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Partitionable graphs arising fromnear-fatorizations of �nite groupsArnaud PêherLaBRI, domaine universitaire, 351 ours de la Liberation, 33405 Talene, FraneAbstratIn 1979, two onstrutions for making partitionable graphs were introdued in [9℄.The graphs produed by the seond onstrution are alled CGPW graphs. Anear-fatorization (A;B) of a �nite group is roughly speaking a non-trivial fator-ization of G minus one element into two subsets A and B. Every CGPW graph withn verties turns out to be a Cayley graph of the yli group Zn, with onnetionset (A�A) n f0g, for a near-fatorization (A;B) of Zn. Sine a ounter-example tothe Strong Perfet Graph Conjeture would be a partitionable graph [14℄, any 'new'onstrution for making partitionable graphs is of interest.In this paper, we investigate the near-fatorizations of �nite groups in general,and their assoiated Cayley graphs whih are all partitionable. In partiular weshow that near-fatorizations of the dihedral groups produe every CGPW graph ofeven order. We present some results about near-fatorizations of �nite groups whihimply that a �nite abelian group with a near-fatorization (A;B) suh that jAj � 4must be yli (already proved in [7℄). One of these results may be used to speed upexhaustive alulations. At last, we prove that there is no ounter-example to theStrong Perfet Graph Conjeture arising from near-fatorizations of a �nite abeliangroup of even order.Key words: partitionable graph, perfet graph, near-fatorization, group2000 MSC: MSC 05C17, MSC 05C25, MSC 20D60
1 IntrodutionIn 1960, Claude Berge introdued the notion of perfet graphs : a graph isperfet if for every indued subgraph H of it, the hromati number of H doesnot exeed the maximum number of pairwise adjaent verties in H. A holeEmail address: Arnaud.Peher�labri.fr (Arnaud Pêher).Preprint submitted to Elsevier Siene 1st July 2002



is a hordless yle with at least four verties. Berge onjetured that perfetgraphs are exatly the graphs with no indued odd holes and no induedomplement of an odd hole, or equivalently that minimal imperfet graphs areodd holes and their omplements. This onjeture is often alled the StrongPerfet Graph Conjeture and has motivated many works.Lov�asz [12℄ and Padberg [14℄ gave some properties of minimal imperfet graphs.Following the paper of Bland, Huang and Trotter [3℄, a graph G is said to bepartitionable if there exist two integers p and q suh that G has pq+1 vertiesand for every vertex v of G, the indued subgraph G n fvg admits a partitionin p liques of ardinality q and also admits a partition in q stable sets ofardinality p. Let ! denote the maximum ardinality of a lique of G and �denote the maximum ardinality of a stable set of G. Then it is lear thatp = � and q = !.With this de�nition, Lov�asz [12℄ and Padberg [14℄ proved that every minimalimperfet graph is partitionable. Thus a ounter-example to the Strong PerfetGraph Conjeture would lie in the lass of partitionable graphs. Hene anapproah to Berge's onjeture is to prove that a given lass of partitionablegraphs does not ontain any minimal imperfet graph whih is not an odd oddhole or anti-hole.In 1979, Chv�atal, Graham, Perold and Whitesides introdued two onstru-tions for making partitionable graphs [9℄. In 1996, Seb�o proved that there isno ounter-example to the Strong Perfet Graph Conjeture in the �rst one[16℄. In 1984, Grinstead proved that there is no ounter-example to the StrongPerfet Graph Conjeture in the seond one [11℄. A variant of a partitionablegraph is a partitionable graph with the same verties, the same maximumliques and the same maximum stable sets. In 1998, Bas�o, Boros, Gurvih,Ma�ray and Preissmann [1℄ extended Grinstead's result to the wider lass ofthe variants of the seond onstrution.A graph with n verties is irular if there exists a yli numbering of itsverties (modulo n) suh that, for every vertex x, for every maximum liqueC and for every maximum stable set S, the set f( + x) (mod n) j  2 Cgis a maximum lique and the set f(s + x) (mod n) j s 2 Sg is a maximumstable set.A normalized graph is a graph suh that for every edge fi; jg, there exists amaximum lique ontaining both i and j.A partitionable graph produed by the seond onstrution due to Chv�atal,Graham, Perold and Whitesides is alled a CGPW graph, where CGPW graphis the abbreviation of Chv�atal-Graham-Perold-Whitesides graph. Any CGPWgraph appears to be a irular normalized partitionable graph. The onverseis not established but Bas�o, Boros, Gurvih, Ma�ray and Preissmann onje-2



tured that it holds:Conjeture 1 [1℄ Every irular normalized partitionable graph is a CGPWgraph.We all it the irular partitionable graph onjeture.In 1984, Grinstead laimed, through a omputer hek, that this onjetureis true for graphs with a number of verties at most �fty, or sixty-one [11℄.In 1998, Bas�o, Boros, Gurvih, Ma�ray and Preissmann proved it for graphswith size of maximum liques et most 5 [1℄.Let G be a �nite group of order n with operation �. Two subsets A and B ofG of ardinality at least 2 are said to form a near-fatorization of G if andonly if n = jAj � jBj + 1 and there is an element u(A;B) of G suh thatA � B = G n fu(A;B)g. Let S be a symmetri subset of G whih does notontain the identity element e. The Cayley graph with onnetion set S is thegraph with vertex set G and edge set ffi; jg; i�1 � j 2 Sg. We denote byCay(G; S) this graph. Notie that the de�nitions of a Cayley graph given inthe literature may di�er. The one we use in this paper is very lose from thede�nition given in the book 'Algebrai Graph Theory' of Norman Biggs [2℄.Sine S is a symmetri set suh that e =2 S, the graph Cay(G; S) is a simplegraph without loops, as are all graphs in this paper.Let � be any irular normalized partitionable graph with n verties. Let Cbe a maximum lique of � and let S be a maximum stable set of �. Then itis easy to see that (C; S) is a near-fatorization of the group Zn and that �is the Cayley graph of the �nite group Zn with onnetion set (C � C) n f0g.The onverse is true: if (A;B) is a near-fatorization of Zn then the Cayleygraph with onnetion set (A�A) n f0g is a irular normalized partitionablegraph [1℄.Due to this equivalene, the seond onstrution of Chv�atal, Graham, Peroldand Whitesides had been �rst desribed by N.G. De Bruijn in 1956 [6℄, thoughin a di�erent ontext.If (A;B) is a near-fatorization of a �nite group then the Cayley graph withonnetion set (A�1 � A) n feg is a normalized partitionable graph (Setion2). This observation has motivated this paper: the main aim is to produenear-fatorizations of some �nite groups, so as giving rise to 'new' partition-able graphs. We give 'new' near-fatorizations for the dihedral groups but theassoiated Cayley graphs turn out all to be CGPW graphs (Setion 3). Thesenear-fatorizations produe all CGPW graphs of even order. In Setion 2,we give several results about near-fatorizations for �nite groups in general,whih may be used to speed up exhaustive searhes by omputer. We givetools to explain why many groups do not have any near-fatorization at all.3



We also prove that no Cayley graph assoiated to a near-fatorization of anabelian group of even order is a ounter-example to the Strong Perfet GraphConjeture.2 Near-fatorizations of �nite groups and partitionable graphsA group is a non-empty set G with a losed assoiative binary operation �,an identity element e, and an inverse a�1 for every element a 2 G. If G has a�nite number of elements, then the ardinality of G is denoted by jGj and isalled the order of G. To avoid a onit of notation, we use the symbol � todenote the standard multipliation between two integers. An abelian group isa group G suh that � is ommutative, that is g � g0 = g0 � g for all elementsg and g0 of G.If X and Y are two subsets of G, we denote by X�Y the set fx�y; x 2 X; y 2Y g. With a slight abuse of notation, if g is an element of G and X is subsetof G, we denote by gX the set fgg �X and Xg the set X � fgg. FurthermorejXj is the ardinality of X, that is the number of elements of X. The subsetX is said to be symmetri if X = X�1, where X�1 is the set fx�1; x 2 Xg.Reall that two subsets A and B of ardinality at least 2 of a �nite group Gof order n form a near-fatorization of G if and only if n = jAj � jBj+ 1 andthere is an element u(A;B) of G suh that A � B = G n fu(A;B)g: u(A;B)is alled the unovered element of the near-fatorization. Sometimes, we shallwrite simply u instead of u(A;B). The ondition about the ardinality of Aand B is required to avoid the trivial ase A = G n fug and B = feg. Notiethat every element x of G distint from u may be written in a unique way asx = a � b with a 2 A and b 2 B. Hene a near-fatorization (A;B) may beseen as a tiling of G n fu(A;B)g with proto tile A.The yli group of order n is the group whih is generated by an element x oforder n. This group is denoted by Zn. For onveniene, we use the followingrepresentation of Zn: the elements of Zn are the integers between 0 and n� 1and the operation � is de�ned by x � y = (x + y) (mod n). Due to thisde�nition of the operation of Zn, we denote this operation by + rather than�.Example 2 Let Z13 be the yli group of order 13,Let A = f0; 1; 2g and B = f0; 3; 6; 9g.Then A + 0 = f0; 1; 2g, A + 3 = f3; 4; 5g, A + 6 = f6; 7; 8g and A + 9 =f9; 10; 11g. Thus A + B = (Z13 n f12g), that is (A;B) is a near-fatorization4



of Z13.The following �gure shows the tiling of Z13 n f12g given by (A;B).
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PSfrag replaements

