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Introduction

The important role of architecture in the understanding of plants [START_REF] Frijters | Developmental descriptions of branching patterns with paracladial relationships[END_REF][START_REF] Hallé | Tropical trees and forests. An architectural analysis[END_REF][START_REF] Ross | The radiation regim and the architecture of plant stands[END_REF] generates a need for investigational tools. Generic tools have already been developed to visualize plant architecture in three dimensions [START_REF] Prusinkiewicz | The algorithmic beauty of plants[END_REF], to model the development of plant structure [START_REF] Dereffye | A functional model of tree growth and tree architecture[END_REF][START_REF] Prusinkiewicz | The algorithmic beauty of plants[END_REF], to measure plant architecture [START_REF] Sinoquet | Assessment of the three-dimensional architecture of walnut trees using digitizing[END_REF], and to analyse and quantify relations between plant components [START_REF] Godin | Measuring and analyzing plants with the amapmod software[END_REF]. This paper introduces a new tool for the identification of self-similarity within plant architectures.

In 2001, Prusinkiewicz et al. [START_REF] Prusinkiewicz | The use of positional information in the modeling of plants[END_REF] proposed a method for modeling plant branching structures that exploits their self-similarity. They showed that a lilac inflorescence can be modeled using only the measurements of the longest axis of each branch order (cf. Figure 17a in [START_REF] Prusinkiewicz | The use of positional information in the modeling of plants[END_REF]). The applicability and accuracy of this technique depend on the degree of self-similarity present in the modeled structure. But similarity and self-similarity, like symmetry, are not easily quantifiable: they are usually considered as a property that is either present or absent, rather than a property that may be present to some degree [START_REF] Rosen | Symmetry discovered[END_REF]. In this paper, we propose a procedure for quantifying the degree of self-similarity in measured or simulated plants. This procedure is based on a method for comparing branching structures introduced in [START_REF] Ferraro | A distance measure between plant architectures[END_REF].

Biological motivation

In the growth processes of many living organisms, especially plants, regularly repeated appearances of closely related multicellular structures are readily noticeable. In the simplest case, one observes the same structure being periodically repeated along an axis, such as leaves along a stem. In more complicated cases, the entire structure of a previous stage is repeated as part of the organism at a later stage, resulting in "compound organisms or organs, [. . . ], such as compound branching systems" [START_REF] Herman | Description of developmental languages using recurence system[END_REF]. This phenomenon of self-similarity [START_REF] Mandelbrot | The fractal geometry of nature[END_REF] has been tentatively captured by several botanical notions. For example, Troll defined an inflorescence as a system consisting of the main florescence and of paracladia [START_REF] Frijters | Developmental descriptions of branching patterns with paracladial relationships[END_REF]; a paracladium is "a branch which bears the same sort of structures like those borne on the terminal portion of its mother branch" [START_REF] Lindenmayer | Paracladial relationships in leaves[END_REF]. Self-similarity is also related to the definition of the physiological age of meristems in vegetative parts of plants [START_REF] Barthélémy | Levels of organization and repetition phenomena in seed plants[END_REF][START_REF] Gatsuk | Age states of plants of various growth forms: a review[END_REF]. According to this concept, all the meristems of a plant undergo the same series of developmental stages (called physiological ages), and two meristems with the same physiological age produce essentially similar structures [START_REF] Arber | Natural philosophy of plant form[END_REF][START_REF] Honda | Description of the form of trees by the parameters of tree-like body[END_REF].

