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Abstract

Circular-perfect graphs form a natural superclass of perfect graphs: on the one
hand due to their definition by means of a more general coloring concept, on the
other hand as an important class of χ-bound graphs with the smallest non-trivial
χ-binding function χ(G) ≤ ω(G) + 1.

The Strong Perfect Graph Conjecture, recently settled by Chudnovsky et al. [4],
provides a characterization of perfect graphs by means of forbidden subgraphs. It
is, therefore, natural to ask for an analogous conjecture for circular-perfect graphs,
that is for a characterization of all minimal circular-imperfect graphs.

At present, not many minimal circular-imperfect graphs are known. This paper
studies the circular-(im)perfection of some families of graphs: normalized circular
cliques, partitionable graphs, planar graphs, and complete joins. We thereby exhibit
classes of minimal circular-imperfect graphs, namely, certain partitionable webs, a
subclass of planar graphs, and odd wheels and odd antiwheels. As those classes
appear to be very different from a structural point of view, we infer that formulating



an appropriate conjecture for circular-perfect graphs, as analogue to the Strong
Perfect Graph Theorem, seems to be difficult.

Keywords: circular coloring, circular-perfection, minimal circular-imperfect graph

1 Introduction

Coloring the vertices of a graph is an important concept with a large variety
of applications. Let G = (V, E) be a graph with finite vertex set V and
simple edge set E. A k-coloring of G is a mapping f : V → {1, . . . , k} with
f(u) 6= f(v) if uv ∈ E, i.e., adjacent vertices of G receive different colors. The
minimum k for which G admits a k-coloring is called the chromatic number of
G and denoted by χ(G). Calculating χ(G) is an NP-hard problem in general.
In a set of k pairwise adjacent vertices, called clique Kk, all k vertices have to
be colored differently. Thus the size of a largest clique in G, the clique number
ω(G), is a trivial lower bound on χ(G). This bound can be arbitrarily bad
[11] and is hard to evaluate as well.

Berge [1] proposed to call a graph G perfect if each induced subgraph G′ ⊆
G admits an ω(G′)-coloring. Perfect graphs turned out to be an interesting and
important class of graphs with a rich structure, see [15] for a recent survey. In
particular, both parameters ω(G) and χ(G) can be determined in polynomial
time if G is perfect [6].

Recently, the famous Strong Perfect Graph Conjecture of Berge [1] on
characterizing perfect graphs by means of forbidden subgraphs has been settled
by Chudnovsky, Robertson, Seymour, and Thomas [4]: Berge [1] observed
that chordless odd cycles C2k+1 with k ≥ 2, termed odd holes, and their
complements C2k+1, the odd antiholes, are imperfect as clique and chromatic
number differ. (The complement G of a graph G has the same vertex set as
G and two vertices are adjacent in G if and only if they are non-adjacent in
G.) Berge’s famous conjecture was that odd holes and odd antiholes are the
only minimal forbidden subgraphs in perfect graphs, i.e., the only minimally
imperfect graphs. Considerable effort has been spent over the years to verify
or falsify this conjecture revealing deep structural properties of minimally
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imperfect graphs [15]. Finally, Chudnovsky, Robertson, Seymour, and Thomas
[4] succeeded in turning the conjecture into the Strong Perfect Graph Theorem
and exhibited many structural properties of perfect graphs, that were not
known before.

As generalization of perfect graphs, X. Zhu [21,22] introduced recently the
class of circular-perfect graphs based on the following more general coloring
concept.

Define a (k, d)-coloring of a graph G, as a mapping f : V → {0, . . . , k− 1}
such that for each edge xy of G, d ≤ |f(x) − f(y)| ≤ k − d. The circular
chromatic number is:

χc(G) = inf

{

k

d
: G has a (k, d) − coloring

}

From the definition, we immediately obtain χc(G) ≤ χ(G) because a usual
k-coloring of G is a (k, 1)-coloring. (Note that χc(G) is sometimes called the
star chromatic number in the literature, see [3,17,20].)

In order to obtain a lower bound on χc(G), we generalize cliques as follows:
Let Kk/d with k ≥ 2d denote the graph with the k vertices 0, . . . , k − 1 and
edges ij if and only if d ≤ |i − j| ≤ k − d. Such graphs Kk/d are called
circular cliques (note that they are also known as antiwebs in the literature,
see [16,18]). A circular clique Kk/d with gcd(k, d) = 1 is said to be prime.
Prime circular cliques include all cliques Kk = Kk/1 as well as all odd antiholes
C2k+1 = K2k+1/2 and all odd holes C2k+1 = K2k+1/k, see Figure 1. The circular
clique number is

ωc(G) = max

{

k

d
: Kk/d ⊆ G, gcd(k, d) = 1

}

and we immediately obtain ω(G) ≤ ωc(G).
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Fig. 1. The circular cliques on nine vertices.

Remark 1.1 Colorings can also be interpreted as homomorphisms from a
graph to a clique.
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Let h be a homomorphism from G1 = (V1, E1) to G2 = (V2, E2) where
h : V1 → V2 such that h(u)h(v) ∈ E2 if uv ∈ E1; we write G1 � G2. Any
k-coloring of a graph G is equivalent to a homomorphism from G to Kk. Then
the circular chromatic number can be written as χc(G) = inf

{

k
d

: G � Kk/d

}

and the circular clique number as ωc(G) = sup
{

k
d

: Kk/d � G, gcd(k, d) = 1
}

[22].