0 1 2 3 4 5 6 7 8 9 10 11 12
A = f0; 1; 2gA+ 0B = f0; 3; 6; 9gA+ 3n = 13 A+ 6u = 12 A+ 9

Z13Figure 1. Example of a near-fatorization of Z13Note that if A and B are seen as sets of integers and + denotes the usualaddition between integers, then A + B is a tiling of the segment [0; 11℄. Thisonnetion is somewhat detailed in page 12.The dihedral group D 2n of even order 2 � n (with n � 3) is the non-abeliangroup generated by two elements r and s suh that:� r is of order n.� s is of order 2.� s � r = r�1 � sThe problem of haraterizing the near-fatorizations of the dihedral groupsis addressed in Setion 3.Let g1; : : : ; gn be the elements of the group G with g1 = e. If R is any subset ofG, we denote by M(R) the square n� n (0; 1)-matrix de�ned by M(R)i;j = 1if and only if gj 2 giR.Let I be the n� n identity matrix and J be the n� n matrix with all entriesequal to 1. Then De Caen, Gregory, Hughes and Kreher [7℄ observed that(A;B) is a near-fatorization of G with unovered element e if and only ifM(A)M(B) = J � I.Sine M(A)M(B) = J � I implies that M(B)M(A) = J � I ([5℄), we havethe following property:Lemma 3 [7℄ Let G be a �nite group and A, B be two subsets of G. Then(A;B) is a near-fatorization of G with u(A;B) = e if and only if (B;A) is anear-fatorization of G with u(B;A) = e.5



The hypothesis u(A;B) = e is atually neessary: onsider the dihedral groupD 16 of order 16. Let A = fe; r5; sr5g and B = fe; s; r; sr; sr7g. A small alu-lation shows that A � B = D16 n fr7g. Thus (A;B) is a near-fatorization ofD 16 , though (B;A) is not one as sr5 = e � sr5 = s � r5.The graph G(A;B) assoiated with a near-fatorization (A;B) is the Cayleygraph with onnetion set (A�1 � A) n feg.If � is a graph, we denote by !(�) the maximum ardinality of a lique of �and �(�) the maximum ardinality of a stable set of �. We denote by V (�)the vertex set of � and E(�) the edge set of �.The graph � with vertex set V is isomorphi to the graph �0 with vertex setV 0 if there exists a bijetive map f from V onto V 0 suh that fi; jg is an edgeof � if and only if ff(i); f(j)g is an edge of �0.If e0 is an edge of � we denote by � � e0 the subgraph of � with vertex setV (�) and edge set E(�) n fe0g. Likewise, if e0 is a non-edge of �, we denote by� + e0 the graph with vertex set V (�) and with edge set E(�) [ fe0g. If v isany vertex of �, we denote by � n fvg the indued subgraph of � with vertexset V (�) n fvg and edge set ffx; yg j fx; yg 2 V (�); x 6= v; y 6= vg.A perfet mathing in a graph with 2n verties is a set of n node-disjoint edges.Obviously, distint near-fatorizations of a given group may give rise to thesame graph. In partiular, we may left-shift A and right-shift B without al-tering the assoiated graph:Lemma 4 Let x and y be two elements of G. Then (xA;By) is a near-fatorization of G suh that u(xA;By) = x � u(A;B) � y and G(xA;By) isisomorphi to G(A;B).PROOF. The proof is straightforward. 2We say that (xA;By) is shift-isomorphi to (A;B).Thus due to Lemma 4, we may always assume that the unovered element ise, without altering the assoiated graph.In the ase of abelian groups, De Caen, Gregory, Hughes and Kreher gave auseful property of near-fatorizations:Lemma 5 [7℄ Let G be an abelian group and (A;B) be a near-fatorizationof G. Then there exist two elements x and y of G suh that xA is symmetriand that By is symmetri. 6



An automorphism of G is a bijetive map h of G onto itself suh that h(x �y) = h(x) � h(y) for all x and y of G. An inner-automorphism h of G is anautomorphism of G suh that there exists an element g of G whih satis�esh(x) = g � x � g�1 for all x of G.Then we have this obvious Lemma:Lemma 6 Let Cay(G,S) be a Cayley graph with onnetion set S of a groupG. Let h be any automorphism of G. Then the Cayley graph Cay(G,h(S)) isisomorphi to Cay(G,S).If y is any element of G, we denote by hyi the yli subgroup of G generatedby y. The order of y is the smallest integer k suh that yk = e and is denotedby o(y). An involution of G is an element of G of order 2. The enter of G isthe set of all elements in G whih ommute with every element of G.Let H be any subgroup of G and (A;B) be a near-fatorization of G withunovered element u.A right oset of H is any subset Hx with x 2 G. A left oset of H is anysubset xH with x 2 G. The proof of Lagrange's Theorem asserts that for anysubgroup H of G, there exists a unique partition of G in right osets of H.Likewise there exists a unique partition in left osets of H. A subgroup H ofG is normal if for every g of G, we have gH = Hg.A right-tile of A is the trae of A onto a right-oset of H, that is the subset Tis a right-tile of A if and only if there exists g in G suh that T = A \Hg. Aleft-tile of A is the trae of A onto a left-oset of H�The unique partition of G in right osets of H indues a unique partition of Ain right-tiles: let fHg1; : : : ; Hgdg be the partition of G in right-osets, thenthe set of right-tiles of A is fA\Hg1; : : : ; A \Hgdg. If T is a right-tile of Awhih is equal to a whole right-oset, then T is alled a H-right-oset.Let � be the partition of A in right-tiles indued by a given subgroup H.Clearly fTb; T 2 �; b 2 Bg is a partition of G n fug. Hene, given thesubgroup H, a near-fatorization (A;B) may be seen as a tiling of G n fugwith the right-tiles of A as tiles. Let K be any suh tile and b be any element ofB. Notie that Kb lies entirely in a right-oset of H. Thus this tiling of Gnfugindues a tiling for every right-oset ofH distint fromHu and indues a tilingof (Hu) n fug. Let Hg be any right oset of H: we shall say that the right-tileK is used to over Hg if there exists an element b of B suh that Kb � Hg.The trik of many proofs in this paper is to ollet enough informations aboutthe tiling of every right-oset of H so as being able to get informations aboutthe near-fatorization (A;B). 7



Example 7 Let (A;B) be the near-fatorization of the dihedral group D 16given by A = fe; r5; sr5g and B = fs; r; sr; r2; sr2g.Let H := fe; sg be the yli subgroup of D 16 generated by s. Then fH, Hr,Hr2; : : : ; Hr7g is the partition of D 16 in right osets of H. Hene A splits inexatly two right-tiles T1 and T2 withT1 = feg = A \HT2 = fr5; sr5g = A \Hr5The tile T2 is a H-right-oset. The set B has 5 elements, this implies that T2is used to over 5 of the 8 right-osets of H, namely the right-osets Hr3, Hr6,Hr4, Hr7 and Hr5 beause Hr3 = T2s, Hr6 = T2r, Hr4 = T2sr, Hr7 = T2r2and Hr5 = T2sr2.The tile T1 is used exatly twie to over the right-oset Hr as Hr = fr; srg =T1r [ T1sr. The tile T1 is used exatly twie to over the right-oset Hr2 asHr2 = fr2; sr2g = T1r2[T1sr2. The last time T1 is used, it is to over H nfegas H n feg = fsg = T1s.The following �gure represents this tiling of the right-osets of H.
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T2sr2T2rT2r2The unique partition of G in left osets of H also indues a unique partitionof A in left-tiles. If T is a left-tile of A whih is equal to a whole left-oset,then T is alled a H-left-oset.When the unovered element is e, we know that (B;A) is a near-fatorizationof G too. Thus we get a tiling of Gnfeg with the left-tiles of A as tiles. Let Kbe any suh tile and b be any element of B. Notie that bK lies entirely in aleft-oset of H. Hene we have a tiling for every left-oset of H distint fromHe and a tiling of (He)nfeg. Let gH be any left oset of H: we shall say thatthe left-tile K is used to over gH if there exists an element b of B suh thatbK � gH. 8



