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Abstract. In this paper we propose a dynamic programming algorithm to compare two quotiented
trees using a constrained edit distance. A quotiented tree is a tree defined with an additional equivalent
relation on vertices and such that the quotient graph is also a tree. The core of the method relies on
an adaptation of an algorithm recently proposed by Zhang for comparing unordered rooted trees. This
method is currently being used in plant architecture modelling to quantify different types of variability
between plants represented by quotiented trees.
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1 Introduction

In the early seventies, Wagner and Fisher proposed an algorithm which computes the distance
between two strings of characters as the minimum cost sequence of elementary operations
needed to transform one of the strings into the other [1]. Given two strings of characters A
and B of respective lengths N4 and Np, a set of elementary operators on strings, called edit
operations, and a cost associated with each edit operation, Wagner and Fisher defined a distance
between two strings as the cost of the sequence of edit operations that transforms A into B
with minimum cost. The Wagner and Fisher distance makes use of the dynamic programming
principle to achieve an algorithm with linear complexity, i.e. in O(N4.Np). Selkow [2]|, then
Tal and Lu |3, 4] generalized this approach, based on edit operations, to define and compute
metrics on labelled ordered trees. These algorithms have been used over recent decades in
computer science and in various applied fields, such as evolutionary biology 5], chemistry [6]
and molecular biology |7].

Zhang (8] extended these dynamic programming-based algorithms to define a distance for un-
ordered labelled trees. In unordered trees, no ordering is considered for the set of sons of any
vertex. This algorithm has recently been applied in plant modelling applications to compute
a distance between individual plants whose topology is represented by unordered trees [9].
However, to take account of the multiscale nature of plant structures [10], plants are currently
represented by quotiented trees [10]. A quotiented tree is a tree with an equivalence relation
defined on the set of vertices, and such that the resulting quotient graph is also a tree. A
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quotiented tree can thus be considered as an autosimilar structure represented by trees on two
different scales.

In this paper, we define a distance between quotiented trees based on the computation of an
optimal sequence of edit operations that preserves equivalence relations on tree vertices. In
section 2, basic definitions concerning trees and quotiented trees are introduced. In section 3,
we first recall how sequences of edit operations can be modelled using mappings between tree
vertices [3]. Zhang’s algorithm is then presented and reformulated in terms of recursive relations
between sets of mappings in order to prepare its extension to quotiented trees, carried out in
section 4. The properties of mappings between quotiented trees, i.e. preserving equivalence
relations and called valid edit distance mappings, are then studied and leads to new recursive
equations. Similarly to Zhang’s algorithm, we show that these equations contain terms that
can be computed as particular minimum cost maximum flow problems. Finally, a dynamic
programming algorithm that computes a structural distance between two quotiented trees in
polynomial time is depicted.

2 Definitions and notations

A finite directed graph (or simply a graph) is a pair (V, E) where V denotes a finite set of
vertices and ' C V x V denotes a finite set of edges. The number of vertices of a graph G is
denoted by |G|. If e = (z,y) is an edge in E, z and y are incident with e. Vertex x is called a
father of y and y is a son of z. The set of sons of a vertex is denoted by son(v) which is of size
n, and deg(G) = max,cy{n,}. For every k in {1,..,n,}, vx denotes a son of v. A path (resp.
a chain) from z; to z, is a sequence of vertices (z1, zs.., z,) such that for any two consecutive
vertices {z;,z;11} of the sequence, (z;,x;11) is an edge (resp. either (z;, x;11) or (z;, ;1) is
an edge). Vertex v is an ancestor of vertex w - and reciprocally w is a descendant of v - if a
path exists from v to w. The set of descendants of v is denoted by V[v] and contains v itself. A
cycle is a non-empty path from one vertex to itself. A graph with no cycle is called a directed
acyclic graph. A sub-graph of a graph G = (V, E) is a graph G' = (V', E') such that V' C V
and E' C E. This is denoted by G C G. Two vertices of a graph are connected if a chain
exists between them. A graph is connected if any pair of vertices are connected. The connected
components of a graph are the maximum (for graph inclusion) connected subgraphs of this
graph.

The ancestor relationship on a directed acyclic graph is a partial ordering relation on the set
of vertices denoted by <. A tree is a connected graph such that there exists a unique vertex,
called the root, which has no father, and any vertex different from the root is the son of exactly
one vertex. A tree T rooted in v is denoted by T[v]. A tree contains no cycle. In a tree, the
set of common ancestors of any two vertices  and y obviously contains at least the root vertex
and is a totally ordered set (with respect to the ancestor relationship). The maximum element
of this set is called the greatest common ancestor and is denoted by x A y. If S is any set of
vertices of a tree, Aycs denotes the greatest common ancestor of all the vertices in S. The
graph 6 = ((),0) is called the empty tree. An unordered tree is a tree for which no ordering
distinction is made among the sons of any vertex. A sub-tree is a connected sub-graph of a
tree. If x is any vertex of tree T'[v], T[z] = (V]z], E[x]) denotes the maximum sub-tree of T[v]
rooted in x. A forest is a graph whose connected components are trees. If x is any vertex of



tree T'[v], F[z] denotes the forest rooted in x, i.e. obtained from T[z] by removing the root z
and all the edges incident with x. A forest rooted in a vertex is thus defined as a set of tree
and a given vertex x, therefore there is never equality between a tree and a forest, even if x
has only one son. Suppose that z is the only son of y, then by definition T[z] # F[y] and
T[z] C Fly]. In the following the term forest will be used to designate a forest. The set of
all sub-trees and forests rooted in a vertex of T'[v] is denoted by S(v) = {S[z] | z € V[v] and
Slz] = T[z] or S|z] = F|z]}. Suppose that z is the only son of y, then by definition T'[z] # Fy]
and T'[z] C F[y].

A labeled graph is a graph (V| F) together with a mapping o which associates a label from a
finite (or infinite) set of labels ¥ = {a, b, c, ...}, with each vertex in V. We assume in the sequel
that a distance d is defined on X. d enables us to define a distance between any two vertices x
and y of labelled graphs: d(z,y) = d(a(z), a(y)).

A quotiented graph H is a 3-uple (G, W, ) where G = (V, E) is a directed graph called the
support of H, W is a set of vertices and 7 is a surjective mapping from V to W. For any vertex
z in V, the vertex w(x) is called the compler of x and reciprocally x is a component of 7(x).
7m71(z) denotes the set of components of a vertex z of W and if z is a vertex of V, II(z) denotes
the set 77! (m(x)) of components of (). The size of II(z) is denoted by |II(z)| and deg, (H) =
maxgcy{|[1(x)|}. The function 7 induces a partition Iz on V: Iy = {7~ '(2)| 2z € W}. The
quotient graph Q(H) associated with H is the graph (W, E;) such that:

V(z,y) € E, (n(z),7(y)) € Ex & m(z) # 7(y)

Quotiented graphs whose support and quotient graphs are trees are called quotiented trees. Let
H = (G,W,r) be a quotiented graph with support graph G = (V, E) which is either a tree or
a forest. Let x € V, then H[z]| denotes the quotiented graph (Gz], W[r(z)], 7/5) where G[z] is
the sub-tree or a forest of G rooted in x, Wm(x)] is the set of vertices of the sub-tree of Q(H)
rooted in 7(z) and 7/, is the restriction of 7 to V[xz]. If G[x] is a tree, H[z] is a quotiented tree.

3 Distance between unordered tree graphs

3.1 EDMs

The tree-to-tree correction problem [11] consists in determining the distance between two trees
measured by the minimum cost of the sequence of edit operations needed to transform one tree
into the other. Based on definitions established by Wagner and Fisher [1], Tai |3| and Selkow
[2], Zhang [12, 8] uses three edit operations: substitution, deletion and insertion.

e Substituting a vertex x means changing the label of z;

e Deleting a vertex x means making the sons of x the sons of the father of x and removing
Z;

e Inserting a vertex x means that z becomes a son of a vertex y and a subset of sons of y
become the set of sons of z (insertion is the complement of deletion).



In order to characterize the effect of a sequence of edit operations on a tree, Tai [3| introduced
a structure called edit distance mapping (EDM). An EDM from a tree T1[v] to a tree Ty|w]
is a partial mapping from Vi[v] to Vo[w], based on the notion of ¢race between sequences [1].
Intuitively, an EDM is a description of how a sequence of edit operations transforms 73 [v] into
Ty[w], ignoring the order in which the edit operations are applied. The relation between edit
operations and EDMs is made explicit in 3], [9].

Definition 1 Let Ti[v] = (Vi[v], E1[v]) and Tr[w] = (Va[w], Eq[w]) be two trees, then an EDM
M from Ti[v] to Telw] is a set of ordered pairs of vertices (z,t) of Vi[v] x Vaw].

We recall that T1[v] and Ty[w] are trees respectively rooted in v and w. The same definition is
used to define an EDM from a forest Fi[v] to a forest Fy[w]|. The set of EDMs from T;[v] to
Ty[w] is denoted by EDM (v, w).

Let M be an EDM of EDM (v, w), by convention in any pair (z,t) of M, z is called an image
of t by M and reciprocally ¢ is called an ¢mage of z by M. Similarly, if z does not appear in a
pair of M, we say that z has no image.

Let z be a vertex of Tj[v] and let y be a vertex of To[w], M,, (resp. M, ) denotes the set of

vertices of Ti[z] (resp. T»[y]) which have an image by M in T5[y] and T} [x]:

M,, {zr e Vi[z] | Tz € Waly; (21,20) € M}

My, = {zo € Valy] | 321 € Vi[z]; (21,22) € M}
M, Vilz]/ My,

Z/y

My/w = VQ[y]/My/m

M,

% and M, /o will be denoted by M, and M, when no confusion is possible.

Let 7 be the greatest common ancestor of the vertices of T5[w]| which have an image in T} [z]:

z= A\ (v}

yGMw/m

Similarly, for any y in T5|w], ¥ defines a vertex in 7} [v].

(13}

Note that when M, is empty, then Z is not defined. The function

Furthermore, remark that if 7 exists, 7 is in Ty[w] while z is in T} [v] and that 7 is not necessarily
an image of a vertex in T} [x].

This function can be used to associate a mapping M, from Sy (v) to So(w) with any M in

EDM(v,w).

Definition 2 Let M be an EDM from Ti[v] to Tp|w]. M, is a mapping from S1(v) to Sa(w)
such that: .
M, : 81(’[)) — 82(?1))
. 0 if M, =0
F,[Z] otherwise



Note that in this definition when 7 is not defined, then the image of S;[z] is the empty tree.

Symetrlcally, a mapping M21 can be deﬁned from Sy(w) to S;(v). When no confusmn is possible,
M12 and M21 are simply denoted by M. Figure 1 illustrates the image by M of a tree and
a forest. M gives a high-level interpretation of EDMs: whereas M expresses a relationship
between vertices, M expresses a corresponding relationship between trees (or forests) rooted in
theses vertices. M has the following important property:

Proposition 1 M is an increasing mapping, i.e. for any x and y in Vi[v], and for any Si[z]
and S1[y] in Si(v):
Sifz] € Sify] = M(Si[z]) € M(Si[y])

The reciprocal of proposition 1, which is not true in general (fig. 1), is true with additional
assumptions (see section 3.4). M enables us to work at the graph level, i.e. to express the algo-
rithm properties in terms of relations between trees (or forests), while the original formulation
of Zhang’s algorithm was performed at the vertex level. This formulation will be used in the
sequel to extend the original comparison algorithm to quotiented trees.

