorem asserts that for anysubgroup H of G, there exists a unique partition of G in right 
osets of H.Likewise there exists a unique partition in left 
osets of H. A subgroup H ofG is normal if for every g of G, we have gH = Hg.A right-tile of A is the tra
e of A onto a right-
oset of H, that is the subset Tis a right-tile of A if and only if there exists g in G su
h that T = A \Hg. Aleft-tile of A is the tra
e of A onto a left-
oset of H�The unique partition of G in right 
osets of H indu
es a unique partition of Ain right-tiles: let fHg1; : : : ; Hgdg be the partition of G in right-
osets, thenthe set of right-tiles of A is fA\Hg1; : : : ; A \Hgdg. If T is a right-tile of Awhi
h is equal to a whole right-
oset, then T is 
alled a H-right-
oset.Let � be the partition of A in right-tiles indu
ed by a given subgroup H.Clearly fTb; T 2 �; b 2 Bg is a partition of G n fug. Hen
e, given thesubgroup H, a near-fa
torization (A;B) may be seen as a tiling of G n fugwith the right-tiles of A as tiles. Let K be any su
h tile and b be any element ofB. Noti
e that Kb lies entirely in a right-
oset of H. Thus this tiling of Gnfugindu
es a tiling for every right-
oset ofH distin
t fromHu and indu
es a tilingof (Hu) n fug. Let Hg be any right 
oset of H: we shall say that the right-tileK is used to 
over Hg if there exists an element b of B su
h that Kb � Hg.The tri
k of many proofs in this paper is to 
olle
t enough informations aboutthe tiling of every right-
oset of H so as being able to get informations aboutthe near-fa
torization (A;B). 7



Example 7 Let (A;B) be the near-fa
torization of the dihedral group D 16given by A = fe; r5; sr5g and B = fs; r; sr; r2; sr2g.Let H := fe; sg be the 
y
li
 subgroup of D 16 generated by s. Then fH, Hr,Hr2; : : : ; Hr7g is the partition of D 16 in right 
osets of H. Hen
e A splits inexa
tly two right-tiles T1 and T2 withT1 = feg = A \HT2 = fr5; sr5g = A \Hr5The tile T2 is a H-right-
oset. The set B has 5 elements, this implies that T2is used to 
over 5 of the 8 right-
osets of H, namely the right-
osets Hr3, Hr6,Hr4, Hr7 and Hr5 be
ause Hr3 = T2s, Hr6 = T2r, Hr4 = T2sr, Hr7 = T2r2and Hr5 = T2sr2.The tile T1 is used exa
tly twi
e to 
over the right-
oset Hr as Hr = fr; srg =T1r [ T1sr. The tile T1 is used exa
tly twi
e to 
over the right-
oset Hr2 asHr2 = fr2; sr2g = T1r2[T1sr2. The last time T1 is used, it is to 
over H nfegas H n feg = fsg = T1s.The following �gure represents this tiling of the right-
osets of H.

PSfrag repla
ements

H es T1sHr rsr T1rHr2 r2sr2T1srHr3 r3sr3T1r
2

Hr4 r4sr4
T1sr2

Hr5 r5sr5
T2s Hr6 r6sr6

T2sr
Hr7 r7sr7

T2sr2T2rT2r2The unique partition of G in left 
osets of H also indu
es a unique partitionof A in left-tiles. If T is a left-tile of A whi
h is equal to a whole left-
oset,then T is 
alled a H-left-
oset.When the un
overed element is e, we know that (B;A) is a near-fa
torizationof G too. Thus we get a tiling of Gnfeg with the left-tiles of A as tiles. Let Kbe any su
h tile and b be any element of B. Noti
e that bK lies entirely in aleft-
oset of H. Hen
e we have a tiling for every left-
oset of H distin
t fromHe and a tiling of (He)nfeg. Let gH be any left 
oset of H: we shall say thatthe left-tile K is used to 
over gH if there exists an element b of B su
h thatbK � gH. 8



Example 8 We 
onsider again the near-fa
torization (A;B) of the dihedralgroup D 16 given by A = fe; r5; sr5g and B = fs; r; sr; r2; sr2g and the 
y
li
subgroup H of D 16 generated by s.As u(A;B) = e, we know that (B;A) is a near-fa
torization of D 16 too.Noti
e that fH; rH; r2H; : : : ; r7Hg is the partition of D 16 in left 
osets of H.Hen
e A splits in exa
tly three left-tiles T1, T2 and T3 withT1 = feg = H \ AT2 = fr5g = r5H \ AT3 = fsr5g = r3H \ AThus no left-tile of A is a left-
oset. This means that the tiling indu
ed by(B;A) is a
tually di�erent of the one indu
ed by (A;B).Let Hg1, Hg2, . . . , Hgd be a partition of G in right-
osets of H. Let X be anysubset of G. We de�ne the integer disprH(X) asdisprH(X) := jfi; 1 � i � d; ; ( Hgi \X ( HgigjThe 
ounter disprH(X) is the number of right-
osets of H whi
h meet X andare not a subset of X.Let displH(X) be the number of left-
osets of H whi
h meet X and are not asubset of X. When H is a normal subgroup then we use rather the notationdispH(X) instead of disprH(X) or displH(X). The notation dispH is related tothe word 'dispersion'.Let y be any element of G. A subset W of G is a left-y-
hain (respe
tivelyright-y-
hain) if jW j 6= jhyij and W 
an be written w � fe; y; : : : ; yjW j�1g(respe
tively fe; y; : : : ; yjW j�1g � w).If H is a 
y
li
 subgroup hyi, then it is useful to subdivide any tile of A inright-y-
hains. For 
onvenien
y, these right-y-
hains will be 
onsidered againas tiles. Let T := fe; y; : : : ; yjT j�1g � t and T 0 := fe; y; : : : ; yjT 0j�1g � t0 betwo maximal right-y-
hains of A not ne
essarily distin
t. Let b and b0 be twoelements of B. The tile T 0b0 is said to be used after the tile Tb if and only ift0 � b0 = yjT j � t � b. This implies that t0�1 � yjT j � t = b0 � b�1 is an element ofB � B�1. When this relation is all we need, we say simply that the tile T 0 isused after the tile T (see �gure 2).The fa
t that G(A;B) is a normalized partitionable graph may be dedu
edfrom [9℄ and [7℄. We give here a dire
t proof whi
h shows how the near-9



T = fe; y; y2g � tT 0 = fe; yg � t0 9>=>; are two right�y�
hains of APSfrag repla
ements
y�4g y�3g y�2g y�1g g yg y2g y3g y4g

T b T 0b0

hyig

T b is used to 
over hyig T 0b0 is used after Tbtb = y�1gt0b0 = y2g 9>=>;) b0 = t0�1y3tbFigure 2. Fragment of the tiling of the 
oset hyigfa
torization (A;B) and the partitionable graph are 
losely related, by exhibit-ing the partition in maximum 
liques and the partition in maximum stablesets of G(A;B) n fxg for every x:Lemma 9 If (A;B) is a near-fa
torization of a �nite group G su
h that A �B = G n feg, then the graph G(A;B) is a normalized partitionable graph withmaximum 
liques fxA; x 2 Gg and maximum stable sets fxB�1; x 2 Gg.PROOF.Claim 10 For every x of G, xA is a 
lique of G(A;B)Let x1 and x2 be two distin
t elements of xA: there exist a1 and a2 of A su
hthat x1 = x � a1 and x2 = x � a2. Then x1�1 � x2 = a1�1 � a2 is an element of(A�1 �A) n feg. Thus fx1; x2g is an edge of G(A;B), and so xA is a 
lique ofG(A;B) 2Claim 11 For every x of G, xB�1 is a stable set of G(A;B).Let x1 and x2 be two distin
t elements of xB�1: there exist b1 and b2 of B10