Every circular clique Kk/d clearly admits a (k, d)-coloring (simply take the

vertex numbers as colors, as in Figure 1) but no (k′, d′)-coloring with k′

d′
< k

d

by [3]. Thus we obtain, for any graph G, the following chain of inequalities:

ω(G) ≤ ωc(G) ≤ χc(G) ≤ χ(G).(1)

A graph G is called circular-perfect if, for each induced subgraph G′ ⊆ G,
the circular clique number ωc(G

′) and the circular chromatic number χc(G
′) co-

incide. Obviously, every perfect graph has this property by (1) as ω(G′) equals
χ(G′). Moreover, it was proved in [22] that any circular clique is circular-
perfect as well. Thus circular-perfect graphs constitute a proper superclass
of perfect graphs. In contrary to perfect graphs, the class of circular-perfect
graphs is not stable under complementation.

Another natural extension of perfect graphs was introduced by Gyárfás [7]
as χ-bound graphs: A family G of graphs is called χ-bound with χ-binding
function b if χ(G′) ≤ b(ω(G′)) holds for all induced subgraphs G′ of G ∈ G.
Thus this concept uses functions in ω(G) as upper bound on χ(G). Since it is
known for any graph G that ω(G) = bωc(G)c by [22] and χ(G) = dχc(G)e by
[17], we obtain that circular-perfect graphs G satisfy the following Vizing-like
property

ω(G) ≤ χ(G) ≤ ω(G) + 1.(2)

Thus, circular-perfect graphs are a class of χ-bound graphs with the smallest
non-trivial χ-binding function. In particular, this χ-binding function is best
possible for a proper superclass of perfect graphs implying that circular-perfect
graphs admit coloring properties almost as nice as perfect graphs.

The aim of this paper is to look for other parallels between the classes
of perfect and circular-perfect graphs. As analogue to the Strong Perfect
Graph Theorem, one might be tempted to ask for an appealing conjecture
on minimal forbidden subgraphs in circular-perfect graphs. We call a graph
G minimal circular-imperfect if G is not circular-perfect but every proper
induced subgraph is. The hope is to identify all classes of minimal circular-
imperfect graphs in order to characterize circular-perfect graphs by means of
forbidden subgraphs.
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The main contribution of this paper is to characterize all minimal circular-
imperfect graphs in the classes of normalized circular cliques, partitionable
graphs, and complete joins, as well as to exhibit a class of minimal circular-
imperfect planar graphs. However, at first sight there is no straightforward
common structure in these graphs, hence formulating an analogue to the
Strong Perfect Graph Theorem for circular-perfect graphs seems to be dif-
ficult.

2 Results

2.1 Normalized circular cliques and partitionable graphs

Given a graph G, an edge e of G is called indifferent if e is not contained in
any maximum clique of G. The normalized subgraph norm(G) of G is obtained
from G by deleting all indifferent edges.

A graph G is called (p, q)-partitionable if |V (G)| = pq + 1 and, for each
vertex v of G, the subgraph G \ {v} admits a partition into p cliques of
cardinality q as well as a partition into q stable sets of cardinality p. A graph
is partitionable if it is (p, q)-partitionable for some p, q ≥ 2.

The complement of a circular clique (or antiweb) Kn/q is a web Cq
n, and any

circular clique Kn/q (and its complement) with n = ωq + 1 is a partitionable
graph.

We characterize all circular cliques whose normalized subgraph is circular-
imperfect, and show which of them are minimal with respect to this property.

Theorem 2.1 Let Kp/q be any prime circular clique. Then norm(Kp/q) is

(i) circular-imperfect if and only if p 6≡ −1 (mod q) and bp/qc ≥ 3;

(ii) minimal circular-imperfect if and only if p = 3q + 1 and q ≥ 3;

(iii) isomorphic to Kp/3 if p = 3q + 1 and q ≥ 3.

The above results imply:

Corollary 2.2 The partitionable webs C3
3q+1 are minimal circular-imperfect

for all q ≥ 3.

Originally, Lovász [10] and Padberg [12] introduced partitionable graphs
as a tool to study properties of minimal imperfect graphs, as every minimal
imperfect graph is in particular partitionable. Since circular-perfect graphs
include all perfect graphs and all minimal imperfect graphs, one might expect
that some subclasses of partitionable graphs are circular-perfect. To support
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this feeling further, every partitionable graph G satisfies the Vizing-like pro-
prty χ(G) ≤ ω(G) + 1, as every circular-perfect graph. This motivates to
study circular-(im)perfection of partitionable graphs.

The above corollary shows, however, that the circular cliques whose nor-
malized subgraphs are minimal circular-imperfect, are partitionable graphs
with clique number 3. Therefore, we cannot expect anymore the circular-
perfection of all partitionable graphs. Even worse, Theorem 2.3 below states
that most partitionable graphs are in fact circular-imperfect:

Theorem 2.3 All partitionable graphs apart from circular cliques are circular-
imperfect.

This implies further:

Corollary 2.4 All normalized partitionable graphs apart from odd holes and
odd antiholes are circular-imperfect.

2.2 Planarity and Circular-perfection

Computer checks for small minimal circular-imperfect graphs showed that
there exist planar ones (e.g. the 5-wheel); this suggests to check circular-
(im)perfection of planar graphs.

Our first result introduces an interesting class of circular-perfect graphs:
planar graphs where all vertices lie on the outer face, i.e., outerplanar graphs.

Theorem 2.5 Outerplanar graphs are circular-perfect.

As a by-product of Theorem 2.5, the circular chromatic number of an
outerplanar graph is equal to 2 if all cycles have even size, or 2 + 1

d
where

2d + 1 is the size of the smallest odd cycle. This gives a different proof of a
recent result by Kemnitz and Wellmann [9].