3.2 Cost of EDMs

According to the definition of the elementary cost between vertices, a cost is assigned to each
EDM M from Ti[v] to Ta[w]:

A first dissimilarity measure can be defined as the minimum cost of an EDM from T7}[v] to
Ty[w]. However, this dissimilarity does not take account of vertices which have no image, and
two trees of different sizes could thus be considered as similar. To account for these vertices,
the cost of sets M, and M,, can be added to the cost of an EDM. Let us define a symbol \ not
in 3 and extend the distance d so that d is a distance over X U {A}. The cost of inserting or
deleting a vertex z is denoted d(x, \) and is defined as d(a(x), A).

The cost [, 4, (M) of an EDM M from T} [v] to Ty[w] is thus defined as:

Cow(M) = y(M) +~(M,) + v(M,)

A dissimilarity measure between a tree Ti[v] and a tree T|w| can thus be defined as the
minimum cost of an EDM from T [v] to Ty[w]:

DT, Tow)) = | min {7y (M)}

When d is a distance, D is also a distance [13].

figure 1



3.3 Valid EDMs

In the following, we consider an analogous dissimilarity measure, restricted to EDMs preserving
structural properties of the mapped trees. These are called valid EDMs:

Definition 3 (valid EDM) Let T1[v] = (Vi[v], E1[v]) and Ty[v] = (Va[v], Eolv]) be two trees,
a valid EDM M from Ti[v] to To[w] is a set of ordered pairs of vertices (x,y) € Vi[v] x Va[w]
satisfying the constraints:

V(xl,xQ), (ybyQ) € M :
T1=Y1 & T2=1Yo (1)
1 <y S T2 < Yo (2)

Sets of valid EDMs are denoted by 7 (v,w). A valid EDM between two rooted forests F}[v]
and Fy[w] is defined in a similar manner. The set of EDMs from Fj[v] to Fy[w] is denoted by
F(v,w).

A new dissimilarity measure between two tree graphs Tj[v] and Ty[w] can be defined as an
optimization problem:

Problem 1 FindT,,, (M) minimum, such that M is a valid EDM from T\ [v] to To[w] satisfying
constraints (1) and (2):
DTi[o], Tefu] = | min  {Ty(M)}

Zhang [14] and Kilpelldinen [15] showed that for two trees, this definition of valid mapping
leads to an NP-complete problem. To alleviate this difficulty, an algorithm which solves this
problem in a polynomial time has been proposed by Tai [3] for ordered trees by introducing a
new constraint which preserves the order. The corresponding dissimilarity measure was shown
to be a distance [3]. In case of unordered trees, Zhang proposed considering a new constaint in
the definition of a valid EDM [12, 8| based on an initial idea proposed by Tanaka and Tanaka
[16] for ordered trees: two separate sub-trees of one tree should be mapped onto two separate
sub-trees of the other tree. Zhang extended this idea from ordered to unordered trees and
changed the definition of a valid EDM as follows:

Definition 4 Let T1[v] = (Vi[v], E1[v]) and Talv] = (Va[v], Ex[v]) be two trees, a valid EDM
M from Ti[v] to Thlw] is a set of ordered pairs of vertices (x,y) € Vi[v] x Valw] satisfying
constraints (1), (2) and:

V(z1,22), (Y1,Y2), (21,22) E M :xy Ay1 < 21 & Ta A Yo < 22 (3)

The dissimilarity measure between two unordered trees T;[v] and T[w] is defined as:

DT Blul) = | min {Ty(M)}

Zhang showed that the dissimilarity measure D(7}[v], Tx[w]) is actually a distance [8] and
proposed an algorithm with bounded complexity to solve the new optimization problem 2.

Problem 2 Findl, (M) minimum, such that M is a valid EDM from T} [v] to Ty|w] satisfying
constraints (1), (2) and (3).



3.4 Properties of valid EDMs

In this section we consider a valid EDM (according to definition 4) M from S;[v] to Sy|w],
where Si[v] and Sy[w] are both either a tree or a forest. We show several properties of valid
EDMs that enable us to derive the basic algorithm for comparing unordered trees [12] using
this new formulation.

3.4.1 Properties of M

For valid EDMs, property 1 of M can be extended as follows:

Proposition 2 For any valid EDM M :

v) X S1(v) :

V(Si[x], Sily]) € Si A _
Silz] € Silyl & M(Si[z]) € M(Si[y])

Note that the three constraints used to define valid EDMs (definition 4) are necessary for the
equivalence to hold.

Proposition 3 M is a valid EDM from Sy[v] to Sa[w] if and only if]\/i satisfies one and only
one of these five assertions:

1. M(Si[v]) = 6 and M (Sow]) =
2. M(S1[v]) # 0 and M (Se[w]) # 6 then:

(a) M(S1[v]) C Sylw] and M(Sa[w]) = Sifu];
(b) J/W\(Sl[v]) = S[w] and M(S [w]) C Si[v];
(c) M\(Sl[v]) So[w] and M(S [w]) = Si[v];
(d) M(S:1[v]) C Ss|w] and M( olw]) C Si[v].

This proposition can be used to solve optimization problem 2 recursively [8|. This is achieved
by appling the dynamic programming principle (e.g. [17]), to the computation of the optimal
valid EDM. To express the recursive nature of the optimality principle, the set M (v, w) can be
split into subsets (figure 2) as follows: figure 2

M(S1[v]) = 6 and M (S,[w]) = 6

o« M(v,w)og = {M € M(v,w) | M(Si[v]) = 0 and M(Sy[w]) =0}
M(S:[v]) # 6 and M (Ss[w]) # 6 then

o M(v,w)c,_ = {M € M(v,w) | M(Si[v]) C Safw] and M (Ssfw]) = Sl[v]}
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o M(v,w)_c = {M e M(v,w) | M(Si[v]) = Sofw] and M(Ss[w]) Sl[v]}

o M(v,w)—_ = {M € M(v,w) | M(Si[v]) = Sofw] and M(Ss[w]) = Sl[v]}

=,=

o M(v,w)cc = {M € M(v,w) | M(S:[v]) C Sow] and M(Sa[w]) C Sl[v]}

These subsets form a partition of M(v,w). In these definitions, M(v,w) represents either
T (v,w) or F(v,w). For example, T (v,w)=_ is the set of valid EDMs M from T}[v] to Ty[w]
such that J\/I\(Tl [v]) = T,|w] and ]\/J\(TQ[w]) = T1[v]; F(v,w)= c is the set of valid EDMs M from
Fi[v] to Fy[w] such that M(Fi[v]) = Fy[w] and M (Fyw]) C Fi[v].

Proposition 4 For any valid EDM from T;[v] to Tylw], M is in T (v,w)=— if and only if:
(v,w) € M
For any valid EDM M from Ti[v] to Ta[w] in T (v, w), if (v,w) is in M, M \ {(v,w)} is denoted

by M*. Furthermore, if M is in T (v, w)- -, M\*(Tl[v]) C Ty[w] and M*(T3[w]) C Ti[v] and
then according to the previous proposition, M* € F(v, w).

Proposition 5 For any valid EDM from Ti[v] to To[w], M* is in T (v,w)c,c if and only if M*
is a valid EDM from Fy[v] to Fyw]:

T(v,w)cec= Flv,w)
EDMs in R(v,w) = F (v, w)=- U F(v,w)c,c have an additional remarkable property.

Proposition 6 For any M in R(v,w) and for any v; son of v, such that A/Z(Tl[vi]) # 0,
there ezists a unique wj, son of w such that M(Ti[v]) C Trlw,]. And for any son vy of v, if
M (Th[vg]) # 0 and M (T [vg]) C Thw;] then vy = v;.

For any EDM from R(v,w), the image of any tree of F}[v] is either the empty tree or included
in a tree of Fy[w]. This means that vertices from a tree 7T} [v;] can only be mapped onto vertices
of one tree T5[w;| and reciprocally. R(v, w) thus defines a mapping between trees of Fi[v] and
trees of Fyw], called restricted EDM |[8].

A matching of a graph is any subset of its edges such that no two members of the subset are
adjacent [18]. We define a bipartite graph G (v, w) = (V, E), where V represents son[v]U son|w]
and E is son[v] x son[w]. The set of all possible matching on this graph is denoted by K(v, w).

3.4.2 Recursive expression of EDM sets

Proposition 3 can be directly expressed in terms of valid EDMs and reveals the different cases
used by Zhang to establish the recurrent relations between EDM sets.

Proposition 7 Let M be a valid EDM:



1. if M is in T (v,w) then M satisfies one and only one of the follows assertions:

(a) Jwy € son|w] such that M € T (v, wy);
(b) Fuy € son[v] such that M € T (v, w);
(¢c) (v,w) € M and M* € F(v,w);

(d) M € F(v,w);

(e) M =0.

2. if M is in F(v,w), then M satisfies one and only one of the follows assertions:

(a) Fwy € son|w| such that M € F(v,wg);
(b) Jvy € son[v] such that M € F(vg, w);
(¢) M € R(v,w);

(d) M = 0.

Cases 1.e and 2.d do not appear in the original formulation since they represent limit cases.
However, these limit cases will be exploited in the extension of the algorithm discussed in the
next section.

The equivalence of properties 3 and 7 shows that the original formulation of Zhang’s algorithm
can be expressed in terms of the properties of M. The new formulation introduced in proposition
3 is more compact than the original formulation since it does need to make a distinction between
forests and trees (as in property 7).

3.5 Recursive expression of the distance between unordered trees

The above proposition 7 of valid EDMs can be used to compute recursively the cost of a valid
EDM with minimum cost.