su
h that x1 = x � b1�1 and x2 = x � b2�1.If fx1; x2g is an edge of G(A;B), then x1�1 � x2 = b1 � b�12 is an element ofA�1 �A. Thus there exist a1 and a2 in A su
h that b1 � b�12 = a1�1 � a2. Hen
ea1 � b1 = a2 � b2. Sin
e (A;B) is a near-fa
torization, this implies that a1 = a2and b1 = b2. Thus x1 = x2, a 
ontradi
tion.Hen
e fx1; x2g is not an edge of G(A;B). This implies that xB�1 is a stableset of G(A;B). 2Claim 12 For every x of G, G(A;B) n fxg is partitioned by the jBj 
liquesfxbA; b 2 Bg and is also partitioned by the jAj stable sets fxa�1B�1; a 2 Ag.Hen
e G(A;B) is a partitionable graph with ! = jAj and � = jBj.If there exists b in B su
h that x 2 xbA then there is an element a in Asu
h that x = x � b � a thus e = b � a, hen
e b = a�1 and so a � b = e in
ontradi
tion with the hypothesis A�B = Gnfeg. Hen
e Sb2B xbA � Gnfxg.If xbA \ xb0A 6= ; with b and b0 in B, then there are a and a0 in A su
h thatx � b � a = x � b0 � a0 thus b � a = b0 � a0. This implies with Lemma 3 again thata = a0 and b = b0. Hen
e jSb2B xbAj = Pb2B jxbAj = jBj � jAj = jG n fxgj.Thus Sb2B xbA = G n fxg and fxbA; b 2 Bg is a partition of G n fxg.If there exists a in A su
h that x 2 xa�1B�1 then there is an element b in Bsu
h that x = x � a�1 � b�1 thus e = a�1 � b�1 and so e = b � a : 
ontradi
tion.Hen
e Sa2A xa�1B�1 � G n fxg. If xa�1B�1 \ xa0�1B�1 6= ; with a and a0 inA, then there are b and b0 in B su
h that x � a�1 � b�1 = x � a0�1 � b0�1 thusa�1 � b�1 = a0�1 � b0�1 and so b � a = b0 � a0. This implies that a = a0 andb = b0. Hen
e jSa2A xa�1B�1j = Pa2A jxa�1B�1j = jBj � jAj = jGnfxgj. ThusSa2A xa�1B�1 = G n fxg and fxa�1B�1; a 2 Ag is a partition of G n fxg. 2Claim 13 For every maximum 
lique Q of G(A;B), there is an element x ofG su
h that Q = xA, hen
e the set of the n maximum 
liques is fxA; x 2 Gg.Likewise the set of the n maximum stable sets of G(A;B) is fxB�1; x 2 Gg.Sin
e G(A;B) is a partitionable graph, we know that G(A;B) has exa
tly nmaximum 
liques. Thus we are done if we show that for every pair of elementsx and y of G su
h that x 6= y, we have xA 6= yA. This is equivalent to showthat if A = zA then z = e. Suppose A = zA. Then for every element a of A,we have that z � a is an element of A. Thus A admits a partition in hzi-right-
osets. Hen
e ! = 0 (mod o(z)) where o(z) is the order of z. Thus n = 1(mod o(z)). As o(z) divides the number of elements of G, we also have n = 0(mod o(z)). Therefore o(z) = 1 and so z = e. This proof also works for themaximum stable sets. 2Claim 14 G(A;B) is a normalized graph.11



Let fx; yg be any edge of G(A;B). Then x�1 � y 2 A�1 � A, thus there existsa 2 A su
h that y 2 xa�1A. Obviously x 2 xa�1A. Hen
e G(A;B) is anormalized graph.2Sin
e the 
ardinality of a maximum 
lique ofG(A;B) is equal to jAj, we denoteby ! the value of jAj. Likewise, we denote by � the value of jBj.A graph � = (V;E) on �! + 1 verti
es is 
alled a web, if the maximum
ardinality of a 
lique of � is !, the maximum 
ardinality of a stable set of� is �, and there is a 
y
li
al order of V so that every set of ! 
onse
utiveverti
es in this 
y
li
al order is an !-
lique. Equivalently, normalized webswith n verti
es are graphs indu
ed by any near-fa
torization (A;B) of Znsu
h that A is an interval.In 1979, V. Chv�atal, R.L. Graham, A.F. Perold and S.H. Whitesides [9℄ in-trodu
ed a method to produ
e a large 
lass of near-fa
torizations of the 
y
li
groups Zn.Two subsets A1 and B1 of N are said to form a near-fa
torization in integersif and only if A1 +B1 = [0::(jA1j � jB1j � 1)℄. Obviously, a near-fa
torizationin integers indu
es a near-fa
torization of ZjA1j�jB1j+1.Let (A1; B1) be a near-fa
torization in integers su
h that A1+B1 = [0::n1�2℄.Let k; k0 be any positive integers.One may obtain a near-fa
torization in integers (A2; B2) su
h that A2+B2 =[0::n2 � 2℄ with n2 := (jA1j � k)� (jB1j � k0) + 1by de�ning:A2 := A1 + (n1 � 1)� [0::k � 1℄ and B2 := B1 + (n1 � 1)� k � [0::k0 � 1℄A CGPW graph is a graph G(A;B) where (A;B) is obtained with a �nitenumber of appli
ations of this method starting from a basi
 fa
torization,that is a near-fa
torization (A1; B1) su
h that A1 = [0::jA1j � 1℄ and B1 =jA1j � [0::jB1j � 1℄.Expli
itly, the CGPW graph G given by 2p positive integers k1; : : : ; k2p is
onstru
ted in this way :� take A1 = [0::k1 � 1℄ and B1 = k1 � [0::k2 � 1℄. Set n1 = k1 � k2 + 1.� take k = k3 and k0 = k4 then 
al
ulate A2 and B2. Set n2 = k1 � k2 � k3 �k4 + 1. 12



� take k = k5 and k0 = k6 then 
al
ulate A3 and B3 starting from A2 and B2.Set n3 = k1 � k2 � k3 � k4 � k5 � k6 + 1.� . . .� until k = k2p�1 and k0 = k2p.G is G(Ap; Bp) and is denoted by C[k1; : : : ; k2p℄. By 
onstru
tion, jApj = k1�k3�: : :�k2p�1 = !, jBpj = k2�k4�: : :�k2p = � and np = k1�k2�: : :�k2p+1 =�� ! + 1.Noti
e that normalized webs are CGPW graphs su
h that p = 1.Following [1℄, a near-fa
torization produ
ed by this method is 
alled a DeBruijn near-fa
torization.Let X be any subset of the group G. We setINT(X) = maxx2G; y2G; x6=yfjxX \ yXjgNoti
e that INT(A) denotes the maximum 
ardinality of the interse
tion be-tween two distin
t !-
liques of G(A;B) and that INT(B�1) denotes the max-imum 
ardinality of the interse
tion between two distin
t �-stable sets.An edge e of a graph � is said to be an �-
riti
al edge if and only if �(� �e) > �(�). Similarly, a non-edge e0 is said to be 
o-
riti
al if and only if!(�+e0) > !(�). It is easy to 
he
k that a graph G(A;B) has a 
o-
riti
al non-edge (respe
tively �-
riti
al edge) if and only if INT(A) = !� 1 (respe
tivelyINT(B�1) = �� 1).Lemma 15 INT(X) = maxg2GnfegfjX \ gXjgPROOF. The proof is straightforward. 2Next lemma will be used in the proofs of this arti
le:Lemma 16 Let G be a �nite group having a near-fa
torization (A;B). Let Hbe any normal subgroup of G. If there is a H-
oset (Ha) in A, then in every
oset of H, a tile T of A may be used at most on
e.PROOF. Let T be any tile of A: there exists y of G su
h that T = A \Hy.Let g be any element of G and let Bg be the set fb 2 B; Tb � Hgg. We wantto show that jBgj � 1. 13