These notions are reflected in several formal approaches to the description and modelling of plants. For example, Fritjers and Lindenmayer [START_REF] Frijters | Developmental descriptions of branching patterns with paracladial relationships[END_REF], defined paracladial relationships in branching patterns: a branching structure exhibits a paracladial relationship if "the behaviour of a branch is exactly the same as the behaviour of that part of the mother branch which has developed since the formation of the daughter branch". Prusinkiewicz et al. introduced the concept of branch mapping [START_REF] Prusinkiewicz | The use of positional information in the modeling of plants[END_REF], which holds if "given two branches of the same order, the shorter branch is identical [. . . ] to the top portion of the longer branch". This concept was used to reduce the complexity of three-dimensional models of branching structures, including compound inflorescences and tree structures. In the context of growth modeling, the notion of physiological age was exploited to model the development of plants by de Reffye et al. [START_REF] De Reffye | Architecture et modélisation de l'orme du japon zelkova serrata (thunb.) makino (ulmaceae): la notion d'axe de référence[END_REF], who introduced the notion of the reference axis as a list of all the differentiation stages of a tree meristem. By studying the different developmental stages of Zelkova serrata (Japanese elm), they showed that growth and branching processes are similar in any part of the tree and that it is possible to identify a theoretical axis that includes all the states of morphological differentiation of a growth unit. In this sense, the "reference axis" captures the behaviour of a typical meristem in a plant over time, i.e. the potential self-similar development of a plant.

In reality, the self-similarities captured by paracladial relationships, branch mapping or physiological age are only approximate. While easy to observe in obvious cases, they may be hidden in more complex structures [START_REF] Costes | Modelling the sylleptic branching on one-year-old trunks of apple cultivars[END_REF]. Here, we propose a computational method to quantify the similarity between different branching structures within a plant and thus quantitatively assess paracladial relationships. This method can be applied to plants represented as tree structures.

Evaluation of similarity between branching systems

A simple approach for comparing two branching systems consists of summarizing each individual by a small number of synthetic variables (eg. fruit production or crown size). The similarity between the systems is then reduced to the proximity of these synthetic variables. In contrast, our interest is in the similarity of structures. This requires a definition of distance that would take into account the topological and spatial organization of entities into branching structures. In the following, we will use the common description of plants as mathematical (graph theoretic) trees [START_REF] Godin | A multiscale model of plant topological structures[END_REF][START_REF] Prusinkiewicz | The algorithmic beauty of plants[END_REF].

A plant is considered as a connected assembly of botanical entities such as internodes or annual growth increments [START_REF] Bell | Plant form, an illustrated guide to flowering morphology[END_REF]. When describing plants at the architectural level, we assume that each such entity is physically attached to at most one parent entity. The resulting topological structure is a rooted tree graph T ¡ V¢ E £ , i.e. a graph in which every vertex except one (the root r) has only one parent vertex [START_REF] Godin | A multiscale model of plant topological structures[END_REF]. The root has no parent vertex. In the following a tree graph rooted in r will be represented by T ¤ r¥ , and the empty tree graph will be denoted by θ ¡ / 0¢ / 0£ . In order to identify the different axes on a given plant, two types of relations between entities are distinguished: an entity can either precede (symbol '¦ ') or bear (symbol ' § ') another entity. We suppose that an entity can be attached to only one other entity by a connection '¦ '. A sequence of entities connected by '¦ ' forms an axis of a tree [START_REF] Prusinkiewicz | The algorithmic beauty of plants[END_REF].

The evaluation of similarity between branching structures has been largely studied in computer science and is known as the tree-to-tree comparison problem [START_REF] Ohmori | A unified view on tree metrics[END_REF]. The distance between two tree graphs is equal to the minimum cost of the sequence of edit operations needed to transform one tree graph into the other. We consider three kinds of elementary edit operations on a tree graph T [START_REF] Zhang | A constrained edit distance between unordered labeled trees[END_REF]: substituing one vertex for another (note that this changes their labels), deleting a vertex, and inserting a vertex. A constraint is added to the definition of insertions and deletions: we only consider insertions of leaves or vertices between a parent vertex and its set of children; deletions are similarly constrained 1 This dissimilarity measure coincides with the definition of a distance between unordered 2 tree graphs proposed by Zhang [START_REF] Zhang | A constrained edit distance between unordered labeled trees[END_REF]. He proposed a polynomial algorithm to recursively calculate the cost of the optimal sequence of edit operations, which was applied to compare plant architectures by Ferraro and Godin [START_REF] Ferraro | A distance measure between plant architectures[END_REF]. In that case, the computed distance strongly depended on the size of the compared tree graphs. In order to make the comparison results less dependent on this size, we normalize them by dividing the distance by the total number of vertices in compared tree graphs: D¡