Theorem 1 [12, 8/ D(Ti[v], Tx[w]) and D(Fi[v], F3[w]) can be computed recursively:

1. inatialisation:

DO,6) = 0
D(F[00) = Ypcomy DTli.0),  D(Ti[e),60) = D(Fi[p],0) +d(v, )
DO Ffu]) = Ypcomy DO Blws)),  DO.Tfu]) = D, Fulul]) +d(\,w)

2. Distance between trees:

D(0, Tolw]) 4 miny, e sonfuw) { D(T1[0], To[w]) — D(0, To[wi])}
D(Th[v], Tolw]) = min ¢ D(T[v],0) + miny, eson) {D(T1[ve], To[w]) — D(Ti[ve], 0)}
D(F[v], Fy[w]) + d(v, w)



3. Distance between forests:
D(0, Fy[w]) + ming, e onfw) { D(F1[v], Fo[wg]) — D(0, Fy[wy])}
D(Fy[v], Falw]) = min ¢ D(Fi[v], 0) + miny, esonp) {D(Filvx], Fow]) — D(Fi[vg], 0)}
min yer(ww) {7(M)}

Zhang [12] models the computation of minyerww) {7(M)} as a problem of minimum cost

maximum flow, which mainly determines the overall complexity of the final algorithm. The
cost of optimal retricted EDMs is studied in section 4.4. The complexity of this algorithm is:

O (ITa] x |T2| x (deg(T1) + deg(T2)) x log, (deg(T1) + deg(T2)))

4 Distance between quotiented trees

4.1 Valid EDMs

Let us consider two quotiented trees Gy = (11, Wi, m1) and Gy = (T, Wy, ) such that the
roots of T} and T are respectively v and w (if no confusion is possible, 7, and 7y are denoted
by 7). Let M be an EDM from Ti[v] to To[w]. M induces an EDM from tree Q(G;) to tree
Q(G,), called the quotient EDM, denoted by Q(M), composed of pairs of vertices in Wy x Wy
and defined as:

(a,b) € Q(M) < 3(z,t) € M such that { ;g)) z )

In the following, Q(M) will be denoted by N.
Let z be a vertex of Tj[v] (resp. of Ty[w]), Q(M,) denotes the set of vertices of quotient graphs
Q(G4]z]) or (resp. of Q(Gs[y])) which have an image by Q(M):

QM,) = {m(2)| ze€ My}

It should be noted that if M denotes a valid EDM from 77i[v] to T3[w], Q(M) is not necessarily
a valid EDM from tree Q(G1) to tree Q(G>) (see figure 3). figure 3

Definition 5 (valid EDMs on quotiented trees) Let Gi[v] = (11, Wi, m) and Go|w| =
(T3, Wy, ms) be two quotiented trees, a valid EDM M from Gi[v] to Go|w)] is a valid EDM from
Ti[v] to To|w] such that Q(M) is also a valid EDM from Q(G1) to Q(Gs).

The set of valid mappings from 7}[m(v)] to Ty[n(w)] is denoted by T (7(v),7(w)). Thus by
definition M is a valid EDM from G,[v] to Go[w] if, and only if, M is in T (v, w) and Q(M) is
in 7(7(v), 7(w)). The set of valid EDMs from G;[v] to Go[w] is denoted by G (v, w).

Similarly to unordered tree comparison, we need to consider a set of valid EDMs between the

quotiented trees G:[v] and Gs[w| in which v and w do not have any image by the EDM, i.e.
EDMs between forests Fj[v] and Fy[w]. This set will be denoted by H (v, w):

H(v,w) = G(v,w) N F(v,w)

A dissimilarity measure between quotiented trees is then defined by the following optimization
problem.
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Problem 3 Finding T',,,,(M) minimum, such that M is a valid EDM from Gi[v] to Go[w]
satisfying definition 5:
D(G4[v],Gaw]) = min {T, (M)}

MegG(v,w)

Lemma 1 D is a distance.

4.2 Properties of valid EDMs

According to the properties described in section 3.4, the efficient computation of a distance be-

tween unordered trees relies on the possibility to apply the dynamic programming principle us-

ing recursive relations between the set of EDMs 7 (v, w) and and the sets {7 (v, w), T (v, w), T (v;, wg), F (v
where v; and wy, are respectively sons of v and w. In a similar fashion, we wish to determine a

recursive expression between the set G(v,w) and {G (v, wy), G(vs, w), G(vs, wy), H(v,w)} of valid

EDMs on quotiented trees which will enable us to solve efficiently the optimization problem 3

using a dynamic programming-based algorithm. figure 4

In the sequel, we will show that such recursive expressions can be obtained by defining an ade-
quate partition of G(v, w). This partition is based on a two level scheme Figure 4: a first partition
of G(v,w) is made, based on the partitionning of 7 (v, w) into subsets 7 (v, w)= —, T (v, w)c =,
T, w)c—, T(v,w)c,c = F(r(v),m(w)) and T (v, w)se (Figure 4.1); T (v, w)ge is not repre-
sented on the figure). Note that, as explained in the previous section, F(7(v), m(w)) is further
decomposed into F(v,w)=—, F(v,w)c =, Fv,w)c=, F,w)cc and F(v,w)gs (Figured.2;
F(v,w)gyp is not represented on the figure). Then, at a second level, each set of the resulting
partition is itself decomposed into a partition based on configurations of valid EDM on quotient
graphs, i.e. partitions of T (w(v),7(w)) and F(mw(v),7(w)). Each set is decomposed into five
new sub-sets depending on the image of T1[r(v)] and Ty[r(w)] by N (Figure 4.3):

Note that the case corresponding to N(Ti[x(v)]) = 6 and N (Ty[r(w)]) = 6 is not represented
on the figure.

Finally, the sub-sets corresponding to case d (labelled d on Figure 4.3) are further decomposed
into five new sub-sets depending on the image of Fi[n(v)] and Fy[w(w)] by N (Figure 4.4):

o e N(Fi[r(v)]) C Bolr(w)] and N(Fylr(w)]) = Filr(v)];
o & N(Fi[r(v)]) = Foln(w)] and N(Fy[r(w)]) C Filr(v)];
o g N(Fi[r(v)]) = Folr(w)] and N(Fy[r(w)]) = Fi[r(v)];
o h: N(Fi[n(v)]) C Folr(w)] and N(F[r(w)]) C Fi[r(v)].

11



Note that the case corresponding to ]V(Fl [r(v)]) = 0 and ]/\\T(FQ[TF(H))]) = 6 is not represented
on the figure.

Hence the combinatorics of the different configurations of interest of valid EDMs both at mi-
croscopic level (tree level) and at macroscopic level (quotient tree level) results in a partition
of G(v,w) into 51 sub-sets. To establish recursive relations between these sub-sets, we study in
the next section their properties

4.2.1 Properties of N

In the following, if no confusion is possible, G(v, w) and H (v, w) are both denoted by M (v, w).
If M belongs to M(v,w), N = Q(M) is a valid EDM from S;[m(v)] to Se[m(w)]. Then,
according to proposition 3, M belongs to one and only one of the following sets, depending on
the respective images of Si[m(v)] and Sy[m(w)] by N:

o Mw,w)l-_ = {M eM(v,w)| NeT(n),m(w))c=} is the set of valid EDMs of
M (v, w) such that Q(M) is in T (7(v), 7(w))c =, this means that S;[7w(v)] has an image
included in Sy[m(w)] and the image of Se[r(w)] is Si[m(v)]:

Similarly:
e ={M e M(v,w)| N € T(r(v),m(w))=c};
v,wl._={M € M(v,w)| N e€T(r(v),n(w))==};

)
o (M, w)lc c ={M € M(v,w)| N € T(r(v),m(w))c,c};
oo ={M € M(v,w)| N € T(m(v),m(w))as}-

©
g

°
<
@
g

N\ {(7(v),7(w))} is denoted by N*. Note here that according to proposition 4, for any valid
EDM N from Ti[r(v)] to Talw(w)], N is in T (7 (v),7(w))== if and only if (7(v),7(w)) € N
and if N* is a valid EDM in F(7(v),n(w)). Similarly N is in 7 (7(v), 7(w))c,c, if and only
if N = N* is a valid EDM in F(m(v),7(w)). Therefore, to express recursive relations based
on sets T (m(v), m(w))=,= and T (7 (v), 7(w))c,c, we need to consider partitions of [M (v, w)]_ _
and [M(v,w)] - based respectively on the membership of N* or N in the different subsets of
F(m(v), m(w)):

o (M)  ={MeMuwI__| N*eF@),rw)e-};

’

o (M,w)e)  ={MeMuwlcc| N Fr),mw)e-|;

=

Note that in the case of [M (v, w)]

N* — N. Sets <[M(v,w)]:,:>:,c, ([M(U,w)]:,:):7:a

(M) (M), (MEw)lee) o (MEw)le) (M)

G,C ’ =,C == ’ G,C
and ([M(v w)] - c) are defined similarly. The different types of EDMs corresponding to the
9,0
partition of [M(v,w)]_ _ are represented graphically in figure 5. figure 5

G,
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To find recursive relations between these sets for a pair of vertices (v, w), we need to study how
such sets can be computed from similar sets associated with the decendants of v and w. To
compute recursively M in M (v, w) from M;s in M(z;,y;), where z; and y; are descendants of
v and w respectively, we need to study two kinds of situation: either M is identical to one of
the M;s (lemma 2) or M is a union of the M;s (lemma 3).

Lemma 2 Let x and y both be descendants of v and w respectively, for any valid EDM M in
M(z,y), then M is a valid EDM in M(v,w) such that:

R N(Si[n(z))) =0 = N(Sﬂ(v))
N(Si[n(z)])) C Salm(y)] = N(Si 7T(v))CSQ[ (w)] (5)

]
]

S (S i) — NEFO) = Srw)] i n(y) = ()

NSr@) = Selr(v)] = { ol - (6)

N(Si[r(v So[m(w)] otherwise

[
[

Here it should be recalled that S represents either a tree or a forest and that x and y can be
respectively equal to v and w. By symmetry, the same proposition holds if the roles of S; and
Sy are inverted. This proposition can be used to compute the sets of the partition of M (v, w),
(M(v,w)lc ., [M(v,w)]_ o, [M(v,w)]_ _, [M(v,w)]. -, from those of the partition of
M(z,y).
For example, if M denotes a valid EDM in [M(z,y)]- _, by definition N = Q(M) is in
T (n(x),n(y))c,=, which means that N(Ty[x(z)]) C Ta[r(y)] and N (Ty[r(y)]) = Ti[x(z)]. Then
according to lemma 2, M is a valid EDM in M (v, w) such that:

o if m(x) = m(v) then N(Tl[ﬁ(v)]) C Ty[m(w)] (from (5)) and N(TQ[W(w)]) = Tj[m(v)] (from
(6)), which means that N is in 7 (7(v), 7(w))c,=.

e Otherwise N(T3[r(v)]) C Ty[r(w)] (from (5)) and N(Tp[r(w)]) C Ti[r(v)] (from (6)),
which means that N is in 7 (7(v), 7(w))c c-

In other terms, M is in [M(v, w)] _ if 7(z) = 7(v), otherwise M is in [M(v, w)] .
Proposition 8 details similar relationships between sets [M(z,y)], 5 and [M(v,w)], 5, where
a, B, o and § are in {C, =, 8}.

Proposition 8 Let x and y both be descendants of v and w respectively, for any valid EDM
M in [M(z,y)l, 5, then M is a valid EDM in [M(z,y)], g as detailed in table 1.

In section 4.4, we shall need to further analyse sets [M(v,w)|_ _ and [M(v,w)]- - to derive
a complete and sound recursive expression of M(v, w). To achieve this, lemma 2 can also be
applied to derive inclusions between sets of the partition of [M(z,y)] - (resp. [M(z,y)]__),

(Mavlee) - (MEwlee) . (MElec) o esp (MEyl2)

([M(x, y)]:,:)c 5 ), and those of the partltlon of [M(v,w)]_ _ and [M(v, w)]c .