Outgoing from the circular-perfection of outerplanar graphs, it is easy to
introduce a simple class of minimal circular-imperfect planar graphs: for every
positive integers k and l such that (k, l) 6= (1, 1), let Tk,l denote the planar
graph with 2l+1 inner faces F1, F2, . . . F2l+1 of size 2k+1 arranged in a circular
fashion around a central vertex, where all other vertices lie on the outer face,
as depicted in Figure 2.2. We show circular-imperfection, minimality follows
from Theorem 2.5 as the removal of any vertex yields an outerplanar graph.
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C2k+1 C2k+1

C2k+1

Fig. 2. Example of a graph Tk,1

2.3 Complete joins and circular-imperfection

At last, our third class of minimal circular-imperfect graphs involves odd wheels
(complete joins of odd holes and one vertex) and odd antiwheels (complete joins
of odd antiholes and one vertex); a complete join of two graphs G1 and G2

is the union of G1 and G2, and all edges between G1 and G2. We completely
characterized complete joins w.r.t. circular-(im)perfection as follows:

Theorem 2.6 The complete join G ∗ G′ of two graphs G and G′ is

(i) circular-perfect if and only if both G and G′ are perfect;

(ii) minimal circular-imperfect if and only if G is an odd hole or odd antihole
and G′ is a single vertex (or vice versa), that is if and only if G ∗ G′ is an
odd wheel or an odd antiwheel.

Notice that odd wheels are the same as graphs T1,l, that is a class of planar
minimal circular-imperfect graphs. Odd antiwheels are examples of minimal
circular-imperfect graphs with arbitrarily large clique and chromatic number.

Corollary 2.7 The complete join of more than two graphs is never minimal
circular-imperfect.

3 Normalized circular cliques and partitionable graphs

3.1 Proof of Theorem 2.1

We shall prove that the normalized subgraph norm
(

Kp/q

)

of a prime circular
clique Kp/q is

• circular-imperfect iff p 6= −1 (mod q) and bp/qc ≥ 3 (assertion (i));
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• minimal w.r.t. this property iff p = 3q + 1 for all q ≥ 3 (assertion (ii));

• equal to Kp/3 if p = 3q + 1 and q ≥ 3 (assertion (iii)).

Given an integer p and a subset of integers S of [0, p−1], the circulant graph
C(p, S) is the graph with vertex set {0, . . . , p−1} and edge set {ij| i− j ∈ S}
with arithmetics performed modulo p.

We first state the following observation which relates the normalized sub-
graph of a partitionable circular-clique to its complement.

Lemma 3.1 If p = ωq+1, then norm(Kp/q) is isomorphic to the complement
Kp/ω = Cω

p of Kp/ω.

Proof. Both norm(Kp/q) and Kp/ω are circulant graphs on the vertex set
V = {0, 1, . . . , p − 1}. The former has generating set

S = {q, q + 1, 2q, 2q + 1, . . . , (ω − 1)q, (ω − 1)q + 1}

and the latter has generating set

S ′ = {1, 2, . . . , ω − 1, p − 1, p − 2, . . . , p − ω + 1}.

It is easy to verify that f : V → V defined as f(i) = iq (mod p) has the
property f(S ′) = S. Hence f is an isomorphism from Kp/ω to norm(Kp/q).

2

We shall now proceed to the proof of Theorem 2.1.

Proof. In the following, we denote by G the circular clique Kp/q and let H
denote the normalized subgraph norm

(

Kp/q

)

of G.

A proper variant of G is a subgraph H ′ of G obtained by removing a
non-empty set of indifferent edges (i.e., any graph H ′ with H ⊆ H ′ ( G).

Let p = ωq + r, where 0 ≤ r ≤ q − 1.

Claim 3.2 The normalized subgraph H of G is the circulant graph C[p, S],
where S = {q, q + 1, · · · , q + r, 2q, 2q + 1, · · · , 2q + r, · · · , (ω − 1)q, (ω − 1)q +
1, · · · , (ω − 1)q + r}.

Consider an edge 0t. We have t = kq + r′, with 1 ≤ k ≤ ω − 1 and
0 ≤ r′ ≤ q − 1.

If 0 ≤ r′ ≤ r, then the set {0, q + r′, 2q + r′, · · · , (ω − 1)q + r′} induces a
maximum clique containing the edge 0t, and so the edge 0t is not indifferent.

Conversely, if r + 1 ≤ r′ ≤ q − 1, then let K be a clique containing
0, t. The other vertices of K belong to the intervals [q, (k − 1)q + r′] and
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[(k + 1)q + r′, (ω − 1)q + r]. Therefore, K has at most ω − 1 vertices, namely,
at most k − 1 vertices in the interval [q, (k − 1)q + r′] and at most ω − k − 2
vertices from the interval [(k+1)q+r′, (ω−1)q+r]. Thus K is not a maximum
clique and so 0t is an indifferent edge. 3

In particular, due to Lemma 3.1 if p = 3q+1 then norm(Kp/q) is isomorphic
to Kp/3, which proves assertion (iii).

Claim 3.3 Suppose I is a maximal stable set of H and i, i + t ∈ I for some
t ≤ r + 1. Then i + j ∈ I for all 0 ≤ j ≤ t.

If x is adjacent to i + j in H for some 0 ≤ j ≤ t, then x is adjacent to
either i or i + t in H. 3

Claim 3.4 Suppose I is a stable set of H. There is a vertex i of H such that
i + j 6∈ I for any 1 ≤ j ≤ r.

Otherwise, Claim 3.3 would imply that all vertices of H belong to a max-
imal stable set I ′ containing I, an obvious contradiction. 3

Claim 3.5 If I is a stable set of H, then |I| ≤ q.

As H is a circulant graph, by Claim 3.4, we may assume without loss of
generality that S ∩ I = ∅, where S = {ωq, ωq + 1, · · · , ωq + r − 1}.