Example 8 We onsider again the near-fatorization (A;B) of the dihedralgroup D 16 given by A = fe; r5; sr5g and B = fs; r; sr; r2; sr2g and the ylisubgroup H of D 16 generated by s.As u(A;B) = e, we know that (B;A) is a near-fatorization of D 16 too.Notie that fH; rH; r2H; : : : ; r7Hg is the partition of D 16 in left osets of H.Hene A splits in exatly three left-tiles T1, T2 and T3 withT1 = feg = H \ AT2 = fr5g = r5H \ AT3 = fsr5g = r3H \ AThus no left-tile of A is a left-oset. This means that the tiling indued by(B;A) is atually di�erent of the one indued by (A;B).Let Hg1, Hg2, . . . , Hgd be a partition of G in right-osets of H. Let X be anysubset of G. We de�ne the integer disprH(X) asdisprH(X) := jfi; 1 � i � d; ; ( Hgi \X ( HgigjThe ounter disprH(X) is the number of right-osets of H whih meet X andare not a subset of X.Let displH(X) be the number of left-osets of H whih meet X and are not asubset of X. When H is a normal subgroup then we use rather the notationdispH(X) instead of disprH(X) or displH(X). The notation dispH is related tothe word 'dispersion'.Let y be any element of G. A subset W of G is a left-y-hain (respetivelyright-y-hain) if jW j 6= jhyij and W an be written w � fe; y; : : : ; yjW j�1g(respetively fe; y; : : : ; yjW j�1g � w).If H is a yli subgroup hyi, then it is useful to subdivide any tile of A inright-y-hains. For onvenieny, these right-y-hains will be onsidered againas tiles. Let T := fe; y; : : : ; yjT j�1g � t and T 0 := fe; y; : : : ; yjT 0j�1g � t0 betwo maximal right-y-hains of A not neessarily distint. Let b and b0 be twoelements of B. The tile T 0b0 is said to be used after the tile Tb if and only ift0 � b0 = yjT j � t � b. This implies that t0�1 � yjT j � t = b0 � b�1 is an element ofB � B�1. When this relation is all we need, we say simply that the tile T 0 isused after the tile T (see �gure 2).The fat that G(A;B) is a normalized partitionable graph may be deduedfrom [9℄ and [7℄. We give here a diret proof whih shows how the near-9



T = fe; y; y2g � tT 0 = fe; yg � t0 9>=>; are two right�y�hains of APSfrag replaements
y�4g y�3g y�2g y�1g g yg y2g y3g y4g

T b T 0b0

hyig

T b is used to over hyig T 0b0 is used after Tbtb = y�1gt0b0 = y2g 9>=>;) b0 = t0�1y3tbFigure 2. Fragment of the tiling of the oset hyigfatorization (A;B) and the partitionable graph are losely related, by exhibit-ing the partition in maximum liques and the partition in maximum stablesets of G(A;B) n fxg for every x:Lemma 9 If (A;B) is a near-fatorization of a �nite group G suh that A �B = G n feg, then the graph G(A;B) is a normalized partitionable graph withmaximum liques fxA; x 2 Gg and maximum stable sets fxB�1; x 2 Gg.PROOF.Claim 10 For every x of G, xA is a lique of G(A;B)Let x1 and x2 be two distint elements of xA: there exist a1 and a2 of A suhthat x1 = x � a1 and x2 = x � a2. Then x1�1 � x2 = a1�1 � a2 is an element of(A�1 �A) n feg. Thus fx1; x2g is an edge of G(A;B), and so xA is a lique ofG(A;B) 2Claim 11 For every x of G, xB�1 is a stable set of G(A;B).Let x1 and x2 be two distint elements of xB�1: there exist b1 and b2 of B10



suh that x1 = x � b1�1 and x2 = x � b2�1.If fx1; x2g is an edge of G(A;B), then x1�1 � x2 = b1 � b�12 is an element ofA�1 �A. Thus there exist a1 and a2 in A suh that b1 � b�12 = a1�1 � a2. Henea1 � b1 = a2 � b2. Sine (A;B) is a near-fatorization, this implies that a1 = a2and b1 = b2. Thus x1 = x2, a ontradition.Hene fx1; x2g is not an edge of G(A;B). This implies that xB�1 is a stableset of G(A;B). 2Claim 12 For every x of G, G(A;B) n fxg is partitioned by the jBj liquesfxbA; b 2 Bg and is also partitioned by the jAj stable sets fxa�1B�1; a 2 Ag.Hene G(A;B) is a partitionable graph with ! = jAj and � = jBj.If there exists b in B suh that x 2 xbA then there is an element a in Asuh that x = x � b � a thus e = b � a, hene b = a�1 and so a � b = e inontradition with the hypothesis A�B = Gnfeg. Hene Sb2B xbA � Gnfxg.If xbA \ xb0A 6= ; with b and b0 in B, then there are a and a0 in A suh thatx � b � a = x � b0 � a0 thus b � a = b0 � a0. This implies with Lemma 3 again thata = a0 and b = b0. Hene jSb2B xbAj = Pb2B jxbAj = jBj � jAj = jG n fxgj.Thus Sb2B xbA = G n fxg and fxbA; b 2 Bg is a partition of G n fxg.If there exists a in A suh that x 2 xa�1B�1 then there is an element b in Bsuh that x = x � a�1 � b�1 thus e = a�1 � b�1 and so e = b � a : ontradition.Hene Sa2A xa�1B�1 � G n fxg. If xa�1B�1 \ xa0�1B�1 6= ; with a and a0 inA, then there are b and b0 in B suh that x � a�1 � b�1 = x � a0�1 � b0�1 thusa�1 � b�1 = a0�1 � b0�1 and so b � a = b0 � a0. This implies that a = a0 andb = b0. Hene jSa2A xa�1B�1j = Pa2A jxa�1B�1j = jBj � jAj = jGnfxgj. ThusSa2A xa�1B�1 = G n fxg and fxa�1B�1; a 2 Ag is a partition of G n fxg. 2Claim 13 For every maximum lique Q of G(A;B), there is an element x ofG suh that Q = xA, hene the set of the n maximum liques is fxA; x 2 Gg.Likewise the set of the n maximum stable sets of G(A;B) is fxB�1; x 2 Gg.Sine G(A;B) is a partitionable graph, we know that G(A;B) has exatly nmaximum liques. Thus we are done if we show that for every pair of elementsx and y of G suh that x 6= y, we have xA 6= yA. This is equivalent to showthat if A = zA then z = e. Suppose A = zA. Then for every element a of A,we have that z � a is an element of A. Thus A admits a partition in hzi-right-osets. Hene ! = 0 (mod o(z)) where o(z) is the order of z. Thus n = 1(mod o(z)). As o(z) divides the number of elements of G, we also have n = 0(mod o(z)). Therefore o(z) = 1 and so z = e. This proof also works for themaximum stable sets. 2Claim 14 G(A;B) is a normalized graph.11



Let fx; yg be any edge of G(A;B). Then x�1 � y 2 A�1 � A, thus there existsa 2 A suh that y 2 xa�1A. Obviously x 2 xa�1A. Hene G(A;B) is anormalized graph.2Sine the ardinality of a maximum lique ofG(A;B) is equal to jAj, we denoteby ! the value of jAj. Likewise, we denote by � the value of jBj.A graph � = (V;E) on �! + 1 verties is alled a web, if the maximumardinality of a lique of � is !, the maximum ardinality of a stable set of� is �, and there is a ylial order of V so that every set of ! onseutiveverties in this ylial order is an !-lique. Equivalently, normalized webswith n verties are graphs indued by any near-fatorization (A;B) of Znsuh that A is an interval.In 1979, V. Chv�atal, R.L. Graham, A.F. Perold and S.H. Whitesides [9℄ in-trodued a method to produe a large lass of near-fatorizations of the yligroups Zn.Two subsets A1 and B1 of N are said to form a near-fatorization in integersif and only if A1 +B1 = [0::(jA1j � jB1j � 1)℄. Obviously, a near-fatorizationin integers indues a near-fatorization of ZjA1j�jB1j+1.Let (A1; B1) be a near-fatorization in integers suh that A1+B1 = [0::n1�2℄.Let k; k0 be any positive integers.One may obtain a near-fatorization in integers (A2; B2) suh that A2+B2 =[0::n2 � 2℄ with n2 := (jA1j � k)� (jB1j � k0) + 1by de�ning:A2 := A1 + (n1 � 1)� [0::k � 1℄ and B2 := B1 + (n1 � 1)� k � [0::k0 � 1℄A CGPW graph is a graph G(A;B) where (A;B) is obtained with a �nitenumber of appliations of this method starting from a basi fatorization,that is a near-fatorization (A1; B1) suh that A1 = [0::jA1j � 1℄ and B1 =jA1j � [0::jB1j � 1℄.Expliitly, the CGPW graph G given by 2p positive integers k1; : : : ; k2p isonstruted in this way :� take A1 = [0::k1 � 1℄ and B1 = k1 � [0::k2 � 1℄. Set n1 = k1 � k2 + 1.� take k = k3 and k0 = k4 then alulate A2 and B2. Set n2 = k1 � k2 � k3 �k4 + 1. 12



� take k = k5 and k0 = k6 then alulate A3 and B3 starting from A2 and B2.Set n3 = k1 � k2 � k3 � k4 � k5 � k6 + 1.� . . .� until k = k2p�1 and k0 = k2p.G is G(Ap; Bp) and is denoted by C[k1; : : : ; k2p℄. By onstrution, jApj = k1�k3�: : :�k2p�1 = !, jBpj = k2�k4�: : :�k2p = � and np = k1�k2�: : :�k2p+1 =�� ! + 1.Notie that normalized webs are CGPW graphs suh that p = 1.Following [1℄, a near-fatorization produed by this method is alled a DeBruijn near-fatorization.Let X be any subset of the group G. We setINT(X) = maxx2G; y2G; x6=yfjxX \ yXjgNotie that INT(A) denotes the maximum ardinality of the intersetion be-tween two distint !-liques of G(A;B) and that INT(B�1) denotes the max-imum ardinality of the intersetion between two distint �-stable sets.An edge e of a graph � is said to be an �-ritial edge if and only if �(� �e) > �(�). Similarly, a non-edge e0 is said to be o-ritial if and only if!(�+e0) > !(�). It is easy to hek that a graph G(A;B) has a o-ritial non-edge (respetively �-ritial edge) if and only if INT(A) = !� 1 (respetivelyINT(B�1) = �� 1).Lemma 15 INT(X) = maxg2GnfegfjX \ gXjgPROOF. The proof is straightforward. 2Next lemma will be used in the proofs of this artile:Lemma 16 Let G be a �nite group having a near-fatorization (A;B). Let Hbe any normal subgroup of G. If there is a H-oset (Ha) in A, then in everyoset of H, a tile T of A may be used at most one.PROOF. Let T be any tile of A: there exists y of G suh that T = A \Hy.Let g be any element of G and let Bg be the set fb 2 B; Tb � Hgg. We wantto show that jBgj � 1. 13