If jBgj � 2 then there exist two distin
t elements b and b0 of B su
h thatTb � Hg and Tb0 � Hg. From T � Hy, we get Hg = Hyb and Hg =Hyb0. Then Hab = ay�1Hyb be
ause H is a normal subgroup. Thus Hab =ay�1Hg = ay�1Hyb0 = Hab0. Sin
e (A;B) is a near fa
torization and Ha � A,fb; b0g � B, this implies that b = b0: a 
ontradi
tion. Hen
e jBgj � 1. 2Noti
e that Example 7 shows that the hypothesis that H must be normal isa
tually needed.We are now ready to state the main result of this paper.Theorem 17 Let G be a �nite group admitting a near-fa
torization (A;B).Let H be a non-trivial proper subgroup of G. Then(1) disprH(A) > 0 and displH(A) > 0.(2) if disprH(A) = 1 or displH(A) = 1 then jHj = 2.(3) if H is a normal subgroup, dispH(A) = 2 and jAj 6= 2, then jHj = n2 .PROOF. Sin
e no spe
ial property is required for B, we may assume thatu(A;B) = e sin
e otherwise all we have to do is to right-shift B by u(A;B)�1.Hen
e we have A �B = G n feg = B � A (Lemma 3).(1) If disprH(A) = 0, then every right-tile of A is a H-right-
oset. Let T be aright-tile of A whi
h is used to 
over the right-
oset He. There exists bof B su
h that Tb � He. Sin
e T is a H-right-
oset, we have Tb = He.Hen
e e 2 A �B, a 
ontradi
tion. Thus disprH(A) > 0.Likewise, we have displH(A) > 0.(2) Suppose that disprH(A) = 1. Let Hg1, Hg2, . . . , Hgd be a partition of Gin right-
osets of H. Sin
e disprH(A) = 1 there exists a unique integer pbetween 1 and d su
h that ; ( A\Hgp ( Hgp. Let A0 := A\Hgp. Thusthe set of right-tiles of A is A0 and some H-right-
osets.Let b be an element of B su
h that A0b � He. Then we have Hgpb =He, whi
h implies that (gp � b) 2 He. Thus, if for every b in B, we haveA0b � He, then gpB � He. We know that (B;A) is a near-fa
torizationwith u(B;A) = e. Hen
e (gpB;A) is a near-fa
torization with un
overedelement gp. As gpB � He, gpB has only one right-tile. Sin
e H is a propersubgroup of G, there exists a right 
oset Hx distin
t from He. ThusjHxj = 0 (mod jgpBj) = 0 (mod �), whi
h implies n = 0 (mod �),
ontradi
ting the relation n = �� ! + 1.Hen
e there exists b in B su
h that A0b lies in a 
oset Hx distin
t fromHe. Obviously A0 is the only tile of A whi
h 
an be used to 
over Hxbe
ause the other tiles are H-right-
osets thus jHxj = 0 (mod jA0j).The tile A0 is again the only tile whi
h 
an be used to 
over He, thusjHej = 1 (mod jA0j). Hen
e jA0j = 1.14



Let H 0 be the 
onjugate subgroup g�1p Hgp of H. Let H 0g01, H 0g02, . . . ,H 0g0d be a partition of G in right-
osets of H 0. For every i between 1and d, let Bi := B \ H 0g0i. Then for every i between 1 and d, we have(A0 �Bi) � (Hgp � g�1p Hgpg0i) = Hgpg0i.Let i be any integer between 1 and d. If Bi 6= ; then A0 is used at leaston
e to 
over Hgpg0i. Thus Hgpg0i is 
overed with the right-tile A0 only.Hen
e we have (Hgpg0i)nfeg = [b2B; A0b�Hgpg0iA0b. Let b be any element ofB and let j be the integer su
h that b 2 Bj. Thus A0b � Hgpg0j = gpH 0g0j.Hen
e, if b is not in Bi then A0b is not a subset of Hgpg0i. Thus we haveA0�Bi = (Hgpg0i)nfeg. Sin
e jA0j = 1, we must have jBij = j(Hgpg0i)nfegj.Hen
e we have for all i between 1 and d, jBij = 0 or jBij = jHgpg0i nfegj. Thus disprH0(B) � 1. We know that disprH0(B) = 0 is impossiblea

ording to the �rst se
tion of the proof of this Theorem. Therefore wehave disprH0(B) = 1. There exists a unique integer p0 between 1 and dsu
h that Bp0 6= ; and Bp0 6= H 0g0p0. We set B0 := Bp0. Then we getjB0j = 1 as we have seen for A0.We have A0 � B0 = (Hgpg0p0) n feg. If Hgpg0p0 6= He, then we havejHj = jA0 � B0j = 1, hen
e H is the trivial subgroup: a 
ontradi
tion.Thus Hgpg0p0 = He, whi
h implies jHj = 2 as required.If displH(A) = 1 then the same proof may be applied to the quasi-fa
torization (B;A) by working with the left-
osets of H.(3) Noti
e that H is assumed to be normal.Sin
e dispH(A) = 2, there exist two distin
t 
osets Hg1 and Hg2 of Gsu
h that ; ( A\Hg1 ( Hg1 and ; ( A\Hg2 ( Hg2. Let A1 := A\Hg1and A2 := A \Hg2.If there is a H-
oset in A then by Lemma 16, A1 (and A2) 
annotbe used twi
e on the same 
oset. Thus A1 is used at least on
e on a
oset distin
t from He otherwise we would have � � 1. Let Hv be su
ha 
oset. Obviously Hv is not 
overed with only A1 be
ause A1 is nota H-
oset. Hen
e A1 and A2 are used exa
tly on
e to 
over Hv. ThusjHvj = jA1j+ jA2j. Hen
e n = 0 (mod jA1j+ jA2j). If C is any H-
osetof A, we have jCj = jHj = jA1j + jA2j. Thus ! = 0 (mod jA1j + jA2j).From n = ��!+1, we get n = 1 (mod jA1j+ jA2j) 
ontradi
ting n = 0(mod jA1j+ jA2j). Therefore there is no H-
oset in A.Thus A = A1[A2. As H is a proper subgroup of G, there exists x su
hthat He \Hx = ;.If jA1j = jA2j, then due to the 
over of Hx, we get n = 0 (mod jA1j).From n = � � ! + 1, we have n = 1 (mod jA1j). Thus jA1j = 1. Thismeans that jAj = 2, whi
h is 
ontradi
tory to the hypothesis of theTheorem. Hen
e jA1j 6= jA2j and we may assume that jA1j > jA2j.If z is any element of G, let nz(A1) (respe
tively nz(A2)) be the numberof times the tile A1 (respe
tively A2) is used to 
over the 
oset Hz, thatis nz(A1) = jfb 2 Bj A1b � Hzgj (respe
tively nz(A2) = jfb 2 Bj A2b �Hzgj). Let nmax (A1) := maxz2Gfnz(A1)g, nmin (A1) := minz2Gfnz(A1)g,15



nmax (A2) := maxz2Gfnz(A2)g and nmin (A2) := minz2Gfnz(A2)g.Claim 18 nmax (A1) = nmax (A2)nmin (A1) = nmin (A2)PROOF. Let b be any element of B and z be any element of G.If A1b � Hz then b 2 Hg1�1z as A1 � Hg1 andH is a normal subgroupof G. From A2 � Hg2, we get A2b � Hg2Hg1�1z = Hg2g1�1z.Likewise, if A2b � Hg2g1�1z then A1b � Hz. Hen
e A1 � Hz if andonly if A2b � Hg2g1�1z. And so for any z in G, there exists z0 and z00su
h that nz(A1) = nz0(A2) and nz(A2) = nz00(A1).Thus nmin (A1) = nmin (A2) and nmax (A1) = nmax (A2). Let nmax :=nmax (A1) and nmin := nmin (A1). 2Claim 19 nmax > nminPROOF. If nmax = nmin then jHxj = nmin � (jA1j+ jA2j) and so n = 0(mod !), 
ontradi
ting n = �� ! + 1. 2To simplify the notation, let a1 = jA1j and let a2 = jA2j.Claim 20 nmax = nmin + 1, a1 = a2 + 1 and jHj = nmax a1 + nmina2.PROOF. If g is any element of G, we set �(g) = 1 if Hg = H and weset �(g) = 0 otherwise.Let z be an element of G su
h that nz(A2) = nmax (by de�nition su
han element exists), we �rst show that nz(A1) = nmin .By de�nition there exists g in G su
h that ng(A1) = nmin . Let k � nminand l � nmax be integers su
h that jHzj = ka1+nmaxa2+ �(z) = jHgj =nmina1+ la2+ �(g). We get that (k�nmin )a1 = (l�nmax )a2+ �(g)� �(z).Sin
e k � nmin � 0, a1 > a2 � 1, 1 � nmax � 0, �(g)� �(z) � 1, we getthat k = nz(A1) = nmin .Now let h be an element of G su
h that nh(A1) = nmax .We have jHzj = nmina1+nmaxa2+�(z) = jHhj � nmaxa1+nmina2+�(h)and so �(z) � �(h) � (nmax � nmin )(a1 � a2). Sin
e nmax > nmin � 0,a1 > a2 � 0 and �(z) � �(h) � 1, we get nmax = nmin + 1, a1 = a2 + 1,�(z) = 1, �(h) = 0 and nh(A2) = nmin . Noti
e that from these equalitiesjHj = nmax a1 + nmina2 = nmina1 + nmaxa2 + 1. 2Claim 21 H is of 
ardinality n2PROOF. Let z be any element of G. From what pre
edes it is not pos-sible that nz(A1) = nz(A2) = nmax or nz(A1) = nz(A2) = nmin , soeither nz(A1) = nmax , nz(A2) = nmin and Hz 6= He, or nz(A1) = nmin ,16