T 1 ¢ T 2 £ D ¡ T 1 ¢ T 2 £ ¡ ¡ T 1 § T 2 £
This dissimilarity measure is a non-negative real number less than 1.

Quantification of tree self-similarity

In this section we extend the previous algorithm to identify and quantify self-similarity of plant structures.

Let us consider a plant P represented by a tree graph T ¤ r¥ . The set of all sub-tree graphs of T ¤ r¥ is denoted by T ¡ r£ . Let v be a vertex of T ¤ r¥ and let T ¤ v¥ be a sub-tree graph rooted in v of T ¤ r¥ ; then the axis A¤ v¥

A[v] v A ( v ) v A[r]
¡ V¢ E £ of T ¤ v¥ is the sub-graph of T ¤ v¥ such that V £¢ v 1 ¢ v 2 ¢ ¢ v n ¤ , v 1 v, and for any i in ¢ 1 n ¥ 1 ¤ , ¡ v i ¢ v i¦ 1 £ is
an edge of type '¦ ' (Figure 1). A ¡ r£ is called the main axis of P (i.e., the trunk).

If T ¤ v¥ is a sub-tree of P and A¤ v¥ is the axis of T ¤ v¥ starting at v, we denote by A ¡ v£ the set of sub-trees of P rooted in a vertex of A¤ v¥ :

A ¡ v£ £¢ T ¤ v 1 ¥ ¢ T ¤ v 2 ¥ ¢ T ¤ v 3 ¥ ¢ ¢ T ¤ v n ¥ ¤ Note that, in this definition, v i¦ 1 is necessarily a child of v i . A
¡ v£ is thus a set of embedded tree graphs(Figure 1). Using the above notions, we quantify the similarity of a branch to the main axis as follows:

Definition 1 For any sub-tree graph T ¤ v¥ in T ¡ r£ , we call the paracladial coefficient of T ¤ v¥ the quantity pr ¡ v£ min

T § r i¨ A © r D¡ T ¤ v¥ ¢ T ¤ r i ¥ £
2 An unordered tree graph is one in which there is no ordering distinction among the children of any vertex.

The paracladial coefficient is thus a measure of similarity between a given branch and the top portion of the main axis that is the closest (in the sense of distance D) to that branch. In order to evaluate self-similarity of an entire structure, we compute statistical parameters such as the mean value of the distance and its variance:

PR 1 T ¡ r£ ¡ ∑ v T pr ¡ v£ ¢ var ¡ PR£ 1 T ¡ r£ ∑ v T ¡ pr ¡ v£ ¥ PR£ 2
Here T ¡ r£ represents the number of sub-tree graphs in T ¡ r£ . Low values of PR indicate high selfsimilarity of the described branching structure.

Example

In this section we apply our method to assess The length and the diameter of each internode, the spatial orientation of each branch, and the length and the diameter of each flower have been measured using a digital calliper connected to a computerized data collection system. The data were analyzed using AMAPmod [START_REF] Godin | Measuring and analyzing plants with the amapmod software[END_REF], a software dedicated to plant architecture analysis, in which the algorithms of comparison between tree-graph structures have been implemented. The results were visualized using the modeling program cpfg [START_REF] Měch | CPFG version 3.4 user's manual[END_REF]. ¡ v¢ w£ of vertices (botanical internodes). These definitions capture topological self-similarity [START_REF] Prusinkiewicz | Self-similarity in plants: Integrating mathematical and biological perspectives[END_REF] of the architecture (i.e., the topological organization of entities in the branching system), without taking into account any geometrical attributes. The paracladial coefficients pr ¡ v£ of all the order-2 branches are visualized in Figure 2. Generally, these coefficients are very small: the inflorescences show only a few "errors" in the mapping. This high degree of self-similarity is reflected in the statistics collected in Table 1.