If jBgj � 2 then there exist two distint elements b and b0 of B suh thatTb � Hg and Tb0 � Hg. From T � Hy, we get Hg = Hyb and Hg =Hyb0. Then Hab = ay�1Hyb beause H is a normal subgroup. Thus Hab =ay�1Hg = ay�1Hyb0 = Hab0. Sine (A;B) is a near fatorization and Ha � A,fb; b0g � B, this implies that b = b0: a ontradition. Hene jBgj � 1. 2Notie that Example 7 shows that the hypothesis that H must be normal isatually needed.We are now ready to state the main result of this paper.Theorem 17 Let G be a �nite group admitting a near-fatorization (A;B).Let H be a non-trivial proper subgroup of G. Then(1) disprH(A) > 0 and displH(A) > 0.(2) if disprH(A) = 1 or displH(A) = 1 then jHj = 2.(3) if H is a normal subgroup, dispH(A) = 2 and jAj 6= 2, then jHj = n2 .PROOF. Sine no speial property is required for B, we may assume thatu(A;B) = e sine otherwise all we have to do is to right-shift B by u(A;B)�1.Hene we have A �B = G n feg = B � A (Lemma 3).(1) If disprH(A) = 0, then every right-tile of A is a H-right-oset. Let T be aright-tile of A whih is used to over the right-oset He. There exists bof B suh that Tb � He. Sine T is a H-right-oset, we have Tb = He.Hene e 2 A �B, a ontradition. Thus disprH(A) > 0.Likewise, we have displH(A) > 0.(2) Suppose that disprH(A) = 1. Let Hg1, Hg2, . . . , Hgd be a partition of Gin right-osets of H. Sine disprH(A) = 1 there exists a unique integer pbetween 1 and d suh that ; ( A\Hgp ( Hgp. Let A0 := A\Hgp. Thusthe set of right-tiles of A is A0 and some H-right-osets.Let b be an element of B suh that A0b � He. Then we have Hgpb =He, whih implies that (gp � b) 2 He. Thus, if for every b in B, we haveA0b � He, then gpB � He. We know that (B;A) is a near-fatorizationwith u(B;A) = e. Hene (gpB;A) is a near-fatorization with unoveredelement gp. As gpB � He, gpB has only one right-tile. Sine H is a propersubgroup of G, there exists a right oset Hx distint from He. ThusjHxj = 0 (mod jgpBj) = 0 (mod �), whih implies n = 0 (mod �),ontraditing the relation n = �� ! + 1.Hene there exists b in B suh that A0b lies in a oset Hx distint fromHe. Obviously A0 is the only tile of A whih an be used to over Hxbeause the other tiles are H-right-osets thus jHxj = 0 (mod jA0j).The tile A0 is again the only tile whih an be used to over He, thusjHej = 1 (mod jA0j). Hene jA0j = 1.14



Let H 0 be the onjugate subgroup g�1p Hgp of H. Let H 0g01, H 0g02, . . . ,H 0g0d be a partition of G in right-osets of H 0. For every i between 1and d, let Bi := B \ H 0g0i. Then for every i between 1 and d, we have(A0 �Bi) � (Hgp � g�1p Hgpg0i) = Hgpg0i.Let i be any integer between 1 and d. If Bi 6= ; then A0 is used at leastone to over Hgpg0i. Thus Hgpg0i is overed with the right-tile A0 only.Hene we have (Hgpg0i)nfeg = [b2B; A0b�Hgpg0iA0b. Let b be any element ofB and let j be the integer suh that b 2 Bj. Thus A0b � Hgpg0j = gpH 0g0j.Hene, if b is not in Bi then A0b is not a subset of Hgpg0i. Thus we haveA0�Bi = (Hgpg0i)nfeg. Sine jA0j = 1, we must have jBij = j(Hgpg0i)nfegj.Hene we have for all i between 1 and d, jBij = 0 or jBij = jHgpg0i nfegj. Thus disprH0(B) � 1. We know that disprH0(B) = 0 is impossibleaording to the �rst setion of the proof of this Theorem. Therefore wehave disprH0(B) = 1. There exists a unique integer p0 between 1 and dsuh that Bp0 6= ; and Bp0 6= H 0g0p0. We set B0 := Bp0. Then we getjB0j = 1 as we have seen for A0.We have A0 � B0 = (Hgpg0p0) n feg. If Hgpg0p0 6= He, then we havejHj = jA0 � B0j = 1, hene H is the trivial subgroup: a ontradition.Thus Hgpg0p0 = He, whih implies jHj = 2 as required.If displH(A) = 1 then the same proof may be applied to the quasi-fatorization (B;A) by working with the left-osets of H.(3) Notie that H is assumed to be normal.Sine dispH(A) = 2, there exist two distint osets Hg1 and Hg2 of Gsuh that ; ( A\Hg1 ( Hg1 and ; ( A\Hg2 ( Hg2. Let A1 := A\Hg1and A2 := A \Hg2.If there is a H-oset in A then by Lemma 16, A1 (and A2) annotbe used twie on the same oset. Thus A1 is used at least one on aoset distint from He otherwise we would have � � 1. Let Hv be suha oset. Obviously Hv is not overed with only A1 beause A1 is nota H-oset. Hene A1 and A2 are used exatly one to over Hv. ThusjHvj = jA1j+ jA2j. Hene n = 0 (mod jA1j+ jA2j). If C is any H-osetof A, we have jCj = jHj = jA1j + jA2j. Thus ! = 0 (mod jA1j + jA2j).From n = ��!+1, we get n = 1 (mod jA1j+ jA2j) ontraditing n = 0(mod jA1j+ jA2j). Therefore there is no H-oset in A.Thus A = A1[A2. As H is a proper subgroup of G, there exists x suhthat He \Hx = ;.If jA1j = jA2j, then due to the over of Hx, we get n = 0 (mod jA1j).From n = � � ! + 1, we have n = 1 (mod jA1j). Thus jA1j = 1. Thismeans that jAj = 2, whih is ontraditory to the hypothesis of theTheorem. Hene jA1j 6= jA2j and we may assume that jA1j > jA2j.If z is any element of G, let nz(A1) (respetively nz(A2)) be the numberof times the tile A1 (respetively A2) is used to over the oset Hz, thatis nz(A1) = jfb 2 Bj A1b � Hzgj (respetively nz(A2) = jfb 2 Bj A2b �Hzgj). Let nmax (A1) := maxz2Gfnz(A1)g, nmin (A1) := minz2Gfnz(A1)g,15



nmax (A2) := maxz2Gfnz(A2)g and nmin (A2) := minz2Gfnz(A2)g.Claim 18 nmax (A1) = nmax (A2)nmin (A1) = nmin (A2)PROOF. Let b be any element of B and z be any element of G.If A1b � Hz then b 2 Hg1�1z as A1 � Hg1 andH is a normal subgroupof G. From A2 � Hg2, we get A2b � Hg2Hg1�1z = Hg2g1�1z.Likewise, if A2b � Hg2g1�1z then A1b � Hz. Hene A1 � Hz if andonly if A2b � Hg2g1�1z. And so for any z in G, there exists z0 and z00suh that nz(A1) = nz0(A2) and nz(A2) = nz00(A1).Thus nmin (A1) = nmin (A2) and nmax (A1) = nmax (A2). Let nmax :=nmax (A1) and nmin := nmin (A1). 2Claim 19 nmax > nminPROOF. If nmax = nmin then jHxj = nmin � (jA1j+ jA2j) and so n = 0(mod !), ontraditing n = �� ! + 1. 2To simplify the notation, let a1 = jA1j and let a2 = jA2j.Claim 20 nmax = nmin + 1, a1 = a2 + 1 and jHj = nmax a1 + nmina2.PROOF. If g is any element of G, we set �(g) = 1 if Hg = H and weset �(g) = 0 otherwise.Let z be an element of G suh that nz(A2) = nmax (by de�nition suhan element exists), we �rst show that nz(A1) = nmin .By de�nition there exists g in G suh that ng(A1) = nmin . Let k � nminand l � nmax be integers suh that jHzj = ka1+nmaxa2+ �(z) = jHgj =nmina1+ la2+ �(g). We get that (k�nmin )a1 = (l�nmax )a2+ �(g)� �(z).Sine k � nmin � 0, a1 > a2 � 1, 1 � nmax � 0, �(g)� �(z) � 1, we getthat k = nz(A1) = nmin .Now let h be an element of G suh that nh(A1) = nmax .We have jHzj = nmina1+nmaxa2+�(z) = jHhj � nmaxa1+nmina2+�(h)and so �(z) � �(h) � (nmax � nmin )(a1 � a2). Sine nmax > nmin � 0,a1 > a2 � 0 and �(z) � �(h) � 1, we get nmax = nmin + 1, a1 = a2 + 1,�(z) = 1, �(h) = 0 and nh(A2) = nmin . Notie that from these equalitiesjHj = nmax a1 + nmina2 = nmina1 + nmaxa2 + 1. 2Claim 21 H is of ardinality n2PROOF. Let z be any element of G. From what preedes it is not pos-sible that nz(A1) = nz(A2) = nmax or nz(A1) = nz(A2) = nmin , soeither nz(A1) = nmax , nz(A2) = nmin and Hz 6= He, or nz(A1) = nmin ,16