nz(A2) = nmax and Hz = He. Let d be the number of 
osets of H,then jBj = Pi=1;:::;d ngi(A1) = Pi=1;:::;d ngi(A2) = (d � 1)nmax + nmin =(d� 1)nmin + nmax . Sin
e nmax 6= nmin , this implies that d = 2.2Example 22 Let (A;B) be the near-fa
torization of D 16 introdu
ed in Exam-ple 7: A = fe; r5; sr5g and B = fr; r2; s; sr; sr2g.Let H1 := fe; sr5g. Sin
e dispH1(A) = 1, H1 must be of 
ardinality 2.Let H2 := fe; r; r2; r3; r4; r5; r6; r7g. Sin
e dispH2(A) = 2, jAj 6= 2 and H2 isnormal, H2 must be of 
ardinality 162 = 8.Theorem 17 may be used to de
rease the number of 
ases to be investigatedwhen looking for a near-fa
torization for a given group with the help of a
omputer. From the list of all subsets A of G of 
ardinality !, we may keeponly those satisfying Theorem 17 and then for every of these A 
he
k if thereexists a subset B of 
ardinality � su
h that (A;B) is a near-fa
torization. Forevery group of small order (that is less than 1000), it is quite easy to get thelist of all subgroups of G and the list of all normal subgroups of G using GAP[10℄ for instan
e. Theorem 17 is an interesting �lter be
ause it may be appliedto any group. Our implementation [15℄ revealed that it performs quite wellwhen ! or � is small as one might expe
t. In some groups, there is no subsetsat all satisfying Theorem 17 with the required 
ardinality. For instan
e, theonly groups of order 16 with a subset A of 
ardinality 3 satisfying Theorem17 are the dihedral groups and 
y
li
 groups.We will use Theorem 17 to derive Lemma 24 and Lemma 28.Lemma 23 l If ! = 3, A is symmetri
 and n is odd then G(A;B) is a web.PROOF. Sin
e n is odd, there is no involution in G. This implies with A =A�1 that there is a in G su
h that A = fa�1; e; ag. Let H be the 
y
li
subgroup generated by a. Noti
e that A � H, thus disprH(A) = displH(A) = 1.If H is distin
t from G then by Theorem 17, we must have jHj = 2, whi
h isimpossible as n is odd. Thus G is a 
y
li
 group. Sin
e ! = 3, G(A;B) is aweb [1℄. 2Andr�as Seb�o proved in [16℄ that the minimal imperfe
t graphs 
ontaining
ertain 
on�gurations of two �-
riti
al edges and one 
o-
riti
al non-edge areexa
tly the odd holes or anti-holes.S. Markossian, G. Gasparian, I. Karapetian and A. Markosian also studied in[13℄ su
h edges and non-edges in 
onjun
tion with the Strong Perfe
t Graph17



Conje
ture.Re
all that a graph G(A;B) has a 
o-
riti
al non-edge if and only if INT(A) =! � 1. Next Lemma partially 
hara
terizes graphs G(A;B) with a 
o-
riti
alnon-edge.Lemma 24 Let G be a �nite group su
h that every involution z 
ommuteswith every element of G. If (A;B) is a near-fa
torization of G su
h thatINT(A) = ! � 1 then G is a 
y
li
 group and G(A;B) is a web.PROOF. Sin
e INT(A) = ! � 1, by Lemma 15 there exists an element y ofG su
h that jA\yAj = !�1. Let H be the 
y
li
 subgroup of G generated byy. Noti
e that A admits a unique partition in maximal right-y-
hains and H-right-
osets. Let k be the number of maximal right-y-
hains in this partition.Then we have jA \ yAj = ! � k. Thus there is exa
tly one maximal right-y-
hain in A. Let T := fe; y; y2; : : : ; yjT j�1g � t be this maximal right-y-
hain.Noti
e that T is a subset of a H-right 
oset. Therefore we have disprH(A) = 1,as the right-tiles of A are T and H-right-
osets,Obviously y 6= e, hen
e H is not the trivial subgroup of G. Thus by Theorem17, we have H = G or jHj = 2.If jHj = 2 then y is an involution of G distin
t from e, and we must have jT j =1. Hen
e there must be some H-right-
osets in A. The element y 
ommuteswith every element of G, hen
e H is a normal subgroup of G. If T is usedonly on the 
oset Hu(A;B), then � � 1, whi
h is impossible. Therefore T isused in the 
over of another 
oset Hx. As only T is used on Hx, it is used atleast twi
e, whi
h is in 
ontradi
tion with Lemma 16 be
ause H is a normalsubgroup of G.Therefore H = G, that is G is a 
y
li
 group.Hen
e A = T and G(t�1A;B) is a web. Thus G(A;B) whi
h is isomorphi
 toG(t�1A;B) is a web. 2Lemma 24 is not true if the hypothesis that every involution is in the 
enterof G is not assumed. Indeed the dihedral groups are examples of non-
y
li
groups having near-fa
torizations (A;B) and INT(A) = ! � 1 (see Se
tion3). Besides we give in Se
tion 4, a graph G(A;B) with 50 verti
es su
h thatINT(A) = ! � 1, whi
h is not a web.Corollary 25 If G is a non-
y
li
 �nite abelian group then it admits no near-fa
torization (A;B) su
h that INT(A) = ! � 1.18



Corollary 26 If G is a non-
y
li
 �nite group of odd order then it admits nonear-fa
torization (A;B) su
h that INT(A) = ! � 1.PROOF. Indeed there is no involution in a group of odd order. 2Example 27 Let G be any group of order 3� p+1 (p a prime) su
h that its
enter 
ontains all its involutions, with a symmetri
 near-fa
torization (A;B).We may assume that jAj = 3. Sin
e jAj is odd and A is symmetri
, there mustbe an element w in A su
h that w2 = e. Let a be another element in A. Thusfa; wg � A\awA and so INT(A) � 2. Then by Lemma 24, G must be 
y
li
.This implies for instan
e that 7 groups, out of the 14 groups of order 16, haveno symmetri
 near-fa
torizations.There are many non-abelian groups 
ontaining in their 
enter all their involu-tions: a

ording to GAP [10℄ there are 58 su
h groups out of the 267 groups oforder 64, and 52 su
h groups out of the 231 groups of order 96. Noti
e that forn = 64 or 96, ! or � must be prime, hen
e any CGPW graph of these ordersis a web. Thus if any of these groups has a near-fa
torization (A;B) then thegraph G(A;B) is not a CGPW graph. Noti
e that for n = 64, these groups donot have any symmetri
 near-fa
torization (A;B) su
h that jAj = 3.Lemma 28 Let G be a �nite group su
h that all its 
y
li
 subgroups are nor-mal and admitting a near-fa
torization (A;B) su
h that INT(A) = ! � 2.Then� If G is abelian then G is 
y
li
.� If G is not abelian then the order of G is a multiple of 4, G has an elementy of order n2 and y n4 is the only involution of G .PROOF. Sin
e INT(A) = !� 2, we have ! � 3 and there exists an elementy of G su
h that jA \ yAj = ! � 2. Let T1 := fe; y; y2; : : : ; yjT1j�1g � t1 andT2 := fe; y; y2; : : : ; yjT2j�1g � t2 be the two maximal right-y-
hains of A. Letu be the un
overed element. Let H be the 
y
li
 subgroup generated by theelement y. Hen
e by assumption on G, H is a non-trivial normal subgroup ofG:If G = H then G is abelian and 
y
li
, thus we are done. Hen
e we may assumethat H ( G.Sin
e A is made of T1, T2 and some H-
osets, we have disprH(A) � 2. ByTheorem 17, we have disprH(A) > 0. If disprH(A) = 1 then by Theorem 17again, we get jHj = 2. Sin
e disprH(A) = 1, T1 and T2 must lie in the sameright-
oset of H. Thus T1[T2 is aH-
oset, and this implies that disprH(A) = 0,a 
ontradi
tion. 19