Conclusion

This paper addressed the problem of quantifying the degree of self-similarity in branching plant structures. To this end, we introduced the notion of paracladial index and its statistics. The index characterizes the similarity between an individual branch and the main stem of the structure, whereas the statistics provide a global measure of self-similarity of the entire structure.

The presented results can be applied to improve the methodologies of measurement and architectural modeling of plants. For example, when measuring plants, it may be unnecessary to consider all branches, because of their likely similarity to the main branch. When modeling plants, some of the data characterizing the main branch may be re-used in the lateral branches, thus simplifying the models. The paracladial index and its statistics make it possible to quantify the resulting errors.
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 1 Fig. 1. Axis definition in a branching system (a) and in its representation as a tree graph (b).

Fig. 2 .

 2 Fig. 2. Color-coded representation of paracladial coefficients of branches of order 2 self-similarity in a sample of five Syringa vulgaris (common lilac) inflorescences. The inflorescences were collected in Calgary in the spring of 2001.The length and the diameter of each internode, the spatial orientation of each branch, and the length and the diameter of each flower have been measured using a digital calliper connected to a computerized data collection system. The data were analyzed using AMAPmod[START_REF] Godin | Measuring and analyzing plants with the amapmod software[END_REF], a software dedicated to plant architecture analysis, in which the algorithms of comparison between tree-graph structures have been implemented. The results were visualized using the modeling program cpfg[START_REF] Měch | CPFG version 3.4 user's manual[END_REF].To evaluate self-similarity, we first need to PR var

¡

  v£ for five lilac inflorescences, and the percentage of branches of order 2 perfectly similar to top portions of their supporting branches. define a local distance between elementary entities of the branching systems. In our example, we used a topological distance, with the elementary distance d defined as d ¡ v¢ w£ 0 and the distance d indel defined as d indel ¡ v£ 1 for any pair

  . A cost function is defined for each edit operation s which assigns a non-negative real number γ Here d is a distance called the elementary distance, defined on the set of vertices of T . We assume, for any pair of vertices v and w, that d ¢ s 2 ¢ ¢ s n £ which transforms a tree graph T 1 into another tree graph T 2 . The cost Γ

	¡ s£ to s as follows: γ	¡ s£	d	¡ v¢ w£ if s is a substitution of v by w; and γ	¡ s£	d indel	¡ v£ if s is an
	insertion or a deletion of vertex v. ¡ v¢ w£ ©¨d indel Let S be a sequence of n edit operations ¡ s 1	¡ v£ § d indel	¡ w£ .

¡

S£ of S is defined by summing up the cost of the edit operations that compose S:

Γ ¡ S£ ∑ s i S γ ¡ s i £ . The dissimilarity measure D ¡ T 1 ¢ T 2

£ between a tree graph T 1 and a tree graph T 2 is then defined as the minimum cost of a sequence in S that transforms T 1 into T 2 .

Table 1 .

 1 To evaluate self-similarity, we first need to PR var The mean value PR and variance var

			¡ PR£	nb
	A 1 A 2 A 3 A 4 A 5	0 0164 0 0196 0 0212 0 0227 0 0192	0 00298 0 00247 0 00315 0 00223 0 00336	70 83% 78 26% 68 18% 79 16% 72 72%

¡

PR£ of the paracladial index pr

Zhang and Jiang[START_REF] Zhang | Some max snp-hard results concerning unordered labeled trees[END_REF] have shown that the computation of distance between tree graphs using such edit operations is a MAX SNPhard problem unless constraints are added to the definition of edit operations.
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