nz(A2) = nmax and Hz = He. Let d be the number of osets of H,then jBj = Pi=1;:::;d ngi(A1) = Pi=1;:::;d ngi(A2) = (d � 1)nmax + nmin =(d� 1)nmin + nmax . Sine nmax 6= nmin , this implies that d = 2.2Example 22 Let (A;B) be the near-fatorization of D 16 introdued in Exam-ple 7: A = fe; r5; sr5g and B = fr; r2; s; sr; sr2g.Let H1 := fe; sr5g. Sine dispH1(A) = 1, H1 must be of ardinality 2.Let H2 := fe; r; r2; r3; r4; r5; r6; r7g. Sine dispH2(A) = 2, jAj 6= 2 and H2 isnormal, H2 must be of ardinality 162 = 8.Theorem 17 may be used to derease the number of ases to be investigatedwhen looking for a near-fatorization for a given group with the help of aomputer. From the list of all subsets A of G of ardinality !, we may keeponly those satisfying Theorem 17 and then for every of these A hek if thereexists a subset B of ardinality � suh that (A;B) is a near-fatorization. Forevery group of small order (that is less than 1000), it is quite easy to get thelist of all subgroups of G and the list of all normal subgroups of G using GAP[10℄ for instane. Theorem 17 is an interesting �lter beause it may be appliedto any group. Our implementation [15℄ revealed that it performs quite wellwhen ! or � is small as one might expet. In some groups, there is no subsetsat all satisfying Theorem 17 with the required ardinality. For instane, theonly groups of order 16 with a subset A of ardinality 3 satisfying Theorem17 are the dihedral groups and yli groups.We will use Theorem 17 to derive Lemma 24 and Lemma 28.Lemma 23 l If ! = 3, A is symmetri and n is odd then G(A;B) is a web.PROOF. Sine n is odd, there is no involution in G. This implies with A =A�1 that there is a in G suh that A = fa�1; e; ag. Let H be the ylisubgroup generated by a. Notie that A � H, thus disprH(A) = displH(A) = 1.If H is distint from G then by Theorem 17, we must have jHj = 2, whih isimpossible as n is odd. Thus G is a yli group. Sine ! = 3, G(A;B) is aweb [1℄. 2Andr�as Seb�o proved in [16℄ that the minimal imperfet graphs ontainingertain on�gurations of two �-ritial edges and one o-ritial non-edge areexatly the odd holes or anti-holes.S. Markossian, G. Gasparian, I. Karapetian and A. Markosian also studied in[13℄ suh edges and non-edges in onjuntion with the Strong Perfet Graph17



Conjeture.Reall that a graph G(A;B) has a o-ritial non-edge if and only if INT(A) =! � 1. Next Lemma partially haraterizes graphs G(A;B) with a o-ritialnon-edge.Lemma 24 Let G be a �nite group suh that every involution z ommuteswith every element of G. If (A;B) is a near-fatorization of G suh thatINT(A) = ! � 1 then G is a yli group and G(A;B) is a web.PROOF. Sine INT(A) = ! � 1, by Lemma 15 there exists an element y ofG suh that jA\yAj = !�1. Let H be the yli subgroup of G generated byy. Notie that A admits a unique partition in maximal right-y-hains and H-right-osets. Let k be the number of maximal right-y-hains in this partition.Then we have jA \ yAj = ! � k. Thus there is exatly one maximal right-y-hain in A. Let T := fe; y; y2; : : : ; yjT j�1g � t be this maximal right-y-hain.Notie that T is a subset of a H-right oset. Therefore we have disprH(A) = 1,as the right-tiles of A are T and H-right-osets,Obviously y 6= e, hene H is not the trivial subgroup of G. Thus by Theorem17, we have H = G or jHj = 2.If jHj = 2 then y is an involution of G distint from e, and we must have jT j =1. Hene there must be some H-right-osets in A. The element y ommuteswith every element of G, hene H is a normal subgroup of G. If T is usedonly on the oset Hu(A;B), then � � 1, whih is impossible. Therefore T isused in the over of another oset Hx. As only T is used on Hx, it is used atleast twie, whih is in ontradition with Lemma 16 beause H is a normalsubgroup of G.Therefore H = G, that is G is a yli group.Hene A = T and G(t�1A;B) is a web. Thus G(A;B) whih is isomorphi toG(t�1A;B) is a web. 2Lemma 24 is not true if the hypothesis that every involution is in the enterof G is not assumed. Indeed the dihedral groups are examples of non-yligroups having near-fatorizations (A;B) and INT(A) = ! � 1 (see Setion3). Besides we give in Setion 4, a graph G(A;B) with 50 verties suh thatINT(A) = ! � 1, whih is not a web.Corollary 25 If G is a non-yli �nite abelian group then it admits no near-fatorization (A;B) suh that INT(A) = ! � 1.18



Corollary 26 If G is a non-yli �nite group of odd order then it admits nonear-fatorization (A;B) suh that INT(A) = ! � 1.PROOF. Indeed there is no involution in a group of odd order. 2Example 27 Let G be any group of order 3� p+1 (p a prime) suh that itsenter ontains all its involutions, with a symmetri near-fatorization (A;B).We may assume that jAj = 3. Sine jAj is odd and A is symmetri, there mustbe an element w in A suh that w2 = e. Let a be another element in A. Thusfa; wg � A\awA and so INT(A) � 2. Then by Lemma 24, G must be yli.This implies for instane that 7 groups, out of the 14 groups of order 16, haveno symmetri near-fatorizations.There are many non-abelian groups ontaining in their enter all their involu-tions: aording to GAP [10℄ there are 58 suh groups out of the 267 groups oforder 64, and 52 suh groups out of the 231 groups of order 96. Notie that forn = 64 or 96, ! or � must be prime, hene any CGPW graph of these ordersis a web. Thus if any of these groups has a near-fatorization (A;B) then thegraph G(A;B) is not a CGPW graph. Notie that for n = 64, these groups donot have any symmetri near-fatorization (A;B) suh that jAj = 3.Lemma 28 Let G be a �nite group suh that all its yli subgroups are nor-mal and admitting a near-fatorization (A;B) suh that INT(A) = ! � 2.Then� If G is abelian then G is yli.� If G is not abelian then the order of G is a multiple of 4, G has an elementy of order n2 and y n4 is the only involution of G .PROOF. Sine INT(A) = !� 2, we have ! � 3 and there exists an elementy of G suh that jA \ yAj = ! � 2. Let T1 := fe; y; y2; : : : ; yjT1j�1g � t1 andT2 := fe; y; y2; : : : ; yjT2j�1g � t2 be the two maximal right-y-hains of A. Letu be the unovered element. Let H be the yli subgroup generated by theelement y. Hene by assumption on G, H is a non-trivial normal subgroup ofG:If G = H then G is abelian and yli, thus we are done. Hene we may assumethat H ( G.Sine A is made of T1, T2 and some H-osets, we have disprH(A) � 2. ByTheorem 17, we have disprH(A) > 0. If disprH(A) = 1 then by Theorem 17again, we get jHj = 2. Sine disprH(A) = 1, T1 and T2 must lie in the sameright-oset of H. Thus T1[T2 is aH-oset, and this implies that disprH(A) = 0,a ontradition. 19



Hene disprH(A) = 2 and by Theorem 17 again,H has ardinality n2 . Thereforey is an element of order n2 and there is no H-oset in A.Claim 29 We have jT1j 6= jT2j.PROOF. Suppose that jT1j = jT2j. As there is no H-oset in A, we havejHj = 1 (mod jT1j) due to the over of the oset Hu(A;B). Then we alsohave jHj = 0 (mod jT1j) due to the over of the other oset. Hene jT1j = 1.This implies that jAj = 2. This is impossible as ! � 3. 2Thus jT1j 6= jT2j and we may assume that jT2j < jT1j.Claim 30 The pair fHt1; Ht2g is a partition of G in right osets.PROOF. If t1 and t2 lie in the same right oset then disprH(A) � 1, ontra-diting disprH(A) = 2. Thus Ht1 \Ht2 = ;. As jHj = n2 , we are done. 2Claim 31 We have (Ht1)�1 = Ht1 and (Ht2)�1 = Ht2.PROOF. Suppose that H = Ht1 then we obviously have (Ht1)�1 = Ht1.Sine the inversion map is a bijetive map, this implies that (Ht2)�1 = Ht2.The proof for the ase H = Ht2 is similar. 2Claim 32 If G is abelian then G is a yli group.PROOF. If G is abelian then let b be any element of B distint from t�12 �y�jT2j � u, that is, T2b is not followed by the unovered element u. HeneT2b is followed by a tile T2b0 or by a tile T1b0, that is t2 � b0 = yjT2j � t2 � b ort1�b0 = yjT2j�t2�b. Thus b0 = yjT2j�b or b0 = yjT2j�t�11 �t2�b. If b0 = yjT2j�b thent1�b0 = t1�yjT2j�b. Sine jT2j < jT1j, yjT2j�t1 is an element of T1. Thus yjT2j�t1is an element of A and we have a ontradition. Therefore b0 = yjT2j�t�11 �b�t2.Let y0 := yjT2j � t�11 � t2. We have seen that for every element b of B exeptmaybe one, y0b is an element of B. Thus INT(B) = �� 1. Sine G is abelian,(B;A) is obviously a near-fatorization of G. Hene by Lemma 24, G must beyli. 2Claim 33 If G is not abelian then n is a multiple of 4 and y n4 is the onlyinvolution of G . 20