=

For example, consider M in ([M(x Y)lc C) . By definition N* is in F(n(z), 7(y))c,=, then
C=
according to lemma 2, M is a valid EDM in M(v w) such that :

13



| (@) | 7y [ Ml | M@yl | M@yl | M@ 9)lcc | Mlz,y)]p, ]
=7(v) | =n(w) | M@, w)]c_ | M@,w)]_ | M,w)]__ | M,w)]c | [M,w)p,
=) | #7(w) || M@, w)lc_ | M@, w)lcc | M,w)]c_ | M,w)]c | [M,w)h,
#7(v) | =n(w) | M, w)]c o | M@,w)]_ | M,w)]_ | M,w)]c | [M,w)p,
757TU) # w) [M('an)]c,c [M(an)]c,c [M(an)]c,c [M(an)]c,c [M('an)]ﬂﬁ
Table 1: Membership of a valid EDM in M(z,y) into M (v, w) depending on 7(z) and 7 (y).
| @ | 1@ | (Mewcd) | Mewcd) | | (Mewicd) | (Meicd) | | (Melcd),, |
=7(v) | =7() | (Mewlec) _ | (MEwlc) | (Mowlcc) | (Mewlec) 0
=n(v) | £7() | (Mewlec) _ | (Mewle) | (Mowled) | (M) 0
£a() | =ntw) | (Mewlcc) | (M) | (Mewlec)_ | (Mowle) 0
£(v) | #7() || (Mewlcc) | (Mewlcd) | (Mewlcd) | (Mewlcc) 0

Table 2: Membership of a valid EDM in [M(z,y)]

m(y)-

-

e if 7(z) = m(v) then N is in F(7(v), 7(w))c =;

e otherwise N is in F(7(v), m(w))c,c-

Finally, M is in ([M (v, w)] , if m(z) = w(v), otherwise M is in { [M (v, w)]
cC)e c,C

=

All these results are summarised by the following propositions.

G,C

- into M(v,w) depending on 7(zx) and

Proposition 9 Let x and y both be descendants of v and w respectively, for any valid EDM

M in [M(z,y)

]C,C’

detailed in table 2.

then M is a valid EDM in one of set of the partition of [M(v,w)

]C,C’

as

Proposition 10 Let x and y both be descendants of v and w respectively, for any valid EDM
M in [M(z,y)|_ _, then M is a valid EDM in M(v,w) as detailed in table 3.

=

In the same way, the propositions below, give the relations between an EDM M in M (v, w)
and EDMs M;s in M(z;,y;), where x; and y; are descendants of v and w, when M can be
considered as a union of the M;s.

@ | @ | (Mew) | Menl) | | (Mensl) | (Mew-s) | (Men-2),, |
=) | =ntw) | (Mow)_) | (Mewl ) | (Mew)l) | ((Mewlol) | (Mew))
= () | #m(w) [M(v,w)]c M, w)]c _ [M(v,w)]c [M(v,w)]c [M(v,w)]c
#7(v) | = m(w) [M(v,w)]_ [M (v, w)]_ [M(v, w)]_ Mo, w)]_ Mo, w)]_
#r() | #xw) | (Mowlcc) | (Mewlcd) | (Mewlc) | ((Mewlcd) | (Mewlc),,

Table 3: Membership of a valid EDM in [M(z,y)]_ _ into M(v,w) depending on 7(x) and

m(y)-

14



Lemma 3 Let vy, vo, ... , v, be the sons of v and let wy, we, ... , wy,, be the sons of w.
Consider n EDMs (Mk)ke{L.n} in M(vp,, wg,) such that for any M; and M;, i # j if and only
if vy, # vp; and wy, # wy;. Let M be the union Uyeqy .y { M}

NeT(rnw),n(w)c= < F| N, e€T(n(w),nr(w))c- and¥j#i, N; € T(n(v),7(w))ge

NeT(rw),n(w))== & F| N, eT(n(v),n(w))-—- andVj#i:{ N;e€T

) ’

)

NeT(r(v),m(w))cc < Fi| N, eT(n(v),n(w))cc andVj#1i : {
N* € F(r(v),m(w))c= & Ji| N; € F(r(v),n(w))c - andVj#i, Nj € F(r(v),m(w))g,

N* e F(n(v),n(w))== < Fi| N; € F(r(),m(w))== andVj#i:q Nfe F(r

)

N* € F(n(v),m(w))cc < Fi| N € F(n(v),n(w))cc andVj #i : { :
where N} denotes the valid EDM N; \ {(7(v,,), m(wg,)}.

According to this proposition it is possible to find relationships between the sets of the partition
of M(Upwqu')’ i.e. [M(Upi’ qu’)]c,:a [M(Upw wl]i)]:yc’ [M(va in)] [M(Upw wlh')]c,ca and
those of the partition of M (v, w).

For example, consider n valid EDMs M;, M, ... and M, in M(v,,wy), M(Upy, We,), ---
and M vy, ,w,,) respectively, if there exists ¢ in {1..n} such that M; denotes a valid EDM in
[M(z,y)]- _, where 7(z) = 7(v) and 7(y) = 7(w), according to lemma 2, N; is inT (7 (v), 7(w))c =
As established in lemma 3, N = Uy oy {Ni} isin N € T(7(v), 7(w))c = if and only if for
any j # i, Nj € T(m(v),m(w))ee. In other terms, M is a valid EDM in [M(v,w)]. _ if and
only if Mj is in [M(z,y)ly -

The next proposition summarize results which allow us to determine the union of sets (M) ey, in
the other cases.

=,=
)

Let vy, vg, ... , v,, be the sons of v and let w;, wy, ... , w,, be the sons of w. Consider n
EDMs (Mk)ke{l..n} in M(vp,,w,,) such that for any M; and Mj, i # j if and only if v, # vy,
and wy, # wy,. Let M be the union [,y ., {Ms}, then M is in A(v, w) if there exists M; in
B(v,w) and for any M;, j # i, M; is in C(v, w), where A(v,w), B(v,w) and C(v, w) are sets of
valid EDMs as detailed in table 4.

4.2.2 Recursive expression of EDM sets

These results are used to determine the sets of the partition of G(v, w) and H (v, w).

Proposition 11 Let M be a valid EDM from Ti[v] to Tolw] of [G(v,w)]- _, then M satisfies

one and only one of the follow assertions:

Ie,

1. Jwy € son[w] such that:
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(M@, M, w) (M),

M,w)_ M, w)_ M, 0]y

M) M, w)__ M, w)_ M, w)c M)y
(Me.w_) || (Mew)_2) | (Mew)__)

(Mew))_ || (M) | (Mew)_),

(Mew)__)_ || (Mew)) | (Mew)l_) | ((Mewle) | (Mew)_)
(Mewl_) | (Mew_) | (Mewl_) | (Mewo)l)
(Mew)_), | (Mew), | (Mew)L)

(M@, W) M) (M) (M, w),.
(Mewle) | (Mowle) | (Mow)c),,

(Mewlee) || M) | (M),

(Mol ) || (Mewlcd) | ((Mewlc) | (Mewl),,
(Mewlc) | Mewlc) | Mewle) | Mewlc),
(Me.wlec),, | (Mewlc),, | (Mewl),,

[M(v, w)], [M(v, w)], [M(v, w)],

Table 4: Membership of an union of valid EDMs M = Uy {Mi} to M(v,w) . M; is a
necessary EDM, while M; is not a necessary EDM. An empty cell denotes the empty set.

o m(wg) # m(w) and M € [G(v,wi)] _U[G (v, wy)]
o w(wg) =7m(w) and M € [G(v,wy)]

)

==
C,=’

2. Juy, € son[v] such that w(vy) = m(v) and M € [G(vg, w)],

8. M e [H(v,w)c_;
4. M =0.
SKETCH OF THE PROOF. The proof of this proposition is based on propositions 7 and lemmas

3 and 2. Let M be a valid EDM of [G(v,w) then according to proposition 7, M satisfies
one and only one of the five assertions:

]C,:’

1. Jwy € son[w] such that M € G(v, wg);

2. Juy € son[v] such that M € G(vg, w);

@

(v,w) € M and M* € H(v,w);

W

. M e H(v,w);
5. M =10.
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Suppose that there exists wy a son of w such that M isin G(v,wy). As established by proposition
2, if M is in [G(v, wy)] _ then M is in [G(v, w)] _ (corresponds to cases 1.a and 2.a of table
1, i.e. first line, first column and second line, first column), if M is in [G(v, w)]_ _ then M is
in [G(v, w)] _if m(wg) # 7(w) (corresponds to the case 1.c of table 1). In the other case, M is
in [G(v,wg)]_ - U[G (v, wr)]c -, and necessarily M is not in [G(v, w)]- _ (corresponds to cases
1.b, 2.b, 1.d and 2.d of tablel). The other assertions are determined using the same scheme.

d

The detailed proof is given in the appendix section. This recursive expression of EDM sets is
used to derive a recursive expression of the distance between two quotiented trees.

4.3 Recursive expression of the distance between quotiented trees

We respectively denote by [D(Sl[v],Sg[w])]c,:, [D(Sl[v],Sz[w])]:,c, [D(Sl[v],Sz[w])]:,:
[D(S1[v], So[w])] - the minimum cost T, ., (M) of EDMs M of sets [M (v, w)] _, [M(v,w)]
M (v, w)] _ and [M(v,w)]c,c.

and

,C?

Theorem 2 D(G1[v], Go[w]) can be computed recursively:

1. Initialisation:

D(6,6) — 0
D(Hl [U]’ 0) = kaESOn[u] D(Gl[vk]’ 0)’ D(Gl[v]’ 0) = D(Hl [U]’ 0) + d(U’ )‘)
DO Hafw]) = Yooy DO, Calur)), D6, Caluw]) = DO, Halu]) + d(\ w)

2. Computation of the distance between quotiented trees:

D(0, Go[w]) + ming, csonw) {D(G1[v], Go[wi]) — D(6, Gowy])}
D(G1[v], 0) + miny, csonf] {D(G1[vk), Go[w]) — D(G1[vg), 0)}

]
D(G\[v], Go[w]) = min ¢ D(H:[v], Haow]) +d(v, A) 4 d(}, w)
[D(H:[v], Ho[w])]_ _ + d(v, w)
[D(Hl [U]> HQ[wD]C,C + d(U, w)

The recursive relation for computing the partial distance which appears in the previous equation
is given, with proof in the appendix. These results are summarized in figure 6 by a dependency
graph showing how quantities are recursively dependent one upon the other in the computation
of D(G1[v], Go[w]). This graph shows that the computation of D(G1[v], Go|w]) ultimately relies
on the computation of special restricted EDMs, detailed in the following section.

4.4 Restricted EDMs with minimum cost

From the definition of restricted EDM (proposition 6) the problem of finding the restricted EDM
with minimum cost is related to the minimum cost bipartite matching problem. However, we
have to compute several optimal restricted EDM depending on the image of 7(v) and 7(w). For
each different case, we give a method for computing the optimal EDM, based on the modelling
of Zhang [12, 8| as a minimum cost flow problem.

17
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4.4.1 Modelling as a minimum cost flow problem

If n, = ny, this is exactly the minimum cost bibartite matching problem. If n, # n,,, we have
to consider the extra trees in one of the forests. Suppose that n, > n,. One way to solve this
problem is to add n, — n,, null trees to F5[w] and then use a bipartite matching. However, this
results in redundant computation. We can reduce this problem directly to the minimum cost
maximum flow problem by adding only one null tree to Fy[w].