But V (H) − S can be decomposed into the disjoint union of q cliques of
H, namely, Ki = {i, i + q, i + 2q, · · · , i + (ω − 1)q}, for i = 0, 1, · · · , q − 1. As
|I ∩ Ki| ≤ 1 for each i ∈ {0, 1, · · · , q − 1}, so |I| ≤ q. 3

Claim 3.6 We have χc(H) = χc

(

Kp/q

)

= p/q.

Since χc(Kp/q) = p/q, we have χc(H) ≤ p/q. On the other hand, χc(H) ≥
χf(H) = |V (H)|/α(H) ≥ p/q due to Claim 3.5 (where χf denotes the frac-
tional chromatic number, a lower bound of the circular chromatic number
[20]). So equality holds everywhere. 3

Therefore the removal of indifferent edges of a circular clique does not
alter its circular chromatic number, but clearly its circular clique number.
This implies that normalization destroys circular-perfection:

Claim 3.7 If p 6= −1 (mod q) and bp/qc ≥ 3 then Kp/q is not normalized
and every of its proper variants is circular-imperfect.

We denote by ∆(G) the maximum degree of a graph G. We have ∆(Kp/q) =
p − (2q − 1) and ∆(H) = (r + 1)(ω − 1), where p = ωq + r and r is the
remainder modulo q, by Claim 3.2. Therefore, if Kp/q is normalized (i.e., if
Kp/q = norm

(

Kp/q

)

) then p − (2q − 1) = (r + 1)(ω − 1), that is (ω − 2)q =
(r+1)(ω−2). Since ω = bp/qc ≥ 3, this implies that r = q−1, and so p = −1
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(mod q), a contradiction.

Hence Kp/q is not normalized and the result follows from Claim 3.6: if H ′

is any proper variant of Kp/q then

ωc (H ′) < p/q = χc (H) = χc(H
′).

3

This completes the proof of the ”if part” of Theorem 2.1 (i). We now treat
the ”only if part” of assertion (i).

Claim 3.8 If bp/qc < 3 or p = −1 (mod q) then norm
(

Kp/q

)

is circular-
perfect.

Notice that ω = bp/qc is the clique number of Kp/q. Therefore, if ω < 3
then norm

(

Kp/q

)

= Kp/q. Thus norm
(

Kp/q

)

is circular-perfect.

If p = −1 (mod q) then norm
(

Kp/q

)

= Kp/q follows due to the descrip-
tion of norm

(

Kp/q

)

for general p and q in Claim 3.2. Thus norm
(

Kp/q

)

is
circular-perfect. 3

This completes the proof of Theorem 2.1 (i). We now treat the ”only if
part” of assertion (ii).

Claim 3.9 If p 6= 1,−1 (mod q) and ω = bp/qc ≥ 3 then Kp/q has a circular
clique K(ωq′+1)/q′ as an induced subgraph with at least one indifferent edge of
Kp/q, and q′ ≥ 3.

Let G denote the circular clique Kp/q and let 2 ≤ r ≤ q − 2 such that
p = qω + r. Notice that q 6= 2r as p and q are relatively prime.

Case 1. If r < q
2

then let q′ = d q
r
e. We have q′ ≥ 3. For every 0 ≤ i < ω, let

Xi = {iq, iq + r, . . . , iq + (q′ − 1)r} and define X =
(
⋃

0≤i<ω Xi

)

∪ {ωq}. We
first show that X induces a circular clique K(ωq′+1)/q′ ⊆ G.

For every 0 ≤ x < p, we denote by Sx the maximum stable set {x, x +
1, . . . , x + q − 1} of G (arithmetics performed modulo p). Due to Trotter [8],
it is enough to check that for every x ∈ X, Sx meets X in exactly q′ vertices.

Let x ∈ X: by the definition of X, there exist 0 ≤ i ≤ ω and 0 ≤ δ < q ′

such that x = iq + δr.

• If i < ω − 1 then notice that Sx ⊆ Siq ∪ S(i+1)q. Hence

Sx ∩ X = (Siq ∩ Sx ∩ X) ∪ (S(i+1)q ∩ Sx ∩ X)

= {iq + λr|δ ≤ λ < q′} ∪ {(i + 1)q + λr|0 ≤ λ < δ}

as for every 0 ≤ λ < q′, we have (i + 1)q + λr ∈ Sx if and only if

0 ≤ (i + 1)q + λr − x = q + (λ − δ)r < q holds.
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Therefore Sx meets X in exactly q′ vertices.

• If i = ω − 1 and δ = 0 then

Sx ∩ X = Siq ∩ X = {iq + λr|0 ≤ λ < q′}

holds and, again Sx meets X in exactly q′ vertices.

• If i = ω − 1 and δ > 0 then x = (ω − 1)q + δr. We have Sx = {(ω −
1)q + δr, (ω − 1)q + δr + 1, . . . , (ω − 1)q + δr + q − 1} (with arithmetics
performed modulo p). Hence Sx is the disjoint union S ′

x ∪ S”x where S ′
x =

{(ω−1)q+δr, (ω−1)q+δr+1, . . . , ωq+r−1} and S”x = {0, 1, . . . , (δ−1)r−1}
(S”x = ∅ if δ = 1).

We have

X ∩ Sx = (Xω−1 ∪ X0 ∪ {ωq}) ∩ Sx

= (Xω−1 ∩ S ′
x) ∪ (X0 ∩ S”x) ∪ {ωq}

and thus, X ∩ S is of size q′ as
· Xω−1 ∩ S ′

x = {(ω − 1)q + λr|δ ≤ λ < q′} is of size q′ − δ;
· X0 ∩ S”x = {λr|0 ≤ λ < δ − 1 } is of size δ − 1.

Therefore Sx meets X in exactly q′ vertices.