Hen
e disprH(A) = 2 and by Theorem 17 again,H has 
ardinality n2 . Thereforey is an element of order n2 and there is no H-
oset in A.Claim 29 We have jT1j 6= jT2j.PROOF. Suppose that jT1j = jT2j. As there is no H-
oset in A, we havejHj = 1 (mod jT1j) due to the 
over of the 
oset Hu(A;B). Then we alsohave jHj = 0 (mod jT1j) due to the 
over of the other 
oset. Hen
e jT1j = 1.This implies that jAj = 2. This is impossible as ! � 3. 2Thus jT1j 6= jT2j and we may assume that jT2j < jT1j.Claim 30 The pair fHt1; Ht2g is a partition of G in right 
osets.PROOF. If t1 and t2 lie in the same right 
oset then disprH(A) � 1, 
ontra-di
ting disprH(A) = 2. Thus Ht1 \Ht2 = ;. As jHj = n2 , we are done. 2Claim 31 We have (Ht1)�1 = Ht1 and (Ht2)�1 = Ht2.PROOF. Suppose that H = Ht1 then we obviously have (Ht1)�1 = Ht1.Sin
e the inversion map is a bije
tive map, this implies that (Ht2)�1 = Ht2.The proof for the 
ase H = Ht2 is similar. 2Claim 32 If G is abelian then G is a 
y
li
 group.PROOF. If G is abelian then let b be any element of B distin
t from t�12 �y�jT2j � u, that is, T2b is not followed by the un
overed element u. Hen
eT2b is followed by a tile T2b0 or by a tile T1b0, that is t2 � b0 = yjT2j � t2 � b ort1�b0 = yjT2j�t2�b. Thus b0 = yjT2j�b or b0 = yjT2j�t�11 �t2�b. If b0 = yjT2j�b thent1�b0 = t1�yjT2j�b. Sin
e jT2j < jT1j, yjT2j�t1 is an element of T1. Thus yjT2j�t1is an element of A and we have a 
ontradi
tion. Therefore b0 = yjT2j�t�11 �b�t2.Let y0 := yjT2j � t�11 � t2. We have seen that for every element b of B ex
eptmaybe one, y0b is an element of B. Thus INT(B) = �� 1. Sin
e G is abelian,(B;A) is obviously a near-fa
torization of G. Hen
e by Lemma 24, G must be
y
li
. 2Claim 33 If G is not abelian then n is a multiple of 4 and y n4 is the onlyinvolution of G . 20



PROOF. By assumption, G is not abelian.Let q be an element of G su
h that Hq 6= H.If n is not a multiple of 4 then jHj is odd. Hen
e due to Fa
t 31 there exists atleast one element z in Hq su
h that z2 = e. Sin
e hzi is a normal subgroup ofG, z must 
ommute with every element of G and in parti
ular with y. Sin
ez is an element of Hq, there exists an integer i su
h that z = yi � q. Fromz � y = y � z, we get yi � q � y = yi+1 � q. Thus q � y = y � q. Due to Fa
t 30,G must be abelian, whi
h is impossible. Thus n is a multiple of 4 and so y n4is an involution of G.Obviously in the 
oset H there are exa
tly two involutions: the elements e andy n4 . Thus if there is another involution in G then there must be an involutionz in Hq, and we have seen that in this 
ase G must be abelian, whi
h isimpossible. Hen
e we are done.2Corollary 34 If (A;B) is a near-fa
torization of a �nite abelian group Gsu
h that jAj � 4 then G is 
y
li
 [7℄ and G(A;B) is a CGPW graph.PROOF. Let (A;B) be a near-fa
torization of G su
h that jAj � 4. Sin
e Gis abelian, we use the additive notation + to denote the operation of G.If jAj � 3 then obviously INT(A) � !� 2. Thus G is 
y
li
 by Lemma 28 andCorollary 25. Then it is proved in [1℄ that G(A;B) must be a CGPW graph.If jAj = 4 then n is odd and there is no involution in G. By Lemma 5, thereexist x and y in G su
h that (x+A;B + y) is a symmetri
 near-fa
torization.Let A0 := x+A. Sin
e A0 = �A0 and there is no involution, there are a and a0in G su
h that A0 = fa; a0;�a;�a0g. Then fa; a0g � A0 \A0 + (a+ a0). Hen
eINT(A0) � !�2. By Lemma 28 and Corollary 25, G must be the 
y
li
 group.Thus G(A;B) � G(A0; B0) is a CGPW graph [1℄. 2Example 35 The Quaternion group Q8 of order 8 is an example of a non-abelian �nite group su
h that all its 
y
li
 subgroups are normal.There does not seem to be many non-abelian groups su
h that all their 
y
li
subgroups are normal. A

ording to GAP, there is only one (out of 267) su
hgroup of order 64: the 262th group. As it has no element of order 32, we knowthat is has no near-fa
torization (A;B) su
h that jAj = 7 and INT(A) � 5.There is also only one (out of 231) su
h group of order 96: the 222th group.This group does not have any element of order 48.21



In the remaining of this se
tion, we study the problem of 
hara
terizingthe minimal imperfe
t graphs in the 
lass of the graphs produ
ed by near-fa
torizations of �nite groups. We �rst need to re
all some results about min-imal imperfe
t graphs.A small transversal is a subset of verti
es T su
h that T is of 
ardinality atmost !+��1 and T meets every maximum 
lique and every maximum stableset.In 1976, V. Chv�atal found a very useful property of minimal imperfe
t graphswhi
h states that a minimal imperfe
t graph 
ontains no small transversal [8℄.In 1998, G. Ba
s�o, E. Boros, V. Gurvi
h, F. Ma�ray and M. Preissmann[1℄ introdu
ed a suÆ
ient 
ondition for partitionable graphs to have a smalltransversal 
alled the 'Parents Lemma'. A maximum 
lique K of G is a motherof a vertex x 2 K if every maximum 
liqueK 0 
ontaining x satis�es jK\K 0j �2. Similarly, a maximum stable set S of G is a father of a vertex x 2 S if everymaximum stable set S 0 
ontaining x satis�es jS \ S 0j � 2.Lemma 36 'The Parents Lemma' [1℄ If a vertex of a partitionable graphhas a father and a mother then the graph has a small transversal.Then we have the following result:Lemma 37 Let G be a �nite group of even order su
h that every involu-tion y 
ommutes with every element of G. If (A;B) is any symmetri
 near-fa
torization of G then G(A;B) has a small transversal, hen
e is not minimalimperfe
t.PROOF. Sin
e n is even, ! and � are ne
essarily odd.As ! is odd, there is an element y of A su
h that y2 = e. We are going to showthat A is a mother of y. Let pA be any !-
lique 
ontaining y distin
t from A.Hen
e there is a in A su
h that y = p�a. If a�1 = y then p = y �a�1 = y2 = eand so pA = A, a 
ontradi
tion. Thus a�1 is not equal to y. We have a�1 =y � p = p � y be
ause y 
ommutes with p. Thus a�1 is an element of p � A.Hen
e fa�1; yg � A \ pA. This means that A is a mother of y.Likewise there exists an element x of B su
h that x2 = e and B = B�1 is afather of x. Hen
e yx�1B = yx�1B�1 is a father of y. By applying the ParentsLemma, we see that the graph G(A;B) has a small transversal. 2Corollary 38 Let G be a �nite abelian group of even order. If (A;B) is anynear-fa
torization of G then G(A;B) is not minimal imperfe
t.22