Given two forests Fi[v] and Fylw], we assume that n, > n,. Let I = {v,vs,...,v,,} and
J = {wy, we, ..., wy, }, where vy, 1 < k < n,, represents the tree T} [vg] and wy, 1 < k < ny,
represents the tree To[wg]. Let us construct a graph R = (S, A) as follows :

e vertex set: S = {s,t,e} UIU.J, where s is the source, t is the sink and e represents a null
tree;

e edge set:

A= U (s,v) U U (vg,€) U U (wg, t) U U U (vg, wy)

v Eson(v) v €son(v) wy €son(w) vg€son(v) \ w;Eson(w)

All the edges have capacity one, except (e,t) whose capacity is n, — ny.

R is a network with integer capacities and the maximum flow f* = n, = max {n,, ny}-

In the original graph proposed by Zhang [12, 8], the cost D(T}[vg], To[w;]) is attached to each
edge (v, w;). However, finding an optimal matching in this case does not ensure that constraints
(2) and (3) are satisfied for the quotient EDM. The sub-sections below show how we can
modify the cost of edges to compute the optimal restricted EDM of [R (v, w)]- _, [R(v,w)]_ ,

[R(v,w)]_ _ and [R(v,w)] .. A representation of the network is given in figure 7 and 8.

According to proposition 6, for any restricted EDM M, there exists a partition R of M and
a matching K of (v, w). We show in propositions 26-32 that there exists one and only one
element M; of R and a pair (vg,w;) € K such that M; is a valid EDM in G(vg,w;) and for
any other element M; # M; of the partition R there exists a pair (v,, w,) # (vg, w;) such that
M; is a valid EDM in G(v,, w,); both M; and M; belonging respectively to particular set of
valid EDMs of the partition. The results of these propositions are summarized in table 5 and
detailled in appendix section. Note that according to these propositions, if no M; satisfies the
condition (the particular sets of valid EDMs G(vg, w;) is empty) then [R(v,w)], 5 is necessarily
empty.

According to these results, a cost is attached to each edge of the previous network. Next list

gives the assigned cost to each edge of the network flow for computing (['R(v, w)] C,C)

’

e for any v, and w; such that 7(vx) = 7(v) and 7(w;) = 7(w):

v(vg, w;) = min { ([D(Tl[vk], Tg[wl])]c,c) , ([D(Tl[’Uk], T2[wz])]c,c> GC}

)

18
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‘ M e H M; €
)

m(ox) = (V) (k) = (o m(o) £ 7() | 7(on) £ 7(0)
m(wy) = m(w n(w) # 7(w) m(wy) = w(w) | mlw) # m(w)
[R(v,w)] _ (G (v, wr)] - — (G (v, wp)] - —
[G (vi, wi)]— =
R, w)]_ - [Gor, )] (9o, w)]_
G (v, wr)]_ _
(Reww)_) | (Gnwl-) __ | (190w 2)__
(ionw)_2)
(Reww)_2)_ | (Gerw]-2)_ (RN
19k w))_2)__
(Rew]_)_ | (19kw)]_-)_

(Rewlee) | (1600wlec) (o wlec)_
([g(Uka wl)]c c) __
(Gorwlec) | 100puwal G wglc- | Glopwg)

G(vp,wy)
(19 wlec)_
(19wl )

C,C G,C

Table 5: For any M in [R(v,w)], s, this table gives the memberships of M;. An empty cell
denotes the empty set. A cell which is composed with several sets, denotes the union of these
sets.
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m(vg) = m(v) 7 (vg) = 7(v) m(vg) # m(v) m(vg) # m(v
m(wy) = 7(w) m(wy) # m(w) m(wy) = 7(w) m(wy) # m(w)
[R{v,w)]c -
R, w)]_
(Rewl--) | (9wl ),
(Rewl_2)_ | (9wl ),,
(19wl 2)_ | [G(opwe)]_c Glopwele | Glvp,wo)
(CZCn) I B I - CA%) G (g, wg)]c ¢
(Reww-)_ | (196 wle.)
(G wallec)
(19wl ),
(R@wl_-) | (9wl ),
(Rowlc)
(Rowlcc)
(16 wallec)__ | [Gpw))_c Gop il | Glopywy)
(Rewec)__ | (Gomwlee) | (Gomwle) _ | (Gmwlec)_
(190w c) | (190mwlec)
(R ),

Table 6: For any M in [R(v,w)], 5 , this table gives the memberships of M;. An empty cell
denotes the empty set. A cell which is composed with several sets, denotes the union of these
sets.
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e for any v, and w; such that 7(vx) = 7 (v) and 7(w;) # 7(w):

7(vg, wy) = min {[D (Ti[ow), Telwi))]_  » ([D(T1[vg], Telwi))] C)C,C, ([D(T1[Uk],T2[HIZ])]C,C):’C}

e for any v, and w; such that 7(vg) # 7 (v) and 7(w;) = 7(w):
¥(vg, w;) = min {[D (T [vg], To[wn])] - D(T:[vg], To[wi])] - C)c,c’ ([D(Tl[vk]aTZ[wl])]c,C)C,:}
e for any v, and w; such that 7(vg) # 7 (v) and 7(w;) # 7(w):
Y (g, wi) = D(Th[vg], To[wi])

e for any vy, in son(v):
V(vk, 1) = D(Th[ve], 61)

e the other edge costs are null.

4.5 Algorithm and complexity

The following algorithm computes a distance between two quotiented trees:
Input: G and Go.
Output : D(G4[z], Galy]) for any x € G; and y € Gs.
D(0,0) =
Forv e G,
For w € G,
D(0,0) 0

DHL0) = Sy comp (le 0),  DGi].0)
D(0, Hylul]) = D, Goluwr]), D6, Gofuw])

D(H1[v],0) + d(v, A)
D(0, Hy|w]) + d(\, w)

Wi Eson

computation of

AAAA,.\
Q
—
—_
]
—
C}
[\]

D
[D
and then computation of ¢ [D
[D
L [D

D(e GQ[wD + mlnwk€son
D(Gl[v] 9) +m1nvk€son [v]
D(H,[v], Ho[w ])-i-d(v A) +
[D(H:[v], Ho[w])]_ - + d(v,
| [D(H[v], Ho[w])] o +d(v,

] { D(G1[v], Ga[wi]) — D(0, Golwg])}
{D(G1lvg], Ga[w]) — D(Gh[vx], 0)}

D(G1[v], Go[w]) = min | d(\, w)
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At one step of the recursion, i.e. for given v and w, the computation of terms 1 and 2 in
D(G1[v], G2[w]) takes a time proportinal to n,+n,,. The computation of terms D(H;[v], Hy[w]),
[D(H[v], Ho[w])]_ _, [D(H:[v], Ho[w])] - relies on computation of minima which also takes a
time proportinal to n, + n, and on the computation of costs of restricted EDMs.

The computation of the cost of a restricted EDM in [R(v,w)]. -, uses a graph with integer
capacities, nonnegative edge costs, and maximum flow f* = n, + n,. The complexity of
finding minimum cost maximum flow for such a graph, using the improvement proposed by
Tarjan [19], is O(m x |f*| X loga(n)) where m is the number of edges and n is the number of
vertices. Here, n = n, + n,, + 4 and m = n, x n, + 2n, + 2n,, + 3; therefore the complexity
is O(ny X ny X (ny + nyy) X loga(ny, + ny)). The case of [R(v, w)]_ _ is similar: as discussed
in proposition 29, a total number of min {|II(v)|, |II(w)|} graphs of flow are used, where the
number of edges is m = (n, — 1) X ny + 2n, + 20y, + 3 + |I(w)] if [II(w)| > |I(v)| and
m = ny X (g — 1) + 2n, + 2n,, + 3 + |II(v)| otherwise. The total complexity of the minimum
cost maximum flow computation (here split into several sub-graphs) is O(min {|II(v)|, |[II(w)|} x

Ny X Moy X (N + M) X L0ga (N + M) )-

The overall complexity of the algorithm is thus :

O (|IT1| x |Ts| x (deg(T1) + deg(Ts)) x min{deg,, (T1), deg,(T2)} X loga(deg(T1) + deg(T3)))

5 Conclusion

In this paper, we have extended an algorithm to compute a distance between unordered trees
[8] and thus we have defined a distance between quotiented trees. The resulting algorithm
computes this distance recursively in polynomial time, using the dynamic programming prin-
ciple. The highest source of the complexity is due to a bipartite matching problem which
occurs when comparing the forests rooted at two given vertices. We adapted a minimum cost
maximum flow algorithm to take account of constraints derived from the quotiented structures.
The final algorithm has the same complexity as Zhang’s algorithm, multiplied by a factor
min {deg,, (11), degr,(T>)} which expresses the mean number of components of a complex (i.e.
of a macro-constituent).

This work is part of a project to develop computer tools for studying plant architecture [20,
21]. The proposed algorithm is currently integrated within tools dealing with the quantitative
evaluation of plant similarity [9]. This algorithm opens new perspectives for the comparison of
plant architectures by considering extensions of the algorithm to multiscale tree graphs [10, 9].
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Appendix: proof of propositions

Note that G(v,w) CT (v, w), and then G(v,w) can be partitionned according to proposition 3
into sets (G(v,w))c _, (G(v,w))_ -, (G(v,w))__, (G(v,w))c - and (G(v, w)), -

PROOF OF PROPOSITION 1. For any Si[z] and Si[y| in S;(v) such that Si[z] C S;[y], by
definition, y < z: then

M,

Wiy

= My, U{z € Vilw] | 3z € ily]\ Vi[z]; (21, 22) € M}

and thus M, C M, . Finally y <7:

M(S,[z]) € M(S:[y)

[l

PROOF OF PROPOSITION 2. Let M be a valid EDM from S [v] to Sa[w], such that J/M\(Sl [z]) C
M (Si[y]), following the definition 4 of M, there is two cases depending on the image S [y]:

1. ]\/4\(5'1 y]) is a tree Ty[ty]: there exists a vertex ¢; in Si[y| such that (t1,t2) € M. If
M (S1[z]) # 0 then for any vertex z in M (S;[z]), such that z; has an image z; in S;[z],
29 is in M (S1[y]), that is in Ts[ts]. And according to constraint (2):

h<znet <z
Thus, Si[z] C Si[y];

—~

2. M(Sily]) is a forest Fy[t; A uq]: where ¢; and u; are two vertices ¢; and u; in Si[y] such
that ¢; and u; have respectively an image t, and uy by M. If M (Si[z]) # 6 then for any
vertex 2z, in M. (S1]z]), such that z; has an image z; in Si[z], 23 is in M (S1[y]), that is in
F5[ts]. And according to constrainst (3):

oAU <zt ANup < 2
Thus, Sifz] € Sily).
The reciprocal is due to proposition 1.

O

PROOF OF PROPOSITION 3.

1. If M = @ then M(S;[v]) = 6 and M (Ss[w]) = 6;

2. else, M # () and then necesseraly J/W\(Sl [v]) # 6 and M\(Sg[w]) # 0.
According to proposition 2, M (S;[v]) C M (S2[w]) and M (Sz[w]) C M(Si[v]), thus there
is four cases:

(a) M(S:i[v]) C Sy[w] and M (Ss[w]) = Sy[v];

25



(b) M(Si[v]) = So[w] and M (Se[w]) C Si[v);
() M(Si[v]) = Splw] and M (Solw]) = Si[v];
(d) M(Si[v]) C Solw] and M (Ss[w]) C Si[v].