• If i = ω and δ = 0 then x = ωq. We have

Sx ∩ X = ({ωq, ωq + 1, . . . , ωq + r − 1} ∩ X)

∪ ({0, 1, . . . , q − r − 1} ∩ X)

= {ωq} ∪ {λr|0 ≤ λr ≤ q − r − 1 and 0 ≤ λ < q ′}

= {ωq} ∪ {λr|0 ≤ λ ≤ bq/rc − 1 = q′ − 2 and 0 ≤ λ < q′}

= {ωq} ∪ {λr|0 ≤ λ ≤ q′ − 2}

which also implies that Sx meets X in exactly q′ vertices.

Hence Sx always meets X in exactly q′ vertices and so X induces a circular
clique G′ = K(ωq′+1)/q′ of G according to [8]. As ω ≥ 3 and 0 < r < q/2, we
have q + r < q +2r < 2q. Since q′ ≥ 3, the vertex q +2r belongs to G′. Hence
the edge {0, q + 2r} of G′ is an indifferent edge of G by Claim 3.2.

Case 2. If r > q
2

then we show that K(3ω+1)/3 is an induced subgraph of G.

For j = 0, 1, . . . , 3ω, let xj = bpj/(3ω + 1)c. Let X = {x0, x1, . . . , x3ω}.

We show that X induces a circular clique K(3ω+1)/3 of G: this is equivalent
to show that for every 0 ≤ i, j ≤ 3ω, {xi, xj} is an edge of G if and only if
3 ≤ |i − j| ≤ 3ω − 2.

To prove this, we shall use the following simple observation several times:
if a and b are reals and δ is an integer such that a− b ≥ δ then bac − bbc ≥ δ.

• Let 0 ≤ i, j ≤ 3ω such that {xi, xj} is an edge of G and assume w.l.o.g.
that i < j. We have xi < xj and q ≤ xj − xi ≤ p − q.
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If j − i ≤ 2, then pj/(3ω + 1)− pi/(3ω + 1) ≤ 2(qω + r)/(3ω + 1) follows.
If 2(qω + r)/(3ω + 1) > q − 1 then as ω ≥ 3 and q ≥ r + 2, a short
computation gives r < 1 a contradiction. Thus 2(qω + r)/(3ω + 1) ≤ q − 1
and so xj − xi ≤ q − 1, a contradiction. Hence j − i ≥ 3.

If j−i ≥ 3ω−1, then pj/(3ω+1)−pi/(3ω+1) ≥ (3ω−1)(qω+r)/(3ω+1) ≥
p − q + 1 follows. Thus xj − xi ≥ p − q + 1, a contradiction.

Therefore, we infer 3 ≤ j − i ≤ 3ω − 2.

• Conversely, let 0 ≤ i, j ≤ 3ω such that 3 ≤ j − i ≤ 3ω − 2 and assume
w.l.o.g. that i < j. We have xi < xj and we need to check that {xi, xj} is
an edge of G.

On the one hand, j − i ≥ 3 and 3r ≥ q imply

pj/(3ω + 1) − pi/(3ω + 1) ≥ 3(qω + r)/(3ω + 1) ≥ q

and, hence, xj − xi ≥ q follows.
On the other hand, j − i ≤ 3ω − 2 yields

pj/(3ω + 1) − pi/(3ω + 1) ≤ (3ω − 2)(qω + r)/(3ω + 1) ≤ p − q

and shows xj − xi ≤ p − q.
Therefore {xi, xj} is an edge of G, as required; and X induces a circular

clique G′ = K(3ω+1)/3 of G.

At last, we need to exhibit an indifferent edge of G in G′.

By Claim 3.2, the neighbours of 0 in norm(G) are the vertices in S =
{q, q+1, · · · , q+r, 2q, 2q+1, · · · , 2q+r, · · · , (ω−1)q, (ω−1)q+1, · · · , (ω−1)q+r}.

We have 2q − 5p/(3ω + 1) = (ωq + 2q − 5r)/(3ω + 1) > 0 as ω ≥ 3 and
r ≤ q − 2. Hence x5 < 2q.

If x5 ≥ q + r + 1 then x5 /∈ S and {x0, x5} is an edge of G′ which is also
an indifferent edge of G.

It remains to check the case x5 ≤ q + r: identifying an edge of G′ which
is also an indifferent edge of G is more difficult to handle. We are going to
exhibit one in an induced circular clique G′′ sharing all vertices but one with
G′.

For t = 1, 2, . . . , ω− 2, let δt = x3t+2 − (tq + r +1). As x5 ≤ q + r, we have
δ1 < 0.

We first check that δω−2 ≥ 0: we have p(3ω−4)
3ω+1

− (ω − 2)q − r − 1 =

2q − 1 − 5p
3ω+1

. If 5p/(3ω + 1) > 2q − 1 then 5q − 10 > ωq − 3ω + 2q − 1 (as
r ≤ q− 2) which is equivalent to 0 > (q− 3)(ω− 3). This is a contradiction as

both q and ω are at least 3. Hence p(3ω−4)
3ω+1

− (ω−2)q− r−1 ≥ 0 and therefore

12



δω−2 ≥ 0.

Let t∗ be the largest index such that δt∗ < 0: we have 1 ≤ t∗ < ω − 2.
Let x′

3t∗+2 = t∗q + r + 1 and let X ′ = (X − {x3t∗+2}) ∪ {x′
3t∗+2}. Let G′′ be

the induced subgraph of G by X ′. To prove that G′′ is an induced circular
clique K(3ω+1)/3 of G, we have to check that the neighborhood of x′

3t∗+2 in
G′′ is the same than the one of x3t∗+2 in G′, namely {x0, x1, . . . , x3t∗−1} ∪
{x3t∗+5, x3t∗+6, . . . , x3ω}.