3 Near-fa
torizations of the dihedral groupsIn this se
tion, we show how to 
arry any near-fa
torization of a 
y
li
 groupof even order to the dihedral group of the same order.We begin by introdu
ing a map � from Z2n into D 2n .An even element of Z2n is an element of 2Z2n. The odd elements are the otherelements of Z2n. Noti
e that if x is an even element of Z2n, then there existsa unique integer y between 0 and (n� 1) su
h that x = 2� y. We denote byx2 this integer.If x and y are two even elements of Z2n then we have x+y2 = x2 + y2 (mod n)and if x is any element of Z2n then we have 2x2 = x (mod n).Let � be the bije
tive map of Z2n onto D 2n de�ned by:� : Z2n ! D2nx is even 7! r x2x is odd 7! sr x�12We now state some properties of � whi
h are useful for the proofs:Lemma 39 For every x and y of Z2n, we have� if y is even, �(x) � �(y)�1 = �(x� y) and �(x+ y) = �(x) � �(y).� if y is odd, �(x) � �(y)�1 = �(y � x).PROOF. If x and y are even then we have �(x + y) = r x+y2 = r x2+ y2 =r x2 �r y2 = �(x)��(y) and �(x�y) = r x�y2 = r x2+�y2 = r x2 �r�y2 = �(x)��(y)�1.If x is odd and y is even then we have �(x + y) = sr x+y�12 = sr x�12 + y2 =sr x�12 � r y2 = �(x) � �(y) and �(x � y) = sr x�y�12 = sr x�12 � y2 = sr x�12 � r�y2 =�(x) � �(y)�1.Hen
e, if y is even then we have �(x + y) = �(x) � �(y) and �(x) � �(y)�1 =�(x� y).If x is even and y is odd then we have �(x) � �(y)�1 = r x2 � (sr y�12 )�1 =sr y�x�12 = �(y � x). 23



If x is odd and y is odd then we have �(x) � �(y)�1 = sr x�12 � (sr y�12 )�1 =r y�x2 = �(y � x).Hen
e, if y is odd then we have �(x) � �(y)�1 = �(y � x). 2From a near-fa
torization (A;B) of Z2n, we get a near-fa
torization of D 2nthis way:Algorithm 1 Carrying a near-fa
torization of Z2n into D 2nInput: a near-fa
torization (A;B) of Z2nOutput: a near-fa
torization (A0; B0) of D 2nStep 1: �nd an element x of Z2n su
h that A + x is symmetri
 and letA1 := A + x (exists by Lemma 5).Step 2: take an element a1 of A1 and let A2 := A1 + a1.Step 3: let B0 be the set of the even elements of B and B1 be the set of theodd elements of B. Then take A0 := �(A2) and B0 := �(B0) [ �(B1)ra1 .We say that (A0; B0) is a dihedral near-fa
torization asso
iated to (A;B). We
all De Bruijn dihedral near-fa
torization any dihedral near-fa
torizations as-so
iated to a De Bruijn near-fa
torization.Obviously one may get several distin
t near-fa
torizations of D 2n through thisalgorithm from one near-fa
torization of Z2n as x is not uniquely de�ned inStep 1 and neither is a1 in Step 2.We �rst prove that any 
ouple (A0; B0) produ
ed by this algorithm is indeeda near-fa
torization of D 2n .Theorem 40 Let (A;B) be a near-fa
torization of Z2n. Let (A0; B0) be anoutput of algorithm 1 with input (A;B). Then (A0; B0) is a near-fa
torizationof D 2n .PROOF. Re
all that due to the algorithm, we have A0 = �(A2) and A2 =A1 + a1 where A1 is symmetri
 and a1 is an element of A1.Claim 41 For every b of B, there exists b0 in B0 su
h that �(A2 + b) = A0b0.PROOF. If b is even then let a be any element of A2. By Lemma 39, we have�(a+ b) = �(a) � �(b). Hen
e �(A2 + b) � �(A2) � �(b). Sin
e � is a bije
tivemap, we get �(A2 + b) = �(A2) � �(b) with �(b) 2 B0. Thus we are done.If b is odd then let a be any element of A2. By de�nition of A2, a � a1 is anelement of A1, whi
h is a symmetri
 set. Hen
e a1�a is an element of A1. Thus24



2a1 � a is an element of A2. Noti
e that 2a1 + b is odd. Let b0 := �(2a1 + b).As �(2a1+ b) = sra1+ b�12 = sr b�12 � ra1 , b0 is an element of B0. If a is even then�(2a1� a) � b0 = ra1�a2 � sra1+ b�12 = sr a+b�12 = �(a+ b). Hen
e �(a+ b) 2 A0b0.If a is odd then �(2a1 � a) � b0 = sr 2a1�a�12 � sr 2a1+b�12 = r a+b2 = �(a + b).Thus �(a + b) 2 A0b0. Therefore we have �(A2 + b) � A0b0. This implies that�(A2 + b) = A0b0 be
ause � is a bije
tive map. 2Claim 42 The 
ouple (A0; B0) is a near-fa
torization of D 2n .PROOF. We have seen that f�(A2+ b); b 2 Bg � fA0b0; b0 2 B0g. Sin
e � isa bije
tive map, there exists u in D 2n su
h that f�(A2+b); b 2 Bg is a partitionof D 2n n fug. As B and B0 are of equal 
ardinality, we get that fA0b0; b0 2 B0gis a partition of D 2n n fug. Therefore (A0; B0) is a near-fa
torization of D 2n .2Example 43A2= f0; 1; 2; 9; 10; 11; 18; 19; 20gB= f0; 3; 6; 27; 30; 33; 54; 57; 60gA0= fe; s; r; sr4; r5; sr5; r9; sr9; r10gB0= fe; r3; sr11; r15; sr23; sr26; r27; r30; sr38gThe 
ouple (A0; B0) is a near-fa
torization of D 82 indu
ed by the near-fa
tori-zation (A2; B) of Z82We now prove that the graph G(A0; B0) is not altered by the 
hoi
e of x inStep 2 or by the 
hoi
e of a1 in Step 3.Lemma 44 Let (A;B) be a near-fa
torization of Z2n. Let (A0 ,B0) and (A00,B00) be two dihedral near-fa
torizations asso
iated to (A, B). Then the graphG(A0, B0) is isomorphi
 to the graph G(A00, B00).PROOF. By 
onstru
tion, there exist two elements x and y of Z2n su
h thatA0 = �(A+ x) and A00 = �(A+ y).We haveA0=�(A+ x)= fri j 0 � i � n� 1; 2i (mod 2n) 2 A+ xg[fsri j 0 � i � n� 1; 2i + 1 (mod 2n) 2 A+ xg25



and A00=�(A+ y)= fri j 0 � i � n� 1; 2i (mod 2n) 2 A+ yg[fsri j 0 � i � n� 1; 2i+ 1 (mod 2n) 2 A+ ygIf y� x is even then by taking the unique integer j between 0 and n� 1 su
hthat 2j = 2i + x� y (mod 2n), we getA00= nrj+ y�x2 j 0 � j � n� 1; 2j (mod 2n) 2 A+ xo[nsrj+ y�x2 j 0 � j � n� 1; 2j + 1 (mod 2n) 2 A+ xoHen
e, A00 = A0r y�x2 . Thus we have A00�1A00 = r� y�x2 A0�1A0r y�x2 . This meansthat the 
onne
ting set (A00�1A00)nfeg is the image of (A0�1A0)nfeg under theinner automorphism g 7! r� y�x2 gr y�x2 . Then Lemma 6 implies that the Cayleygraph G(A00; B00) is isomorphi
 to the Cayley graph G(A0; B0).The 
ase y � x is odd is slightly tri
kier.Let k be an element of Z2n su
h that A+ k is symmetri
. Let Asym := A+ k.We have A0 = �(Asym + (x� k)) and A00 = �(Asym + (y � k)). ThusA0=�(Asym + (x� k))= fri j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (x� k)g[fsri j 0 � i � n� 1; 2i + 1 (mod 2n) 2 Asym + (x� k)gand A00=�(Asym + (y � k))= fri j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (y � k)g[fsri j 0 � i � n� 1; 2i+ 1 (mod 2n) 2 Asym + (y � k)gFor every integer p between 0 and n� 1, we have:A0srp= nsrp�i j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (x� k)o[nrp�i j 0 � i � n� 1; 2i+ 1 (mod 2n) 2 Asym + (x� k)o= nsrp+i j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (k � x)o26