O

PROOF OF PROPOSITION 4. Let M be a valid EDM from T [v] to To[w], M isin T (v, w)— -
if and only if J\/i\(Tl [v]) = T5[w] and ]\/4\(T2 [w]) = T1[v]. Then by the definition of M, v and w
have both an image by M. By the the condition (2) of valid EDM, v and w are necessarily
image on each other.

0

PROOF OF PROPOSITION 5. Obvious following definition of valid EDM from Fi[v] to Fy[w].
0

PROOF OF PROPOSITION 6. See [8].

0

PROOF OF PROPOSITION 7. This proposition is decomposed in two parts:

1. Let M be a valid EDM from Ti[v] to T,|w], according to proposition 3 applied to trees:
e cither M\(Tl [v]) # 6 and J/W\(Tz [w]) # 6 and:

(a) J/W\(Tl[v]) C Tp[w] and ]T/[\(TQ[w]) = Ti[v], then there exists wy, a son of w, such

—

that M (Ti[v]) C Talwy]. If there is a son w; of w such that ]T/I\(Tz[wl]) # 6, then

A~

necessarily M (T}[v]) = To[w] (contradiction with ou hypothesis), thus for any sons

—~

wy # wy, of w, M(To[wy]) = 0 and M (To[wy]) # 6: M € T (v, wy)

(b) M (T1[v]) = Ty[w] and M (Tx[w]) C Ti[v], similar to the previous case;
M(Ty

)
)

(c) M(Ty[v]) = Ty[w] and M (Ty[w]) = Ti[v], then proposition 4 can be applied and
M* € F(v,w);

(d) M(Si[v]) C Sofw] and M(Sy[w]) C Si[v], then proposition 5 can be applied and
M € F(v,w).

(e) or either ]/\/[\(Tl [v]) = 6 and ]/\/[\(Tg [w]) = 6 and then M = {;
2. Let M be a valid EDM from Fi[v] to Fy|w], according to proposition 3 applied to forests:
e cither M\(Fl[v]) # 60 and M\(Fg[w]) # 6 and:

(a) J/W\(Fl[v]) C Fyw] and M\(FQ[UJ]) = Fi[v], then there exists wy, a son of w, such
that M (Fi[v]) C Fylwg]. If there is a son w; of w such that M (Fy[w]) # 6, then
necessarily M (Fi[v]) = Fylw] (contradiction with ou hypothesis), thus for any sons

—~

wy # wy, of w, M (Fp[w;]) = 6 and J/W\(Fg[wk]) #0: M € F(v,wg)
(b) J\/Z(Fl [v]) = Fy[w] and M\(FQ [w]) C Fi[v], similar to the previous case;
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() M(Fi[v]) = Fylw] and M(Fyw]) = Fi[v], or M(Fi[v]) C Fylw] and M(Fyw]) C
Fi[v], then according to proposition 6, M € R(v, w);

(d) or either M\(Fl [v]) = 6 and M\(Fg[w]) = 6 and then M = {;

O

PROOF OF THEOREM 1. This theorem was firstly prooved by Zhang in [12, 8|.
U

PROOF OF LEMMA 1. The proof is similar to proof of Theorem 2 proposed by Zhang in [8].
A composition of EDMs can be defined as follow. Let M; be a valid EDM from 77 to 75 and
let M5 be a valid EDM from 75 to 13, then:

M, o My = {(z,y)|3z s.t. (z,2) € My and (z,y) € My}

This definition is exactly similar to the definition proposed by Zhang. To proof that M; o M,,
we can use the same scheme given by Zhang in his lemma 2 [8]. To check conditions (4), (5)
and (6), we thus just need to chose three pairs (21, 21), (22, 22) and (3, 23) in M; o My such that
m(x1), m(xg), m(z3) are different. Since M; and M are valid EDMs, conditions (4) and (5) are
obviously verified. Condition (6) is also verified if we applied the proof of Zhang on complexes
m(x1), m(z2), m(x3). Furthermore, the proof of Zhang to show vy(M; o My) < v(My) + v(M,)
can also be directly applied to quotiented tree graphs. Thus the same results can be applied in
that case.

Now to show that D is a distance we need to prove the following relations:

1. D(Ty[v], Ti[v]) = 0;
2. D(Ti[v], To[w]) = D(T3[w], T[v]);
3. D(Ti[v], Tz]) < D(Ti[v], To[w]) + D(Tz[w], Ts[x]).
Relations (1) and (2) are direct consequences of definition of valid EDMs. Furthermore, relation

(3) is a result obtained from the definition of composition between EDMs (cf Zhang [8], theorem
2).

PROOF OF LEMMA 2. For any z and y in Si[v] x Se[w], let M be a valid EDM from S;[z]
to Se[y] then M is a valid EDM from S;[v] to Sew]. Furthermore N (S;[r(v)]) = N(Si[r(z)])
and N (S (m(w)) = N(Ss[r(y)]). According to proposition 3, there is three cases depending on
the position of S;[r(z)] front of S| (y)]:

1. N(Si[n(z)]) = 0 then necessarily, N (S;[r(v)]) = 0;

2. N(Si[7(z)]) C So[m(y)], then necessarily, N (S1[7(v)]) C Sa[n(y)] € Solm(w)] = N(Si[x(v)]) C

Salm(w)];

3. N(Si[m(2)]) = Sa[m(y)], then necessarily, N(Si[r(v)]) = Sa[r(y)] and if 7(y) = = (w)
then Sy[m(y)] = Sa[r(w)]= N(Si[n(v)] = Sa[m(w)]. Else 7(y) > w(w) then Sy[w(y)] C

A~

So[m(w)]= N(Si[r(v)] C Sa[m(w)].
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O

PROOF OF PROPOSITION 8. Obvious from lemma 2.
O

PROOF OF PROPOSITION 9. Obvious from lemma 2.
O

PROOF OF PROPOSITION 10. Obvious from lemma 2.
O

PROOF OF LEMMA 3. For any z and y in S1[v] x S3[w], and for any valid EDM M in M(z, y)
N(Si(m(v)) = N(Si(m(z)). Furthermore, m(w) < 7(y) and then according to proposition 2,
So(m(y)) C Sa(m(w)), thus if N(Si(m(x))) C Sa(ma(y)) then N(Si(m1(v))) C Sa(ma(w)).

gﬁz(yz :))71'(’(1}), then Sy(m(y)) = Sy (m(w)) and if N (S, (my(z))) = Sa(me(y)) then N(Sy (i (v))) =
gt(hef(wi;e, S(m(y)) C Sy(m(w)), N(Si(n(x))) = Sy(n(y)) C Salm(w)) =N(Si(m(v))) C

Let My € M(z,y) such that Ni(Si(w(v))) C Sy(m(w)) and Ny(Sy(m(w))) = Si(w(v)), then
there exists y > y such that m(y') # m(w) and Ny (Si(7(v))) € Sa(7(y')) and N]_(SQ( () =
Si(m(v)). Let M, € M(z t) and let M be the union M; U M. Remark that My N M, = 0,
then the image of Sy (7 (y )) by N is given by N1 N(Sy(7(¥))) = Ni(Sa(m(y))). According to
previous result N(Sg( (y))) = Si(m(v)) = N(Sl( m(v))) € Sy(m(y')). Let 2" be a descer}dant
of z such that m(2) # 7(v ) and N(S;(7(z))) ;A,e. N is an iEcreasing’ function, Sl(w(,? )) C
Si(m(v)) &N (S1(r(2))) € N (S (n(v 2)) C Sa(m(y)), however N(Si(m(2))) = Na(Si(7(2))) <
Sp(m(t)) where ¢ >t such that 7(r') # m(w) or N(Si(n(2))) = NZ(Sl( (2))) C Sy(m(w)).
In both cases : N(Si(m(2)) € So(n(y')), this is a contradiction, thus N (S;(m 7 (2 Z))) = 6 and
Ny(Si(m(2'))) = 0. Finally M = M, and then N(Sl( (v))) C Sa(m(w)) and N(Sy(m(w))) =
S1(m(v)), this means M € M _(v,w).

Following previous results, necessaraly, M, is not a valid EDM from Si[z| to Sy[t] such that

J/V\Q(Sl(w(v))) C Sy(m(w)) and J/\T\Q(Sz(w(w))) = Si(m(v)) (and conversely). And M, must to
satisfy one of the previous properties.

Reciprocal : obvious.
O

PROOF OF PROPOSITION 11. The proof of this proposition is based on propositions 7 and
lemma 2 and 3. Let M be a valid EDM of [G(v,w)]. _, then according to proposition 7
(G(v,w) C T (v,w)), M satisfies one and only one of the five assertions:

1. Jwy € son|w] such that M € G(v,wg). As established by proposition 2, M is in
[G(v,w)]c_ if and only if M is in [G(v,w)] _ (corresponds to cases l.a and 2.a of
the table 2), or if M is in [G(v, wx)]_ _ and 7(wy) # m(w) (corresponds to the case 1.c of
the array). In the other cases, M is in [G(v, wk)]_ - U [G(v, wr)] -, and necessarily M is
not in [G(v, w)]- _ (corresponds to cases 1.b, 2.b, 1.d and 2.d of the array);
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2. Juy € son[v] such that M € G (v, w). As established by proposition 2, M isin [G (v, w)

e
if only if M is in [G(vg, w) and 7(vg) = m(v);

e

3. (v,w) € M and M* € H(v,w), then N(Ti(x(v))) = Tap(r(w)) and N(Tp(r(w))) =
Ti(m(v)), and then M is not in [G(v, w)]. _;
4. M* € H(v,w), and necessarily M is in [G(v, )] _ if and only M* is in [H(v, w)] _;

5. M =0.

O

[G(v,w)]_ ¢ is determined symmetrically from [G(v,w)] _.

Proposition 12 Let M be a valid EDM from G1[v] to Ga[w] of [G(v,w)]_ _, then M satisfies
one of the follows assertions :

~

. Jwy € son[w] such that w(wg) = 7(w) and M € [G(v, wy)]

==’
)

. Juy, € sonlv] such that m(vg) = 7(v) and M € [G(vg, w)]

=,=

. (v,w) € M and M* € [H(v,w)]_ _U[H(v,w)]

= c,C’

2
3
4 M e Hv,w)l_ _;
5 M =0.

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 13 Let M be a valid EDM from Gi[v] to Ga[w] of ([g(v,w)] :) , then M
=)

satisfies one of the follows assertions :

1. Jwy € son|w] such that w(wg) = m(w) and M € ([g(v,wk)] ) ;

=,= -

=

2. Juy € son|v] such that w(vg) = w(v) and M € ([g(vk,w)]:,:)c ;

=

3. (v,w) € M and M* € ([’H(v,w)]:,:)

J Me ([’H(U,w)]:’:> ;

=

5 M=40.
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PROOF. the proof is similar to the proof of proposition 11.

O

([g(v, w)|_ :) is determined symmetrically from ([g(v, w)]_ _) .
’ - T C7_

In the following, ([g(v,w)] :)  denotes ([g(v,w)] ) U([g(v,w)]:,:>cc.