If (3t∗+5)p
3ω+1

−(t∗q+r+1) < q then we have (3(t∗+1)+2)p
3ω+1

−((t∗+1)q+r+1) < 0.
Thus we infer δt∗+1 < 0, in contradiction with the maximality of t∗. Hence
x3t∗+2 ≤ x′

3t∗+2 ≤ x3t∗+5 − q, and so x′
3t∗+2 is adjacent to {x0, x1, . . . , x3t∗−1} ∪

{x3t∗+5, x3t∗+6, . . . , x3ω} and x′
3t∗+2 is not adjacent to x3t∗+3 and x3t∗+4.

We have t∗q + r + 1− p3t∗

3ω+1
= r +1 + t∗(q−3r)

3ω+1
< q as r ≤ q− 2 and r > q/3.

Hence x′
3t∗+2 is not adjacent to x3t∗ and x3t∗+1.

Therefore G′′ induces a circular clique K(3ω+1)/3 of G. As t∗q+r < x′
3t∗+2 =

t∗q + r + 1 < (t∗ + 1)q the edge {x0, x
′
3t∗+2} of G′′ is an indifferent edge of

Kp/q. This finished the second case.

Thus in both cases Kp/q contains an induced circular clique K(ωq′+1)/q′ with
q′ ≥ 3 and an indifferent edge of Kp/q. 3

Claim 3.10 If H = norm
(

Kp/q

)

is minimal circular-imperfect then H is a
partitionable web Cω

ωq+1, and q ≥ 3.

Since H is circular-imperfect we have p 6= −1 (mod q) and ω ≥ 3 due to
Claim 3.8.

If H is not partitionable then p 6= 1 (mod q). By the previous claim,
Kp/q has an induced subgraph K(ωq′+1)/q′ with q′ ≥ 3 and vertex set W ,
containing an indifferent edge. As all non-indifferent edges of K(ωq′+1)/q′ are
non-indifferent edges of Kp/q (since these two graphs have same maximum
clique size), the subgraph H[W ] of G, which is induced by W , is a proper
variant of K(ωq′+1)/q′ , and is, therefore, circular-imperfect by Claim 3.7. Hence
Kp/q = K(ωq′+1)/q′ , and q = q′ ≥ 3.

This implies that H is partitionable.

It follows that q ≥ 3 (as q = 2 implies that H is an odd antihole and,
therefore, circular-perfect, a contradiction). Due to Claim 3.1, this shows
that H is a partitionable web Cω

ωq+1 with q ≥ 3. 3

Claim 3.11 A claw-free graph does not contain any circular cliques different
from cliques, odd holes, and odd antiholes.

Assume Kp/q is a circular clique different from a clique, an odd hole, and
an odd antihole. Then q ≥ 3 and p ≥ 2q + 2. Thus {1, q + 1, q + 2, q + 3}
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induces a claw. 3

Claim 3.12 If H = norm
(

Kp/q

)

is a minimal circular-imperfect graph, then
H has clique number 3.

We first recall the following result of Trotter [8]: let Cω′

n′ (2k′ ≤ n′) and Cω
n

(2k ≤ n) be two webs, then Cω′

n′ is an induced subgraph of Cω
n if and only if

holds

ω′ − 1

ω − 1
n≤ n′ ≤

ω′

ω
n(3)

By Claim 3.10, H = norm
(

Kp/q

)

is a partitionable web Cω
ωq+1, with q ≥ 3.

If ω ≤ 2 then H is a stable set or an odd hole and is therefore circular-perfect,
a contradiction. Hence ω ≥ 3.

Assume that ω ≥ 4.

Due to Trotter’s inequality (3), the web C3
3q−1 is an induced subweb of H

if and only if holds

2

ω − 1
(qω + 1) ≤ 3q − 1 ≤

3

ω
(qω + 1)

Since the right inequality is always satisfied, this may be restated as 2
ω−1

(qω+
1) ≤ 3q − 1 which is equivalent to 1 + 4/(ω − 3) ≤ q.

If q ≥ 5 (resp. ω ≥ 5) then q ≥ 1+4/(ω−3) as 4/(ω−3) ≤ 4 (resp. q ≥ 3
and 4/(ω− 3) ≤ 2). Hence C3

3q−1 is a proper induced subweb of H. If Ck
2k+1 is

any induced odd antihole of C3
3q−1 then k < 3 due to Trotter’s inequality (3).

Hence the previous claim implies that ωc(C
3
3q−1) = 3. If C3

3q−1 is 3-colorable,
then it admits a partition in 3 stables sets of size at most q−1 = b(3q−1)/3c,
a contradiction. Hence χ(C3

3q−1) ≥ 4 and so χc(C
3
3q−1) > 3 = ωc(C

3
3q−1). Thus

C3
3q−1 is a proper induced circular-imperfect graph of H, a contradiction.

Therefore, ω = 4 and (q = 3 or q = 4), that is H = C4
13 or H = C4

17:

• C4
13 is not minimal circular-imperfect as the subgraph induced by vertices

{1, 2, 4, 5, 7, 9, 10, 12} is circular-imperfect, since it has circular-clique num-
ber 3 and is not 3-colorable;

• C4
17 is not minimal circular-imperfect as the subgraph induced by vertices

{1, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16} is circular-imperfect, since it has circular-
clique number 3 and is not 3-colorable.

In both cases, we get a contradiction and infer, therefore, ω = 3. 3

This completes the proof of the ”only if part” of assertion (ii). We now
proceed to the proof of the ”if part”.

Claim 3.13 Webs C3
3q+1 with q ≥ 3 are minimal circular-imperfect.
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Let q ≥ 3. The web C3
3q+1 is circular-imperfect by Claim 3.7.

If C3
3q+1 is not minimal circular-imperfect, then there exists a proper in-

duced subgraph W , which is minimal circular-imperfect. Let v be a vertex of
C3

3q+1 not in W .