[nrp+i j 0 � i � n� 1; 2i� 1 (mod 2n) 2 Asym + (k � x)o= nsrp+i j 0 � i � n� 1;2i+ x� 2k + y (mod 2n) 2 Asym + (y � k)g[nrp+i j 0 � i � n� 1;2i� 1 + x� 2k + y (mod 2n) 2 Asym + (y � k)gThus by taking p = �k + (y+x)�12 (mod n), we have A0srp = A00. Hen
eA00�1A00 = srpA0�1A0srp. Therefore the 
onne
ting set (A00�1A00) n feg is theimage of (A0�1A0) n feg under the inner automorphism g 7! srpgsrp. Thisimplies that the Cayley graph G(A00; B00) is isomorphi
 to the Cayley graphG(A0; B0).2Thus from a near-fa
torization (A;B) of Z2n, we get a unique partitionablegraph G(A0; B0) where (A0; B0) is any dihedral near-fa
torization asso
iated to(A;B). It remains to know if we may get some 'new' partitionable graphs thisway. We have not su

eeded in proving that in general the graph G(A0; B0)is isomorphi
 to G(A;B) when (A;B) is any near-fa
torization of the 
y
li
group.Nevertheless, in Theorem 45 we prove that this is true for all the graphsG(A;B) on 
y
li
 groups known so far.Theorem 45 If (A;B) is a De Bruijn near-fa
torization of Z2n then the graphG(A;B) is isomorphi
 to the graph G(A0; B0) where (A0; B0) is a dihedral near-fa
torization asso
iated to (A;B).PROOF. We �rst 
al
ulate a dihedral near-fa
torization (A0; B0) asso
iatedto (A;B). Noti
e that due to Lemma 44, we may pro
eed without having tofear any loss of generality.Let k1; : : : ; k2p be the parameters of the graph G(A;B), that is G(A;B) =C[k1; : : : ; k2p℄. As 2n is even, jAj and jBj must be odd. This implies thatthe 2p parameters ki are all odd. Thus for every j between 1 and p, nj =k1 � k2 � k3 � � � � � k2j + 1 is even. We set n0 := 2 in order to avoid a spe
ial
ase in the proof.Let a+ := (k1 � 1) +Pp�1j=1 ��2ji=1ki� (k2j+1 � 1). Noti
e that a+ is the greatestelement of A seen as a set of integers and that it is an even element of A su
hthat A� a+2 is symmetri
. Thus in Step 1, we may take x = �a+2 .27
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PSfrag repla
ements
A1 = f0; 1; 2g B1 = f0; 3; 6g n1 = 10!1 = 3; �1 = 3
A2 = f0; 1; 2g+ 9 � f0; 1g n2 = 19!2 = !1 � 2
B2 = f0; 3; 6g+ 18 � f0; 1g �2 = �1 � 2

n = 37

9
18

36
Figure 3. The De Bruijn near-fa
torization given by a1 = 3, a2 = 3, a3 = 2, a4 = 1,a5 = 1 and a6 = 2Sin
e �x is an element of A � a+2 , we may take A2 := A in Step 2. Hen
eby taking A0 := �(A) and B0 as de�ned in Step 3, we get a dihedral near-fa
torization asso
iated to (A;B).Claim 46 We have A0 � A0�1 = �(A� A).PROOF. We have to prove that �(A) � �(A)�1 = �(A� A).We �rst prove the in
lusion �(A) � �(A)�1 � �(A�A). Let w be any elementof �(A)��(A)�1: there exist a and a0 in A su
h that w = �(a)��(a0)�1. Hen
eby Lemma 39, we have w = �(a � a0) or �(a0 � a). In both 
ases, w is anelement of �(A� A). Thus �(A) � �(A)�1 � �(A� A).We now prove the 
onverse in
lusion. Let w be any element of �(A�A); thereexist a and a0 in A su
h that w = �(a0 � a).If a0 is even then w = �(a) � �(a0)�1 hen
e it is an element of �(A) � �(A)�1.If a0 is odd, then due to the de�nition of A, there exist integers Æ0; Æ1; : : : ; Æp�1and Æ00; Æ01; : : : ; Æ0p�1 su
h that a = Æ0 + (n1 � 1)Æ1 + : : : + (np � 1)Æp�1 anda0 = Æ00+(n1� 1)Æ01+ : : :+(np� 1)Æ0p�1 with 0 � Æi; Æ0i � (k2i+1� 1) for everyi between 0 and p � 1. Sin
e a0 is odd, there must be an integer j between 0and p � 1 su
h that 0 < Æ0j < (k2j+1 � 1) be
ause all the k2i+1 � 1 are even.Thus k2j+1 > 1. 28



If Æj = 0 then a+(nj�1) is an element of A and a0+(nj�1) is an element of A.Then w = �(a�a0) = �((a+nj�1)�(a0+nj�1)) = �(a+nj�1)��(a0+nj�1)�1be
ause a0+ nj � 1 is even as nj = a1 � a2 � a3 � : : : � a2j +1 is even. Thereforew is an element of �(A) � �(A)�1.If Æj > 0 then a�(nj�1) is an element of A and a0�(nj�1) is an element of A.Then w = �(a�a0) = �((a�nj+1)�(a0�nj+1)) = �(a�nj+1)��(a0�nj+1)�1be
ause a0 � nj + 1 is even. Hen
e w is an element of �(A) � �(A)�1.Thus �(A� A) � �(A) � �(A)�1.Therefore �(A� A) = �(A) � �(A)�1. 2Claim 47 Let � be the graph with vertex set D 2n and with edge set ffx; yg; x�y�1 2 (A0 � A0�1) n fegg. Then G(A;B) is isomorphi
 to �.PROOF. Let fi; jg be any edge of G(A;B). Then i�j 2 (A�A)nf0g. Thusj�i 2 (A�A)nf0g. Hen
e �(i�j) 2 �((A�A)nf0g) and �(j�i) 2 �((A�A)nf0g). Thus �(i)�(j)�1 2 �((A�A)nf0g). So �(i)�(j)�1 2 (�(A)�(A)�1)nfeg.Therefore f�(i); �(j)g is an edge of �.Let f�(i); �(j)g be any edge of �. Then �(i)�(j)�1 2 (�(A)�(A)�1)nfeg. Sin
e�(i)�(j)�1 is equal to �(i� j) or �(j � i), we get �(i� j) 2 �((A�A) n f0g)or �(j � i) 2 �((A� A) n f0g), by Fa
t 46. Hen
e i� j 2 (A�A) n f0g, thatis fi; jg is an edge of G(A;B). 2Claim 48 There exists an element g su
h that gA0 is a symmetri
 subset ofD 2nPROOF. Let k be an element of Z2n su
h that A+ k is a symmetri
 subsetof Z2n.Let A0 be the set of the even elements of A and let A1 be the set of the oddelements of A. Let H be the subgroup of D 2n generated by r.If k is even then r k2A0 = r k2�(A) = r k2�(A0)[ r k2�(A1) = �(A0+k)[ r k2�(A1).Then r k2�(A1) is a subset of sH, thus it is a symmetri
 subset of D 2n as everyof its elements is an involution. The set �(A0 + k) is a symmetri
 subset ofD 2n be
ause A0 + k is a symmetri
 subset of Z2n. Hen
e r k2A0 is symmetri
.If k is odd then sr� k+12 A0 = sr� k+12 �(A0)[ sr� k+12 �(A1). The set sr� k+12 �(A0)is a symmetri
 subset of D 2n as it is a subset of sH. We have �(A + k) =sr k�12 �(A0) [ sr� k+12 �(A1), hen
e sr� k+12 �(A1) = H \ �(A + k) = �(A1 + k).29