PROOF. By assumption, G is not abelian.Let q be an element of G suh that Hq 6= H.If n is not a multiple of 4 then jHj is odd. Hene due to Fat 31 there exists atleast one element z in Hq suh that z2 = e. Sine hzi is a normal subgroup ofG, z must ommute with every element of G and in partiular with y. Sinez is an element of Hq, there exists an integer i suh that z = yi � q. Fromz � y = y � z, we get yi � q � y = yi+1 � q. Thus q � y = y � q. Due to Fat 30,G must be abelian, whih is impossible. Thus n is a multiple of 4 and so y n4is an involution of G.Obviously in the oset H there are exatly two involutions: the elements e andy n4 . Thus if there is another involution in G then there must be an involutionz in Hq, and we have seen that in this ase G must be abelian, whih isimpossible. Hene we are done.2Corollary 34 If (A;B) is a near-fatorization of a �nite abelian group Gsuh that jAj � 4 then G is yli [7℄ and G(A;B) is a CGPW graph.PROOF. Let (A;B) be a near-fatorization of G suh that jAj � 4. Sine Gis abelian, we use the additive notation + to denote the operation of G.If jAj � 3 then obviously INT(A) � !� 2. Thus G is yli by Lemma 28 andCorollary 25. Then it is proved in [1℄ that G(A;B) must be a CGPW graph.If jAj = 4 then n is odd and there is no involution in G. By Lemma 5, thereexist x and y in G suh that (x+A;B + y) is a symmetri near-fatorization.Let A0 := x+A. Sine A0 = �A0 and there is no involution, there are a and a0in G suh that A0 = fa; a0;�a;�a0g. Then fa; a0g � A0 \A0 + (a+ a0). HeneINT(A0) � !�2. By Lemma 28 and Corollary 25, G must be the yli group.Thus G(A;B) � G(A0; B0) is a CGPW graph [1℄. 2Example 35 The Quaternion group Q8 of order 8 is an example of a non-abelian �nite group suh that all its yli subgroups are normal.There does not seem to be many non-abelian groups suh that all their ylisubgroups are normal. Aording to GAP, there is only one (out of 267) suhgroup of order 64: the 262th group. As it has no element of order 32, we knowthat is has no near-fatorization (A;B) suh that jAj = 7 and INT(A) � 5.There is also only one (out of 231) suh group of order 96: the 222th group.This group does not have any element of order 48.21



In the remaining of this setion, we study the problem of haraterizingthe minimal imperfet graphs in the lass of the graphs produed by near-fatorizations of �nite groups. We �rst need to reall some results about min-imal imperfet graphs.A small transversal is a subset of verties T suh that T is of ardinality atmost !+��1 and T meets every maximum lique and every maximum stableset.In 1976, V. Chv�atal found a very useful property of minimal imperfet graphswhih states that a minimal imperfet graph ontains no small transversal [8℄.In 1998, G. Bas�o, E. Boros, V. Gurvih, F. Ma�ray and M. Preissmann[1℄ introdued a suÆient ondition for partitionable graphs to have a smalltransversal alled the 'Parents Lemma'. A maximum lique K of G is a motherof a vertex x 2 K if every maximum liqueK 0 ontaining x satis�es jK\K 0j �2. Similarly, a maximum stable set S of G is a father of a vertex x 2 S if everymaximum stable set S 0 ontaining x satis�es jS \ S 0j � 2.Lemma 36 'The Parents Lemma' [1℄ If a vertex of a partitionable graphhas a father and a mother then the graph has a small transversal.Then we have the following result:Lemma 37 Let G be a �nite group of even order suh that every involu-tion y ommutes with every element of G. If (A;B) is any symmetri near-fatorization of G then G(A;B) has a small transversal, hene is not minimalimperfet.PROOF. Sine n is even, ! and � are neessarily odd.As ! is odd, there is an element y of A suh that y2 = e. We are going to showthat A is a mother of y. Let pA be any !-lique ontaining y distint from A.Hene there is a in A suh that y = p�a. If a�1 = y then p = y �a�1 = y2 = eand so pA = A, a ontradition. Thus a�1 is not equal to y. We have a�1 =y � p = p � y beause y ommutes with p. Thus a�1 is an element of p � A.Hene fa�1; yg � A \ pA. This means that A is a mother of y.Likewise there exists an element x of B suh that x2 = e and B = B�1 is afather of x. Hene yx�1B = yx�1B�1 is a father of y. By applying the ParentsLemma, we see that the graph G(A;B) has a small transversal. 2Corollary 38 Let G be a �nite abelian group of even order. If (A;B) is anynear-fatorization of G then G(A;B) is not minimal imperfet.22



3 Near-fatorizations of the dihedral groupsIn this setion, we show how to arry any near-fatorization of a yli groupof even order to the dihedral group of the same order.We begin by introduing a map � from Z2n into D 2n .An even element of Z2n is an element of 2Z2n. The odd elements are the otherelements of Z2n. Notie that if x is an even element of Z2n, then there existsa unique integer y between 0 and (n� 1) suh that x = 2� y. We denote byx2 this integer.If x and y are two even elements of Z2n then we have x+y2 = x2 + y2 (mod n)and if x is any element of Z2n then we have 2x2 = x (mod n).Let � be the bijetive map of Z2n onto D 2n de�ned by:� : Z2n ! D2nx is even 7! r x2x is odd 7! sr x�12We now state some properties of � whih are useful for the proofs:Lemma 39 For every x and y of Z2n, we have� if y is even, �(x) � �(y)�1 = �(x� y) and �(x+ y) = �(x) � �(y).� if y is odd, �(x) � �(y)�1 = �(y � x).PROOF. If x and y are even then we have �(x + y) = r x+y2 = r x2+ y2 =r x2 �r y2 = �(x)��(y) and �(x�y) = r x�y2 = r x2+�y2 = r x2 �r�y2 = �(x)��(y)�1.If x is odd and y is even then we have �(x + y) = sr x+y�12 = sr x�12 + y2 =sr x�12 � r y2 = �(x) � �(y) and �(x � y) = sr x�y�12 = sr x�12 � y2 = sr x�12 � r�y2 =�(x) � �(y)�1.Hene, if y is even then we have �(x + y) = �(x) � �(y) and �(x) � �(y)�1 =�(x� y).If x is even and y is odd then we have �(x) � �(y)�1 = r x2 � (sr y�12 )�1 =sr y�x�12 = �(y � x). 23



If x is odd and y is odd then we have �(x) � �(y)�1 = sr x�12 � (sr y�12 )�1 =r y�x2 = �(y � x).Hene, if y is odd then we have �(x) � �(y)�1 = �(y � x). 2From a near-fatorization (A;B) of Z2n, we get a near-fatorization of D 2nthis way:Algorithm 1 Carrying a near-fatorization of Z2n into D 2nInput: a near-fatorization (A;B) of Z2nOutput: a near-fatorization (A0; B0) of D 2nStep 1: �nd an element x of Z2n suh that A + x is symmetri and letA1 := A + x (exists by Lemma 5).Step 2: take an element a1 of A1 and let A2 := A1 + a1.Step 3: let B0 be the set of the even elements of B and B1 be the set of theodd elements of B. Then take A0 := �(A2) and B0 := �(B0) [ �(B1)ra1 .We say that (A0; B0) is a dihedral near-fatorization assoiated to (A;B). Weall De Bruijn dihedral near-fatorization any dihedral near-fatorizations as-soiated to a De Bruijn near-fatorization.Obviously one may get several distint near-fatorizations of D 2n through thisalgorithm from one near-fatorization of Z2n as x is not uniquely de�ned inStep 1 and neither is a1 in Step 2.We �rst prove that any ouple (A0; B0) produed by this algorithm is indeeda near-fatorization of D 2n .Theorem 40 Let (A;B) be a near-fatorization of Z2n. Let (A0; B0) be anoutput of algorithm 1 with input (A;B). Then (A0; B0) is a near-fatorizationof D 2n .PROOF. Reall that due to the algorithm, we have A0 = �(A2) and A2 =A1 + a1 where A1 is symmetri and a1 is an element of A1.Claim 41 For every b of B, there exists b0 in B0 suh that �(A2 + b) = A0b0.PROOF. If b is even then let a be any element of A2. By Lemma 39, we have�(a+ b) = �(a) � �(b). Hene �(A2 + b) � �(A2) � �(b). Sine � is a bijetivemap, we get �(A2 + b) = �(A2) � �(b) with �(b) 2 B0. Thus we are done.If b is odd then let a be any element of A2. By de�nition of A2, a � a1 is anelement of A1, whih is a symmetri set. Hene a1�a is an element of A1. Thus24