If ω(W ) = 3 then ω(W ) = 3 ≤ ωc(W ) ≤ χc(W ) ≤ χ(C3
3q+1 \ {v}) = 3, a

contradiction with the fact that W is minimal circular-imperfect.

If ω(W ) = 2 then let w be any vertex of W . If w is of degree at least
3 then w belongs to a triangle of W , as the neighborhood of any vertex of
C3

3q+1 can be covered with only 2 cliques (i.e. C3
3q+1 is a quasi-line graph), a

contradiction. Therefore, the degree of W is at most 2 and so W is a disjoint
union of cycles and paths, and thus is circular-perfect, a contradiction.

Hence C3
3q+1 is minimal circular-imperfect. 3

This finally proves Theorem 2.1. 2

3.2 Proof of Theorem 2.3

Proof. Let G be a partitionable graph. We shall prove that G is circular-
imperfect unless G is a circular clique. If ωc(G) = ω(G), then we have χc(G) >
ω(G) = ωc(G) by χ(G) = ω(G) + 1, therefore G is circular-imperfect.

Assume that ωc(G) = p/q > ω and let {0, . . . , p − 1} be the vertices of an
induced circular clique Kp/q (where the vertices are labeled the usual way). For
every 0 ≤ i < ω, let Qi be the maximum clique {jq|0 ≤ j ≤ i}∪{jq+1|i < j <
ω}. Obviously Q0, . . . , Qω−1 are ω distinct maximum cliques of G containing
the vertex 0.

If p > ωq + 1 then the set (Q0 \ {(ω − 1)q + 1}) ∪ {(ω − 1)q + 2} is
another maximum clique containing 0, a contradiction as 0 belongs to exactly
ω maximum cliques of G [2]. Hence p = ωq + 1. This means that G contains
the partitionable circular clique K(ωq+1)/q as an induced subgraph. Hence G
is the circular clique K(ωq+1)/q . 2

3.3 Proof of Corollary 2.4

Proof. Let G be a circular-perfect normalized partitionable graph. We con-
clude that G is an odd hole or odd antihole. By Theorem 2.3, G is a circular
clique Kp/q. If ω(G) ≥ 3, since p = 1 (mod q) (as G is partitionable) and
G is circular-perfect, it follows from Theorem 2.1 (i) that p = −1 (mod q),
and so q = 2. Hence G is an odd antihole. If ω(G) = 2 then G is an odd hole.

2
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4 Some minimal circular-imperfect planar graphs

4.1 Proof of Theorem 2.5

Proof. In order to show the circular-perfection of outerplanar graphs, we first
discuss the circular clique number of planar graphs.

Claim 4.1 The circular clique number of a planar graph G is equal to

• 1, if G is a stable set,

• 2, if G is bipartite,

• 4, if G has an induced K4,

• else 2 + 1
d

where 2d + 1 is the odd girth of G, i.e. 2d + 1 is the size of a
shortest chordless odd cycle in G.

This claim follows from the easy to prove fact that the only planar circular
cliques are odd holes and cliques of size at most 4 (see [14] for instance). 3

It is well known that the identification of two disjoint perfect graphs G1

and G2 in a clique yields a perfect graph G again [5] (if Q1 ⊆ G1 = (V1, E1)
and Q2 ⊆ G2 = (V2, E2) are two cliques of same size and φ is any bijection
from Q2 onto Q1, the identification of G1 and G2 in Q1 w.r.t. φ is the graph
G = (V, E) where V = (V1 ∪ V2) \ Q2 and E = E1 ∪ (E2 \ {ij|{i, j} ∩ Q2 6=
∅}) ∪ {φ(i)j|ij ∈ E2, |i ∈ Q2, j /∈ Q2}.

We prove that the same holds for circular-perfect planar graphs.

Claim 4.2 If G1 and G2 are two planar circular-perfect graphs, then identi-
fying G1 and G2 in a clique K yields a circular-perfect graph G.

If G1 and G2 are both bipartite then G is perfect and therefore circular-
perfect. Hence we may assume that G1 is not bipartite. In particular, ω(G) >
1.

All we have to prove is that ωc(G) = χc(G).

If ω(G) = 4 then ωc(G) = χc(G) = 4 as ω(G) = 4 ≤ ωc(G) ≤ χc(G) ≤
χ(G) = 4. Hence we may assume that ω(G) ≤ 3.

If ω(G) = 3 then G is 3-colorable as both G1 and G2 are 3-colorable. Hence
ωc(G) = χc(G) = 3 as 3 = ω(G) ≤ ωc(G) ≤ χc(G) ≤ χ(G) = 3.

It remains to handle the case ω(G) = 2. Then the clique K is of size at
most 2.

If G2 is bipartite then it is homomorphic to an edge, and so G is homo-
morphic to G1. Hence χc(G) ≤ χc(G1) and so ωc(G1) ≤ ωc(G) ≤ χc(G) ≤
χc(G1) = ωc(G1).
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If G2 is not bipartite then let 2d1 +1 be the odd girth of G1 and let 2d2 +1
be the odd girth G2. W.l.o.g. assume that 2d1 + 1 ≤ 2d2 + 1. There exists an
homomorphism f1 (resp. f2) from G1 (resp. G2) into C2d1+1.

If K is of size 2 (resp. of size 1) then let q1 and q2 be the vertices of K
(resp. let q be the vertex of K). Let σ be an automorphism of C2d1+1 such that
f1(q1) = σ(f2(q1)) and f1(q2) = σ(f2(q2)) (there is one as {f1(q1), f1(q2)} and
{f2(q1), f2(q2)} are two edges of C2d1+1) (resp. such that f1(q) = σ(f2(q)).
Then the application f which maps a vertex x of G onto f1(x) if x ∈ G1,
σ(f2(x)) if x ∈ G2 is a homomorphism from G into C2d1+1. Therefore, we
have ωc(G) = 2 + 1

d1

≤ χc(G) ≤ 2 + 1
d1

. 3

A connected outerplanar graph different from a cycle is always obtained by
identifying two strictly smaller outerplanar graphs in one vertex or one edge.
Therefore, the previous claim and the fact that cycles are circular-perfect
imply circular-perfection of outerplanar graphs. 2

It remains to show that the graphs Tk,l are minimal circular-imperfect.