It ’ )

Proposition 14 Let M be a valid EDM from Gi[v] to Go[w] of ([g(v,w)]:,:>
satisfies one of the follows assertions :

1. Jwy, € son[w] such that w(wy) = 7w(w) and M € ([g(v,wk)] ) ;

=,=

=,=

2. vy € son[v] such that w(vg) = 7(v) and M € ([g(vk,w)]:’:) ;

=

4 Me(Howl )

)

5 M=40.

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 15 Let M be a valid EDM from G1[v] to Gaw] of [G(v, w)
one of the follows assertions :

]C,C7

1. M € [H(v,w)

]c,c;

2. M =10.

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 16 Let M be a valid EDM from G[v] to Go[w| of ([g(v,w)]c,c)

satisfies one of the follows assertions :

1. M € <[H(an)]c,c)c,"

=

2. M =0.
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PROOF. the proof is similar to the proof of proposition 11.
O

(19, w)le.c)

In the following, ([g(v,w)]c,c> ~ denotes ([g(vaw)]c,c>

’

is determined symmetrically from ([g (v, w)] c,c)

)

=

(190 w)lec)

)

Proposition 17 Let M be a valid EDM from Gi[v] to Go[w| of ([g(v,w)]c,c> , then M

=,=

satisfies one of the follows assertions :

1. M € <[H(an)]c,c)_ 3

=,=

2. M =0.

PROOF. the proof is similar to the proof of proposition 11.
d

Proposition 18 Let M be a valid EDM from Hy[v] to Ha[w] of [H (v, w)
one of the follows assertions:

lc—, then M satisfies

1. Jwy, € son[w] such that:

(a) m(wx) # m(w) and M € [H(v,wg)]c _U[H (v, wg)]_ _ or
(b) m(wg) = m(w) and M € [H(v,wg)|- _;
2. Juy, € son[v] such that m(vy) = 7(v) and M € [H(vg, )] _;

3. M e [R(v,w)]._
4. M =10

PROOF. the proof is similar to the proof of proposition 11.
O

[H(v, w)]_  is determined symmetrically from [H (v, w)] _.

Proposition 19 Let M be a valid EDM from Hi[v] to Ho[w] of [H(v,w)]_ _, then M satisfies
one of the follows assertions :

1. 3wy € sonfw] such that T(wy) = m(w) and M € [H(v, wg)]_ _;

2. vy € son[v] such that w(vg) = 7(v) and M € [H(vg, w)]

=,=
)

3. M € [R(v,w)]

4. M =1
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PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 20 Let M be a valid EDM from Hi[v] to Hy[w] of (['H(U,w)] :) , then M
) C —

=

satisfies one of the follows assertions :

1. Jwy, € son|w] such that w(wy) = m(w) and M € ([H(v,wk)] ) ;

=,= _

=

2. vy € son[v] such that w(vg) = 7(v) and M € ([”H(Uk,w)] :) ;

3. M e <[R(U’w)]:7:) C,=

4. M =10

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 21 Let M be a valid EDM from H[v] to Hs[w] of ([’H(v,w)]:,:) _, then M

)

satisfies one of the follows assertions :

1. Jwy, € son[w] such that w(wy) = 7w(w) and M € ([’H(v,wk)] ) ;

=,=

I

2. vy € son[v] such that w(vy) = 7(v) and M € ([’H(vk,w)] :) ;

5. Me (Rpwl__) ;

4. M =0.

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 22 Let M be a valid EDM from Hi[v] to Ha[w] of [H(v,w)
one of the follows assertions :

lc,cr then M satisfies

1. Jwy, € son|w] such that:

(a) M € [H(v,wi)]cc or;
(b) m(wg) # 7(w) and M € [’H(v,wk)]:,C ;

2. vy € son[v] such that:
(a) M € [%(vk,w)]C’C or;
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(b) m(ve) # 7m(v) and M € [H(vg, w)]_ ;

3. M € [R(v,w)

]C,C"

4. M =0.

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 23 Let M be a valid EDM from Hi[v] to Hy[w] of ([’}'-t(v,w)]C C) , then M
)

satisfies one of the follows assertions :

1. Jwy € son[w] such that:
(a) w(wy) = 7(w) and M € ([7—[(7), wk)]c,c) _on

U <[H(v,wk)]c,c) ;

¥/ )

(b) m(wy) # 7(w) and M € ([H(v, w)]c )

2. Juy € son[v] such that w(vg) = w(v) and M € ([%(Ukﬁw)]c,c) ;

C=

5. Me (Ruwee)

C,=

4. M =0.

PROOF. the proof is similar to the proof of proposition 11.
O

Proposition 24 Let M be a valid EDM from H,[v] to Hs[w] of ([’H(v,w)]c,c) , then M

I

satisfies one of the follows assertions :

1. Jwy € son[w] such that:

(a) (wg) = m(w) and M € ([H(U,wk)]gc):: or;

’

(b) m(wy) # 7(w) and M € ([H(v,wp)lcc)  UM© w0

’

2. Juy € son[v] such that:

(a) 7(vg) =m(v) and M € ([”H(vk,w)]cﬁc) ;

==

(b) 7(ve) # 7(v) and M € ([H(vew)lcc) UM w)le

)

33



3. Me ([R(an)]c,c)

4 M=

PROOF. the proof is similar to the proof of proposition 11.
O

Theorem 3 Let vy, vs,...,v, be the sons of v and let wy,ws, ..., w, be the sons of w, then:

( D(0, Ga[w]) + ming,esonu] { D(G1[v], Gawi]) — D(0, Ga[wy]) }
(G1[’U] 0) + mlnvk€son {D(Gl[vk] GQ[w]) (Gl[vk]7 0)}
[D(H.[v], Ho[w])] — + d(v )\; +d(\, w)

A

D(Gl[v], Gg[w]) = min <« + d(/\’ w)

[v]
B (v,
[v] ) c +d(v,
1[0, Hz[ﬂ)])]c c +d(v,w)
1], Holw])]_ _ + d(v, w)
Lemma 4 Let v1, 2, ...,0, be the sons of v and let wy, wo, ..., wy, be the sons of w, then:

[D(H3[o], Hylw])]
([ D(HL[0],0) + ming, csongu) { D[], Fofwi])c - — DO, Holu)) )

D(Hh [v],0) + Wity gy ey { [D(E [0], Holwi])]__ = D(6, Hylu]) }
D(0, Hao[w]) + miNy,|r(u, ) () | [D(Hi[v], Ha[w])] - - — D(Hl[vk],e)}
Re[[R(v,w) :’:]C,z {Low(R)}

= min <

min

\

Lemma 5 Let vi,v,...,v, be the sons of v and let wy, wo, ..., w, be the sons of w, then:

= min <

[D(H1[v], H2[w])]

(ID(H o), Hafu])]__)
D(8, H[w]) + mity, r(uw,)=n(w) {([D(Hl[v] Hy[wg)]_, )
(

[D(Hi[vg], Ho[w ) D(H;[vg],0) }

= min < D(]J1 [U], (9) + minvk|7r(vk):7r(’u) {

\ minRe[[R(v,w)]z,z]c’: {Tow(R)}
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(1D Eafu]]_ )
D0, Halu) + ity sy { (DL, Hofu) :) - D, tafur) }

= min < (Hl[v] 9 + mmmﬂ (v)=m(v) { H1[Uk] H2 - D(H1[Uk], 9)}

I

\ M e (R (0,)) ) {Tyw(R)}
([ (Hi[v], H2[’LU:|)]__>00
D(6, Ha[w]) + miny, jr(w,)=r(w) {([D(Hl[v] Halwg])]_, ) H—D(e HQ[wk])}
(

= min q [D(H[vg], Ha[w ) D(Hi[vx], 9) }

D(H,[v],0) + miny, jr(v,)=r(v) {

minRe([R(v,w)]:,:)G’G {Low(R)}

\

Lemma 6 Let vy,vs,...,v, be the sons of v and let wy, wo, ..., w, be the sons of w, then:

([D(Hl[v], Hz[w])]c,c) o
(DI Hofu)le e =min§ (D[ BaluDle.c)
([D(H1 [v], Hz[w])]c,c)

(Ip( o], o)) )

( =

D(9, Ho[w]) + ming,e sonfu {([D ol Hofwi)le ) =D, Hg[wk])}
i ] DO How) + min e {([D o], Hy[wy])], ): — D(s, H2[wk])}
D(Hy[v],0) + min o, )2r(o) {([D H, [vg], Ha[w])], )Q: —D(Hl[vk],ﬂ)}
mng([R(vw)]c C) {Low(R)}

\

([D(H1 [v], H2[w])]c,c>_,_

D(0, Hg[w]) —+ minﬂ(wk)zﬁ(w) [D Hg[wk]

- D 9 HQ[wk

— D(0, Hy[wy)]) }
|

{( )
DO, Haftw]) + mingguny {([D Hifol, Hafuwn)) ):
D0, Holw]) + mitisu sty { [D(Hi o], Eofwr])]_  — D(O, Hofwy])}
=Y D[], 0) + iyt { (ID(E ] Halu) ]CC)
{ (D10 D c) D(H:[u,0)}

DU (0],0) + iy sy (DU o). Hafo)) . — D(Es ], )}
\ minRe([R( )]CC) {Tyw(R)}

—D Hlvk] 0}

D(Hi[v],0) + ming(y, )£ ()




Lemma 7 Let vi,vy, ..., v, be the sons of v and let wy, ws, ..., w, be the sons of w, then:

[D(G1[v], Ga[w])] -

D(, Gs[w]) + mit,caongur { [D(G1[0], Tofwi])] - — DI, Galuwn]) |
= min (9 GQ[ -|- mlnwk\vr (we)Z£m(w) {[D Gl[?)] G2 wk = D(G, G2[wk])}
[D(Hy[o], Hyluw])] - + d(v, X) + d(3, w)

[D(Gi[o], Golu])] -
D0, Gaw]) + Wity ey =r(ay { [D(G1[0], Galwil) ) - = DO, Galwi]) }
— min{ D(Gi[v],0) + miny, auu)—nn { [D(Galee], Galw)_ - — D(Galuil. )}
(DL, Hofwl)]. + d(o, 0
[D(H[o], Ho[w)])]c c + d(v,w)
(D@1 Goful) )
(D6 Gafw) + Mty | ((D(Gl0], Gl :) _ - DO, Galur) }

[D(G1[ve], Galw])]_ ) D(Gi[vx], 0) }

A ——

D(Gafe],6) + Mt o) ,,){
(D@ ], Bl ) +d
| (Ip( l[vl,Hz[wmc,c)C,_+d(v,w>
(ID@i) Galwh) )

(9 GZ[w] +m1nuﬂc|7f (wg)=m(w)

= min <

(ID(G1[v), Gl )_: — D, Gg[wk])}

[D(G1[ve], Galw])]_ ) _~ DGl 0) }

— ——

— 1min 4 D(G1[v],8) 4+ ming, |z(v;)=n( v){
(ID(H: o], Hofw))]_ )
(1 (Hl[vl,ﬂg[wmcc)

D
[D(G1[v], Ga[w))] = [D(Hi[v], Haow])]c  +d(v,A) + d(A, w)

). = (
)=

Proves of following propositions are a direct consequence of propositions 8, 9 and 10.