2a1 � a is an element of A2. Notie that 2a1 + b is odd. Let b0 := �(2a1 + b).As �(2a1+ b) = sra1+ b�12 = sr b�12 � ra1 , b0 is an element of B0. If a is even then�(2a1� a) � b0 = ra1�a2 � sra1+ b�12 = sr a+b�12 = �(a+ b). Hene �(a+ b) 2 A0b0.If a is odd then �(2a1 � a) � b0 = sr 2a1�a�12 � sr 2a1+b�12 = r a+b2 = �(a + b).Thus �(a + b) 2 A0b0. Therefore we have �(A2 + b) � A0b0. This implies that�(A2 + b) = A0b0 beause � is a bijetive map. 2Claim 42 The ouple (A0; B0) is a near-fatorization of D 2n .PROOF. We have seen that f�(A2+ b); b 2 Bg � fA0b0; b0 2 B0g. Sine � isa bijetive map, there exists u in D 2n suh that f�(A2+b); b 2 Bg is a partitionof D 2n n fug. As B and B0 are of equal ardinality, we get that fA0b0; b0 2 B0gis a partition of D 2n n fug. Therefore (A0; B0) is a near-fatorization of D 2n .2Example 43A2= f0; 1; 2; 9; 10; 11; 18; 19; 20gB= f0; 3; 6; 27; 30; 33; 54; 57; 60gA0= fe; s; r; sr4; r5; sr5; r9; sr9; r10gB0= fe; r3; sr11; r15; sr23; sr26; r27; r30; sr38gThe ouple (A0; B0) is a near-fatorization of D 82 indued by the near-fatori-zation (A2; B) of Z82We now prove that the graph G(A0; B0) is not altered by the hoie of x inStep 2 or by the hoie of a1 in Step 3.Lemma 44 Let (A;B) be a near-fatorization of Z2n. Let (A0 ,B0) and (A00,B00) be two dihedral near-fatorizations assoiated to (A, B). Then the graphG(A0, B0) is isomorphi to the graph G(A00, B00).PROOF. By onstrution, there exist two elements x and y of Z2n suh thatA0 = �(A+ x) and A00 = �(A+ y).We haveA0=�(A+ x)= fri j 0 � i � n� 1; 2i (mod 2n) 2 A+ xg[fsri j 0 � i � n� 1; 2i + 1 (mod 2n) 2 A+ xg25



and A00=�(A+ y)= fri j 0 � i � n� 1; 2i (mod 2n) 2 A+ yg[fsri j 0 � i � n� 1; 2i+ 1 (mod 2n) 2 A+ ygIf y� x is even then by taking the unique integer j between 0 and n� 1 suhthat 2j = 2i + x� y (mod 2n), we getA00= nrj+ y�x2 j 0 � j � n� 1; 2j (mod 2n) 2 A+ xo[nsrj+ y�x2 j 0 � j � n� 1; 2j + 1 (mod 2n) 2 A+ xoHene, A00 = A0r y�x2 . Thus we have A00�1A00 = r� y�x2 A0�1A0r y�x2 . This meansthat the onneting set (A00�1A00)nfeg is the image of (A0�1A0)nfeg under theinner automorphism g 7! r� y�x2 gr y�x2 . Then Lemma 6 implies that the Cayleygraph G(A00; B00) is isomorphi to the Cayley graph G(A0; B0).The ase y � x is odd is slightly trikier.Let k be an element of Z2n suh that A+ k is symmetri. Let Asym := A+ k.We have A0 = �(Asym + (x� k)) and A00 = �(Asym + (y � k)). ThusA0=�(Asym + (x� k))= fri j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (x� k)g[fsri j 0 � i � n� 1; 2i + 1 (mod 2n) 2 Asym + (x� k)gand A00=�(Asym + (y � k))= fri j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (y � k)g[fsri j 0 � i � n� 1; 2i+ 1 (mod 2n) 2 Asym + (y � k)gFor every integer p between 0 and n� 1, we have:A0srp= nsrp�i j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (x� k)o[nrp�i j 0 � i � n� 1; 2i+ 1 (mod 2n) 2 Asym + (x� k)o= nsrp+i j 0 � i � n� 1; 2i (mod 2n) 2 Asym + (k � x)o26



[nrp+i j 0 � i � n� 1; 2i� 1 (mod 2n) 2 Asym + (k � x)o= nsrp+i j 0 � i � n� 1;2i+ x� 2k + y (mod 2n) 2 Asym + (y � k)g[nrp+i j 0 � i � n� 1;2i� 1 + x� 2k + y (mod 2n) 2 Asym + (y � k)gThus by taking p = �k + (y+x)�12 (mod n), we have A0srp = A00. HeneA00�1A00 = srpA0�1A0srp. Therefore the onneting set (A00�1A00) n feg is theimage of (A0�1A0) n feg under the inner automorphism g 7! srpgsrp. Thisimplies that the Cayley graph G(A00; B00) is isomorphi to the Cayley graphG(A0; B0).2Thus from a near-fatorization (A;B) of Z2n, we get a unique partitionablegraph G(A0; B0) where (A0; B0) is any dihedral near-fatorization assoiated to(A;B). It remains to know if we may get some 'new' partitionable graphs thisway. We have not sueeded in proving that in general the graph G(A0; B0)is isomorphi to G(A;B) when (A;B) is any near-fatorization of the yligroup.Nevertheless, in Theorem 45 we prove that this is true for all the graphsG(A;B) on yli groups known so far.Theorem 45 If (A;B) is a De Bruijn near-fatorization of Z2n then the graphG(A;B) is isomorphi to the graph G(A0; B0) where (A0; B0) is a dihedral near-fatorization assoiated to (A;B).PROOF. We �rst alulate a dihedral near-fatorization (A0; B0) assoiatedto (A;B). Notie that due to Lemma 44, we may proeed without having tofear any loss of generality.Let k1; : : : ; k2p be the parameters of the graph G(A;B), that is G(A;B) =C[k1; : : : ; k2p℄. As 2n is even, jAj and jBj must be odd. This implies thatthe 2p parameters ki are all odd. Thus for every j between 1 and p, nj =k1 � k2 � k3 � � � � � k2j + 1 is even. We set n0 := 2 in order to avoid a speialase in the proof.Let a+ := (k1 � 1) +Pp�1j=1 ��2ji=1ki� (k2j+1 � 1). Notie that a+ is the greatestelement of A seen as a set of integers and that it is an even element of A suhthat A� a+2 is symmetri. Thus in Step 1, we may take x = �a+2 .27
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PSfrag replaements
A1 = f0; 1; 2g B1 = f0; 3; 6g n1 = 10!1 = 3; �1 = 3
A2 = f0; 1; 2g+ 9 � f0; 1g n2 = 19!2 = !1 � 2
B2 = f0; 3; 6g+ 18 � f0; 1g �2 = �1 � 2

n = 37

9
18

36
Figure 3. The De Bruijn near-fatorization given by a1 = 3, a2 = 3, a3 = 2, a4 = 1,a5 = 1 and a6 = 2Sine �x is an element of A � a+2 , we may take A2 := A in Step 2. Heneby taking A0 := �(A) and B0 as de�ned in Step 3, we get a dihedral near-fatorization assoiated to (A;B).Claim 46 We have A0 � A0�1 = �(A� A).PROOF. We have to prove that �(A) � �(A)�1 = �(A� A).We �rst prove the inlusion �(A) � �(A)�1 � �(A�A). Let w be any elementof �(A)��(A)�1: there exist a and a0 in A suh that w = �(a)��(a0)�1. Heneby Lemma 39, we have w = �(a � a0) or �(a0 � a). In both ases, w is anelement of �(A� A). Thus �(A) � �(A)�1 � �(A� A).We now prove the onverse inlusion. Let w be any element of �(A�A); thereexist a and a0 in A suh that w = �(a0 � a).If a0 is even then w = �(a) � �(a0)�1 hene it is an element of �(A) � �(A)�1.If a0 is odd, then due to the de�nition of A, there exist integers Æ0; Æ1; : : : ; Æp�1and Æ00; Æ01; : : : ; Æ0p�1 suh that a = Æ0 + (n1 � 1)Æ1 + : : : + (np � 1)Æp�1 anda0 = Æ00+(n1� 1)Æ01+ : : :+(np� 1)Æ0p�1 with 0 � Æi; Æ0i � (k2i+1� 1) for everyi between 0 and p � 1. Sine a0 is odd, there must be an integer j between 0and p � 1 suh that 0 < Æ0j < (k2j+1 � 1) beause all the k2i+1 � 1 are even.Thus k2j+1 > 1. 28