Sin
e A1+ k is a symmetri
 subset of 2Zn, this implies that �(A1+ k) is sym-metri
, thus sr� k+12 �(A1) is symmetri
. Therefore sr� k+12 A0 is symmetri
. 2Claim 49 The graph G(A0; B0) is isomorphi
 to the graph G(A;B).PROOF. All we have to show is that G(A0; B0) is isomorphi
 to �.Let g be an element of D 2n su
h that gA0 is symmetri
 and let A00 := gA0.Obviously, G(A0; B0) is isomorphi
 to G(A00; B0). Let �0 be the graph withvertex set D 2n and with edge set ffx; yg; x � y�1 2 (A00 � A00�1) n fegg.Let inv be the bije
tive map of D 2n onto itself whi
h maps an element onto itsinverse. fx; yg is an edge of G(A00; B0) if and only if x�1 �y 2 (A00�1 �A00)nfeg,that is if and only if inv(x)inv(y)�1 2 (A00 � A00�1) n feg as A00 = A00�1, hen
eif and only if finv(x); inv(y)g is an edge of �0. Hen
e G(A00; B0) is isomorphi
to �0.Let h denote the inner automorphism of D 2n whi
h maps an element x ontog�1xg. Then fx; yg is an edge of �0 if and only if fh(x); h(y)g is an edge of �.Thus �0 is isomorphi
 to �.Therefore G(A0; B0) is isomorphi
 to �.2In 1990, D. De Caen, D.A. Gregory, I.G. Hughes and D.L. Kreher [7℄ des
ribeda 
lass of near-fa
torizations of the dihedral groups: if ! is any divisor of 2n�1,then let � := 2n�1! and de�neA := �ri; 1 � i � ! � 12 � [ �sri; 0 � i � ! � 12 �B := �ri!; 0 � i � �� 12 � [ �sri!; 1 � i � �� 12 �The graphs asso
iated to these near-fa
torizations are a stri
t subset of theCGPW graphs of even order:Lemma 50 The graphs G(A;B) produ
ed by this method are webs.PROOF. We have A = ns; r; sr; r2; sr2; : : : ; r !�12 ; sr !�12 o.30



Consider the De Bruijn near-fa
torization of Z2n given by A0 := f0; 1; : : : ; !�1g and by B0 := !�f0; : : : ; ��1g. Let A0 := �(A0). We know that there existsB0 su
h that (A0; B0) is a near-fa
torization of D 2n with G(A0; B0) isomorphi
to G(A0; B0). We have A0 = ne; s; r; : : : ; r !�12 o. Thus A0 = Asr !�12 . Hen
eA0�1A0 = sr !�12 A�1Asr !�12 . This means that the 
onne
tion set of G(A;B)is the image under an inner automorphism of D 2n of the 
onne
tion set ofG(A0; B0). Thus G(A;B) is isomorphi
 toG(A0; B0). As G(A0; B0) is isomorphi
to G(A0; B0) whi
h is a web, we are done. 24 Some open questionsThis paper gives rise to several questions. We �rst re
all the 
ir
ular parti-tionable graph 
onje
ture:Conje
ture 51 If (A;B) is a near-fa
torization of the 
y
li
 group Zn thenthere exists a De Bruijn near-fa
torization (A0; B0) su
h that G(A;B) is iso-morphi
 to G(A0; B0).Grinstead has veri�ed by 
omputer this 
onje
ture for groups of order lessthan 50, and Ba
s�o, Boros, Gurvi
h, Ma�ray and Preissmann have proved itwhen A is of 
ardinality at most 5.We do not know any near-fa
torization (A;B) of the dihedral groups whoseasso
iated graph G(A;B) is not a CGPW graph. Thus we ask this question,whi
h may be seen as the 
ir
ular partitionable graph 
onje
ture in dihedralgroups:Problem 52 If (A;B) is a near-fa
torization of the dihedral group D2n, isG(A;B) always isomorphi
 to a graph G(A0; B0) with (A0; B0) a De Bruijndihedral near-fa
torization ?We believe that this is not true be
ause in a dihedral group, a tile may beused 'ba
kwards', whi
h is not possible in the 
y
li
 group. Hen
e a tiling ofD 2n n fug does not behave in the same way than a tiling of Z2n n fug, whereasa positive answer to Problem 52 would suggest the opposite.With the help of Theorem 17, an exhaustive sear
h by 
omputer [15℄ revealedthat the only groups of order stri
tly less than 64 having a symmetri
 near-fa
torization are the 
y
li
 groups and the dihedral groups. Hen
e this leadsto this natural question:Problem 53 Are the 
y
li
 groups and the dihedral groups the only groupshaving symmetri
 near-fa
torizations ?31



Re
ently, Boros, Gurvi
h and Hougardy [4℄ introdu
ed a 
onstru
tion of parti-tionable graphs generalizing the �rst 
onstru
tion of Chv�atal, Graham, Peroldand Whitesides. Let us 
all BGH-graphs the partitionable graphs produ
ed bythis new method. All the BGH-graphs 
ontain a 
riti
al !-
lique, that is an!-
lique Q su
h that the 
riti
al edges of Q indu
e a tree 
overing all verti
esof Q.Our 
omputer experiments revealed that the group D 10 � Z5 has a near-fa
torization (A;B) below, su
h that the graph G(A;B) does not have any
riti
al !-
lique. We denote this graph by �50.A= f(e; 0); (s; 0); (e; 3); (s; 3); (r; 4); (sr; 4); (r2; 4)gB= f(s; 1); (r; 1); (sr2; 1); (sr3; 3); (r4; 3); (sr3; 4); (r4; 4)gLemma 54 The graph �50 does not have any 
riti
al edge, whereas the 
riti
aledges of �50 form a perfe
t mat
hing of �50.PROOF. If �50 has a 
riti
al edge then there exists an element y su
h thatjB�1 \ yB�1j = 6. Let H be the 
y
li
 subgroup generated by y. By Theorem17 applied to the near-fa
torization (B�1; A�1), we have jHj = 2, thus y mustbe an involution.The set of involutions is f(s; 0); (sr; 0); (sr2; 0); (sr3; 0); (sr4; 0)g. A qui
k 
om-putation shows that y 
an not be any of these 5 values, thus we have a 
on-tradi
tion: �50 does not have any 
riti
al edge.fi; jg is a 
riti
al edge of �50 if and only if there exist k and k0 su
h thatfig = kA n k0A and fjg = k0A n kA. Thus jA \ k�1k0Aj = 6 and by Theorem17 we get that k�1k0 must be an involution. Then it is 
lear that k�1k0 mustbe equal to (s; 0). Thus if fi; jg is a 
riti
al edge then there exists k su
hthat fig = kA n k(s; 0)A and fjg = k(s; 0)A n kA, that is i = k(r2; 4) andj = k(sr2; 4). This implies that j = i(sr4; 0).Hen
e any 
riti
al edge of �50 is a left 
oset of the subgroup H 0 generated bythe involution (sr4; 0). As any left 
oset of H 0 form a 
riti
al edge of �50, wehave that the 
riti
al edges of �50 form the perfe
t mat
hing of �50 given bythe left 
osets of H 0. 2Thus this graph, as well as its 
omplement, does not have any 
riti
al !-
lique.Therefore it is not a BGH-graph, and neither is it a CGPW-graph. Hen
e near-fa
torizations of �nite groups do produ
e 'new' partitionable graphs.Problem 55 Is it possible to des
ribe a 
lass of near-fa
torizations of a se-quen
e of �nite groups, whose asso
iated graphs are 'new' partitionable graphs?32
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