+ d(v, w)

=,=

(Hnfo), Hofue ) +d(v,3) +d(A )
D(H[v], HQ[w])]C,C>:,: +d(v, \) +d(\, w)

(Ip( [w)le.c D
(IP(GAlv), Gafu))], |

]CC

Proposition 25 For any restricted EDM M in [R(v,w)]. _, there ezists vy and w; sons of v
and w such that:

o m(vx) =7(v), m(wy) = m(w) and M € [G(vk, wi)] _ or;
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o 7(vg) =7(v), m(wy) # w(w) and M € [Q(vk,wl)]c,: U [G(vk, wy)]

=,=

[R(v,w)]_  is determined by symmetry.

Proposition 26 For any restricted EDM M in ([’R(v, w)] - c) , there exists vy and w; sons
) C,:

of v and w such that:

o 7(vx) = 7(v), 7(wn) = 7(w) and M € ([G(v. “’l)]C’C>c or:

=

o m(vy) =7(v), m(w;) # m(w) and M € ([g(vkawl)]c,c) U <[g(vkawl)]c,c)

I

C,=

I

([’R(v, w)] - c) is determined by symmetry.
’ c

Proposition 27 For any restricted EDM M in ([’R(v,w)]c,c) , there exists a partition

I

R of M and a matching K of K(v,w) such that there exists M  in ([g(vk,wl)]c,c)  with

=,

m(vg) = 7(v), 7(w;) = 7(w) and and for any elements M of the partition R there exists a pair
(vp, wy) € K:

o if m(v,) = m(v) and m(w,) = 7(w) then:

0 (1900, w0 )

M e (G wi)lec)
o if m(v,) = m(v) and T(w,) # 7(w) then:

M € (G0, w)_ U (16 w)lec) U (1600wl

)

=

o if m(vy) # m(v) and w(wy) = w(w) then:

M e [g(vp’wq)]c,: U ([g(vp’wq)]c,c) U ([g(vp’wq)]CyC>

G,C C=

o if m(vy) # m(v) and m(wy,) # w(w) then M" € G(vy, wy).

Proposition 28 For any restricted EDM M in ([’R(v,w)] - c) , there exists a partition R
’ c,C

of M and a matching K of K(v,w) such that such that for any elements M’ of the partition R
there exists a pair (v, w,) € K such that:

o 7(y) = 7(v), 7(w,) = 7(w) and M' € (G(vpw))l )

G,C
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o m(vy) =7(v), m(wy) # w(w) and :

M €G] U (190l ) U (190mulec)_

-

o if 1(vy) # m(v) and w(wy) = w(w) then:

M € G (vp, wq)]c,: U <[g(vp, wq)]c,c)c c U <[g(vp’wq)]c’c)c =

’ Y/

o ift(vy) #m(v) and m(w,) # w(w) then M € G(vy,w,).

Proposition 29 For any restricted EDM M in ([R(v w)]_ ) , there exists vy and w; sons

of v and w such that w(vg) = 7(v), 7(w;) = 7w(w) and M € ( (g, wy)]— _)

=

([’R(v, w)]:;) is determined by symmetry.

Proposition 30 For any restricted EDM M in ([R(v,w)]: :> , there exists a partition R
=/ c,C

I

of M and a matching K of K(v,w) such that there exists an element M of R and a pair
(g, w;) € K such that w(vy) = 7(v), m(w;) = 7(w) and M € ([g(vk,wl)]: :) and for
"~/

’

any elements M of the partion R there exists a pair (vp, wy) € K satisfying one of these four
properties:

o if m(vy) = m(v) and m(wy) = m(w) then M" € ([g(v”’wq)]_v—)e,a;

e otherwise, M' = (0.

Proposition 81 For any restricted EDM M in (['R(v,w)]:,:%a, there exists a partition R

I

of M and a matching K of K(v,w) such that there exists an element M of R and a pair
(v, w;) € K such that 7(vy) = w(v), n(w;) = 7(w) and M € ([g(vk,wl)]:,:%a and for any

’

elements M of the partion R there exists a pair (vp,wq) € K satisfying one of these four
properties:

o if w(v,) = (o) and w(wy) = w(w) then M" € ([G(vp,w)]__), :

e otherwise, M' = ().

Proposition 82 For any restricted EDM M in ([’R(v,w)]:,:> , there exists a partition R

=,=

of M and a matching K of K(v,w) such that there exists an element M’ of R and a pair
(vg,w;) € K such that n(vy) = 7(v), 7(w;) = 7(w) and M’ € ([g(vk,wl)]:,:> and for

=,=

any elements M of the partion R there ezists a pair (vp, wq) € K satisfying one of these four
properties:
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o if 1(v,) = w(v) and w(wy) = w(w) then:

M e (16 w)ls) U (S0mw)l) (Gl

U ([g(vp’wq)]c,c):,: U ([g(vp’wq)]c,c)

G,C

else;
o if(v,) = 7(v) and w(w,) # w(w) then M" € [G(vp, wg)]c — U[G(vp, wq)] - else;
o if m(vp) £ 7(0) and m(1g) = 7(w) then M" € [G(vpw)l_ . U[G(up )], else;

o M" € G(vp,w,).
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Figure 1: Definition of M: S, [v] = M (S1[v]), (@) and (b) illustrates the image of one tree 717,
(¢) and (d) illustrates the image of one forest F;:

e (a) The image of T} is a sub-tree of Ty;

e (b) The image of T; is a forest included in T3, remark that the root of 77 has no image
by M;

e (c) The image of F} is a tree included in F,, remark that vertices of F; which have an
image by M belong to one tree of the forest Fi;

e (d) The image of F} is a forest of Fy.
Color convention used throughout the paper. Vertices (or trees) represented in:

e black have an image by M;
e grey may have or not an image by M;

e white do not have any image.
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Figure 2: Partition of the set of valid EDMs from Ti[v] to T3[w] using M, T (v,w)se is not

represented. General form of EDM in:

._.,;7 .@, ._.m,
Y Il Il
[gup —~ -
S 3 B
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[ ] [ ] [ ]
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Figure 3: (a) and (b) illustrates valid EDMs for support tree comparison but they are not valid
for quotient tree comparison:

e (a) since the one to one correspondance is not satisfied on quotient graph;

e (b) since the ancestor relationships is not satisfied on quotient graph.

(¢) illustrates a valid EDM between quotiented trees, i.e. EDMs between both support and
quotient graph are valid.
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M(T1[v]) C T2[w] and
M(Tz[w]) = T1[v]

M(Ty[v]) = To[w] and
M(Tz[w]) C T1[v)

M(F1[v]) C Falw] and
M(Fa[w]) = Fi[v]

1 |

l <« M(Fi[v]) = F2[w] and
M(Fy[w]) C Fi[v]

M(Ty[v]) = T2[w] and M(Ty[v]) C T2[w] and

M (T [w]) = Ti [v] M(Ts[w]) C Ti o] M(Fy[]) = Fa[w] and
M (Fyw]) = Filv] —* \
J/\l\(Fl [v]) C Falw] and
" R (2) M(Fz[w]) C Fy[v]
N0 € Talr@)] and  R(T1[r(@)]) = Tolr(w)] and
R (Talr(w)]) = Tyl ()] R (Tar(w)]) C T1r(v)]
|
\ | * !
a | b a : b
! |
_______ B kT T R
- |
R(T1[r()]) = Talr(w)] |
Y 4 . c d C d
R (T fr(w)]) = T [r(v)] /:/, |
~ T 5 1
R(Ty = @)]) € Tofr(w)] N S a a
R (Talr(w)]) € T1r(v)] | —— T - |~
| c , d c  d
: a : b a : b
¢ o d T o
| c d c | d
(3)
Y
| |
| |
R(Fy[r(v)]) C Falr(w)] and R (Fy[r(v)]) = Falr(w)] and !
R(Fsln(w)]) = Fi[r(v) R (Elr(w)]) € Fir()] :
________ X*. ______J;__ [
I |
I e f [ e f
I R A
| |
PN I
R(Fir(w)]) = Faln(w)] and R(Fi{r (@) C Polr(w)] and | !
R (Faln(w)]) = Fi[n(v) R (Falr(w)]) C Fiirn(v)] 'L :
[ le | f le : f
| . LI Lo i
__________ NI & b 8 h
e f I I
I AR I S o
' g h le  f le | f
| 6 e - e
| | g | g

Figure 4: Different partition of 7 (v, w) of valid EDMs from T;[v] to To[w]. T (v,w) is firstly
decomposed in five sub-sets (7 (v, w)gp is not represented here) depending on the images of
Ti[v] to Ty[w] by M. The sub-set corresponding to T (v,w)c ¢ is then decomposed (1) in five
new sub-sets (F(v,w)gy is neither represented here). Each sub-sets of this partition is then
decomposed (2) in five new sub-sets depending on the image of Ti[r(v)] and Ty[r(w)] by N.
So far, the sub-sets labelled d are decomposed in four new sub-sets depending on the image of
Fi[r(v)] and Fy[m(w)] by N.
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Figure 5: Partition of the set [H(v,w)|_ _ of valid EDMs from F}[v] to Fy[w] using M such
that Z/\/[\(Tl[w(v)]) = Ty[m(w)] and M\(TQ[W(w)]) = Ti[m(v)]. General form of EDM in:

. ) (el )
o (0) (M) __
o (@) (0] )_
o (o) ([H(v,w)l :)M-
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—— Non recursive equation

---- Recursive equation

[D(F:, F)]-c [D(F:, Fo)] .-

(br.Fl)-c  (OF Flo)-.
(o, F)-)..  (OF, Flo).-
(D, F)-0)-- (D(F:, F)co)--
(OF,F)-)ee (DF,F)e)ec
(D(F:, )= )s s (D(F.,F)ec)es |

[D(T:, T2)]-c [D(T:, T2)] - [Lnl)p( r(m) [L‘*'P( r (M)

T T))c (O Te).e = ) min(r (m)
(o)), (O o). | (T (M) (T (M)

(D(T:, T2)-)-- (DT, T)co)-- [9[<n |n(r(|v|)) [Ln |n(r(|v|))
(O Tl (DT T)ee)ec min(r(m) - min(r (m)

(DT, Do (DCTe, To)ee)os min n( r(m) mi ]np)( r (M)

Figure 6: Dependancy graphs of Zhang algorithm (a) and algorithm for comparing quotiented
trees (b). In each graph an arrow from node A to node B means that quantities appearing in
node A can be expressed in terms of quantities in node B. Plain arrows correspond to non-
recursive equations between quantities of nodes A and B while dashed arrows corresponds to
recursive equations.

45



b) LDG G, .

1, DGV G
1,DG,8)-
Figure 7: Reduction of optimal restricted EDM research to the minimum cost flow problem.

e (a) quotiented trees for which an optimal restricted EDM is searched;

e (b) Representation of the optimal restricted EDM problem as a minimum cost flow prob-

lem to find a restricted EDM in [R(v, w)]c .
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a) DG i) o b) 1D G vi] G2[W])] -
» | 1D (G1[V4] Ge[w )] o

1, DGV GAw)

1LDGM.6) 1,D(G¥.68)

Figure 8: Reduction of optimal restricted EDM research to the minimum cost flow problem in
[R(v,w)]_ _. In this case there must exist an edge between {w,ws} (in m(w)) and {vi, vs,v3}

(in 7(v)).
e (a) This edge reaches wy;

e (b) This edge reaches ws.

47