Lemma 4.3 For every positive integers k and l such that (k, l) 6= (1, 1), the
graph Tk,l is minimal circular-imperfect.

Proof. If the graph Tk,l has a (2k + 1, k)-coloring then assume without loss
of generality that the central vertex gets the color 0. Every neighbour of the
central vertex is colored with k or k + 1, and two such neighbours belonging
to a common inner face must have distinct colors (a (2k + 1, k)-coloring can
be seen as a homomorphism h to the odd hole C2k+1, see Remark 1.1; the
restriction of h to an odd hole of size 2k + 1, e.g. any inner face of Tk,l, is
bijective). Since the central vertex has an odd number of neighbours on the
outer face, we get a contradiction. Hence graphs Tk,l have ωc(Tk,l) = 2+1/k (as
(k, l) 6= (1, 1)) which is strictly less than χc(Tk,l) and so are circular-imperfect.

Minimal circular-imperfection follows then from Theorem 2.5 as the re-
moval of any vertex yields an outerplanar graph. 2

5 Complete joins and minimal circular-imperfection

5.1 Proof of Theorem 2.6

Proof. Our goal is to show that a complete join G ∗ G′ is circular-perfect iff
both G and G′ are perfect and minimal circular-imperfect iff G ∗G′ is an odd
wheel or odd antiwheel.

Claim 5.1 An odd wheel C2k+1 ∗ v is minimal circular-imperfect if k ≥ 2.
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This follows from the fact that the odd wheels C2k+1 ∗ v are precisely the
graphs T1,k. 3

Claim 5.2 An odd antiwheel C2k+1 ∗v is minimal circular-imperfect if k ≥ 2.

Since C2k+1 is an odd antihole for k ≥ 2, we have ω(C2k+1 ∗v) = k +1 and
χ(C2k+1 ∗v) = k+2. Moreover, ωc(C2k+1 ∗v) = max{k+1, k+ 1

2
} = k+1 and

χc(C2k+1 ∗ v) > χ(C2k+1 ∗ v)− 1 = k + 1. Thus ωc(C2k+1 ∗ v) < χc(C2k+1 ∗ v)
implies that C2k+1 ∗v is circular-imperfect. Minimality follows since removing
any vertex yields a perfect graph or C2k+1, hence all proper induced subgraphs
of C2k+1 ∗ v are circular-perfect. 3

This implies the following for the complete joins of an imperfect graph
with a single vertex:

Claim 5.3 If G is an imperfect graph, then G ∗ v is circular-imperfect and
minimal if and only if G is an odd hole or odd antihole.

Due to the Strong Perfect Graph Theorem, G contains an odd hole or
odd antihole C as induced subgraph. Thus G ∗ v has C ∗ v as induced sub-
graph which is circular-imperfect by Claim 5.1 or Claim 5.2. G∗v is, therefore,
circular-imperfect as well and minimal if and only if C ∗v = G∗v (i.e. C = G).
3

This proves assertion (ii), provided assertion (i) holds true.

Claim 5.4 If both graphs G and G′ are imperfect, then G ∗ G′ is circular-
imperfect but never minimal.

Let v′ be a vertex of G′. Then G ∗ v′ is a proper induced subgraph of
G ∗ G′ and circular-imperfect by Claim 5.3. Thus G ∗ G′ is circular-imperfect
but never minimal. 3

Consider the complete join G ∗G′ of two graphs G and G′. If both graphs
G and G′ are perfect, then G ∗ G′ is perfect as well. If one of G and G′ is
imperfect, then G∗G′ is circular-imperfect by Claim 5.3. This proves assertion
(i). 2

18



6 Concluding remarks and further work

We shortly summarize the results obtained in this paper:

• Theorem 2.1 studies the circular-imperfection of normalized circular cliques;
we conclude that the webs C3

3q+1 with q ≥ 3 are the only minimal circular-
imperfect graphs in this class (Theorem 2.1 and Corollary 2.2).

• Theorem 2.3 shows that no partitionable graphs different from circular
cliques are circular-perfect.

• In Theorem 2.5, we prove that outerplanar graphs are circular-perfect and
use them to build our second class of minimal circular-imperfect graphs, the
planar graphs Tk,l with (k, l) 6= (1, 1).

• At last, in Theorem 2.6, we study circular-imperfection of complete joins
and prove that the minimal circular-imperfect complete joins are precisely
odd wheels and odd antiwheels.

The last two families were independently found by B. Xu [19]; since these
results are easy consequences of our considerations on planar graphs and com-
plete joins, we have included our (short) proofs in this paper.

At first sight there is no straightforward common structure in the presented
families of minimal circular-imperfect graphs, hence formulating an analogue
to the Strong Perfect Graph Theorem for circular-perfect graphs seems to be
difficult.

The Strong Perfect Graph Conjecture is equivalent to ”every minimal im-
perfect graph or its complement has clique number 2”. As every known mini-
mal circular-imperfect graph or its complement has clique number 2 or 3, one
might be tempted to ask whether it holds for every minimal circular-imperfect
graph. However, Pan and Zhu [13] found recently a way to construct minimal
circular-imperfect graphs with arbitrarily large clique and stability number.

This adds further support to the believe that characterizing circular-perfect
graphs by means of forbidden subgraphs is, indeed, a difficult task.
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