If Æj = 0 then a+(nj�1) is an element of A and a0+(nj�1) is an element of A.Then w = �(a�a0) = �((a+nj�1)�(a0+nj�1)) = �(a+nj�1)��(a0+nj�1)�1beause a0+ nj � 1 is even as nj = a1 � a2 � a3 � : : : � a2j +1 is even. Thereforew is an element of �(A) � �(A)�1.If Æj > 0 then a�(nj�1) is an element of A and a0�(nj�1) is an element of A.Then w = �(a�a0) = �((a�nj+1)�(a0�nj+1)) = �(a�nj+1)��(a0�nj+1)�1beause a0 � nj + 1 is even. Hene w is an element of �(A) � �(A)�1.Thus �(A� A) � �(A) � �(A)�1.Therefore �(A� A) = �(A) � �(A)�1. 2Claim 47 Let � be the graph with vertex set D 2n and with edge set ffx; yg; x�y�1 2 (A0 � A0�1) n fegg. Then G(A;B) is isomorphi to �.PROOF. Let fi; jg be any edge of G(A;B). Then i�j 2 (A�A)nf0g. Thusj�i 2 (A�A)nf0g. Hene �(i�j) 2 �((A�A)nf0g) and �(j�i) 2 �((A�A)nf0g). Thus �(i)�(j)�1 2 �((A�A)nf0g). So �(i)�(j)�1 2 (�(A)�(A)�1)nfeg.Therefore f�(i); �(j)g is an edge of �.Let f�(i); �(j)g be any edge of �. Then �(i)�(j)�1 2 (�(A)�(A)�1)nfeg. Sine�(i)�(j)�1 is equal to �(i� j) or �(j � i), we get �(i� j) 2 �((A�A) n f0g)or �(j � i) 2 �((A� A) n f0g), by Fat 46. Hene i� j 2 (A�A) n f0g, thatis fi; jg is an edge of G(A;B). 2Claim 48 There exists an element g suh that gA0 is a symmetri subset ofD 2nPROOF. Let k be an element of Z2n suh that A+ k is a symmetri subsetof Z2n.Let A0 be the set of the even elements of A and let A1 be the set of the oddelements of A. Let H be the subgroup of D 2n generated by r.If k is even then r k2A0 = r k2�(A) = r k2�(A0)[ r k2�(A1) = �(A0+k)[ r k2�(A1).Then r k2�(A1) is a subset of sH, thus it is a symmetri subset of D 2n as everyof its elements is an involution. The set �(A0 + k) is a symmetri subset ofD 2n beause A0 + k is a symmetri subset of Z2n. Hene r k2A0 is symmetri.If k is odd then sr� k+12 A0 = sr� k+12 �(A0)[ sr� k+12 �(A1). The set sr� k+12 �(A0)is a symmetri subset of D 2n as it is a subset of sH. We have �(A + k) =sr k�12 �(A0) [ sr� k+12 �(A1), hene sr� k+12 �(A1) = H \ �(A + k) = �(A1 + k).29



Sine A1+ k is a symmetri subset of 2Zn, this implies that �(A1+ k) is sym-metri, thus sr� k+12 �(A1) is symmetri. Therefore sr� k+12 A0 is symmetri. 2Claim 49 The graph G(A0; B0) is isomorphi to the graph G(A;B).PROOF. All we have to show is that G(A0; B0) is isomorphi to �.Let g be an element of D 2n suh that gA0 is symmetri and let A00 := gA0.Obviously, G(A0; B0) is isomorphi to G(A00; B0). Let �0 be the graph withvertex set D 2n and with edge set ffx; yg; x � y�1 2 (A00 � A00�1) n fegg.Let inv be the bijetive map of D 2n onto itself whih maps an element onto itsinverse. fx; yg is an edge of G(A00; B0) if and only if x�1 �y 2 (A00�1 �A00)nfeg,that is if and only if inv(x)inv(y)�1 2 (A00 � A00�1) n feg as A00 = A00�1, heneif and only if finv(x); inv(y)g is an edge of �0. Hene G(A00; B0) is isomorphito �0.Let h denote the inner automorphism of D 2n whih maps an element x ontog�1xg. Then fx; yg is an edge of �0 if and only if fh(x); h(y)g is an edge of �.Thus �0 is isomorphi to �.Therefore G(A0; B0) is isomorphi to �.2In 1990, D. De Caen, D.A. Gregory, I.G. Hughes and D.L. Kreher [7℄ desribeda lass of near-fatorizations of the dihedral groups: if ! is any divisor of 2n�1,then let � := 2n�1! and de�neA := �ri; 1 � i � ! � 12 � [ �sri; 0 � i � ! � 12 �B := �ri!; 0 � i � �� 12 � [ �sri!; 1 � i � �� 12 �The graphs assoiated to these near-fatorizations are a strit subset of theCGPW graphs of even order:Lemma 50 The graphs G(A;B) produed by this method are webs.PROOF. We have A = ns; r; sr; r2; sr2; : : : ; r !�12 ; sr !�12 o.30



Consider the De Bruijn near-fatorization of Z2n given by A0 := f0; 1; : : : ; !�1g and by B0 := !�f0; : : : ; ��1g. Let A0 := �(A0). We know that there existsB0 suh that (A0; B0) is a near-fatorization of D 2n with G(A0; B0) isomorphito G(A0; B0). We have A0 = ne; s; r; : : : ; r !�12 o. Thus A0 = Asr !�12 . HeneA0�1A0 = sr !�12 A�1Asr !�12 . This means that the onnetion set of G(A;B)is the image under an inner automorphism of D 2n of the onnetion set ofG(A0; B0). Thus G(A;B) is isomorphi toG(A0; B0). As G(A0; B0) is isomorphito G(A0; B0) whih is a web, we are done. 24 Some open questionsThis paper gives rise to several questions. We �rst reall the irular parti-tionable graph onjeture:Conjeture 51 If (A;B) is a near-fatorization of the yli group Zn thenthere exists a De Bruijn near-fatorization (A0; B0) suh that G(A;B) is iso-morphi to G(A0; B0).Grinstead has veri�ed by omputer this onjeture for groups of order lessthan 50, and Bas�o, Boros, Gurvih, Ma�ray and Preissmann have proved itwhen A is of ardinality at most 5.We do not know any near-fatorization (A;B) of the dihedral groups whoseassoiated graph G(A;B) is not a CGPW graph. Thus we ask this question,whih may be seen as the irular partitionable graph onjeture in dihedralgroups:Problem 52 If (A;B) is a near-fatorization of the dihedral group D2n, isG(A;B) always isomorphi to a graph G(A0; B0) with (A0; B0) a De Bruijndihedral near-fatorization ?We believe that this is not true beause in a dihedral group, a tile may beused 'bakwards', whih is not possible in the yli group. Hene a tiling ofD 2n n fug does not behave in the same way than a tiling of Z2n n fug, whereasa positive answer to Problem 52 would suggest the opposite.With the help of Theorem 17, an exhaustive searh by omputer [15℄ revealedthat the only groups of order stritly less than 64 having a symmetri near-fatorization are the yli groups and the dihedral groups. Hene this leadsto this natural question:Problem 53 Are the yli groups and the dihedral groups the only groupshaving symmetri near-fatorizations ?31



Reently, Boros, Gurvih and Hougardy [4℄ introdued a onstrution of parti-tionable graphs generalizing the �rst onstrution of Chv�atal, Graham, Peroldand Whitesides. Let us all BGH-graphs the partitionable graphs produed bythis new method. All the BGH-graphs ontain a ritial !-lique, that is an!-lique Q suh that the ritial edges of Q indue a tree overing all vertiesof Q.Our omputer experiments revealed that the group D 10 � Z5 has a near-fatorization (A;B) below, suh that the graph G(A;B) does not have anyritial !-lique. We denote this graph by �50.A= f(e; 0); (s; 0); (e; 3); (s; 3); (r; 4); (sr; 4); (r2; 4)gB= f(s; 1); (r; 1); (sr2; 1); (sr3; 3); (r4; 3); (sr3; 4); (r4; 4)gLemma 54 The graph �50 does not have any ritial edge, whereas the ritialedges of �50 form a perfet mathing of �50.PROOF. If �50 has a ritial edge then there exists an element y suh thatjB�1 \ yB�1j = 6. Let H be the yli subgroup generated by y. By Theorem17 applied to the near-fatorization (B�1; A�1), we have jHj = 2, thus y mustbe an involution.The set of involutions is f(s; 0); (sr; 0); (sr2; 0); (sr3; 0); (sr4; 0)g. A quik om-putation shows that y an not be any of these 5 values, thus we have a on-tradition: �50 does not have any ritial edge.fi; jg is a ritial edge of �50 if and only if there exist k and k0 suh thatfig = kA n k0A and fjg = k0A n kA. Thus jA \ k�1k0Aj = 6 and by Theorem17 we get that k�1k0 must be an involution. Then it is lear that k�1k0 mustbe equal to (s; 0). Thus if fi; jg is a ritial edge then there exists k suhthat fig = kA n k(s; 0)A and fjg = k(s; 0)A n kA, that is i = k(r2; 4) andj = k(sr2; 4). This implies that j = i(sr4; 0).Hene any ritial edge of �50 is a left oset of the subgroup H 0 generated bythe involution (sr4; 0). As any left oset of H 0 form a ritial edge of �50, wehave that the ritial edges of �50 form the perfet mathing of �50 given bythe left osets of H 0. 2Thus this graph, as well as its omplement, does not have any ritial !-lique.Therefore it is not a BGH-graph, and neither is it a CGPW-graph. Hene near-fatorizations of �nite groups do produe 'new' partitionable graphs.Problem 55 Is it possible to desribe a lass of near-fatorizations of a se-quene of �nite groups, whose assoiated graphs are 'new' partitionable graphs?32
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