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Non-overlapping Schwarz algorithm for solving 2D m-DDFV stiemes
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FLORENCEHUBERT & STELLA KRELL
Université de Provence, Laboratoire d’Analyse, Topolagi€robabilités,
39 rue F. Joliot-Curie, 13453 Marseille Cedex 13, France

We propose a non-overlapping Schwarz algorithm for solVidigcrete Duality Finite Volume” schemes
(DDFV for short) on general meshes. In order to handle theblam, the first step is to propose and study
a convenient DDFV scheme for anisotropic elliptic problewith mixed Dirichlet/Fourier boundary
conditions. Then, we are able to build the correspondingM@chalgorithm and to prove its convergence
to the solution of the DDFV scheme on the initial domain. Walfingive some numerical results both
in the case where the Schwarz iterations are used as a solasagreconditioner.

Keywords Finite volume methods, Schwarz Algorithm, DDFV methods.

1. Introduction

We are interested in this paper in finite volume numericahods for solving second order linear elliptic
problems in a domait®. In particular, we study discrete non-overlapping Schwaethods in order to
solve such scheme, taking advantage of a decompositiéhinto subdomains.

The classical Schwarz iterative method, first devised aearttical level to treat complex domains,
only converges when there is overlap between the subdomB&imshermore, its convergence is very
slow for small overlap sizes. In order to obtain convergent-overlapping variants, different trans-
mission conditions on the interfaces between the subdaene been investigated. The first such
non-overlapping method is based on Fourier transmissioditons. At the continuous level, this al-
gorithm was first introduced and studied by Lions for Laplaperators in [13]. It has been adapted
to several discrete approximation of isotropic diffusiaidems (see [1], [4] and [9]). This paper is
devoted to the development of a discrete counterpart ohihiisoverlapping Schwarz iterative method,
with Fourier interface conditions, in the context of the DIDschemes for general linear elliptic prob-
lems. The adaptation of this method to the discrete framlevgorery useful since each subdomain of a
non-overlapping decomposition of the doma&lrcan be meshed independently.

We do not consider here the problem of finding optimized neerapping methods as it has been
done for instance in [7], [8] by introducing generalizedhsenission conditions. We only give numer-
ical experiments (see section 5.5) illustrating the infeeenf the choice of the Fourier parameter on
the overall performances of the algorithm. In particulag @bserve a quite poor performance of the
method even for the optimal choice of the parameter, that &ay that a large number of iterations are
necessary to achieve a given precision. Neverthelesswiglisknown (see for instance [14]) that such
non optimized methods can be seen as a particular block Uieriive solver and can be efficiently
used as a preconditioner for any other iterative solver (&B8Rconjugate gradient, ...). We study in
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section 5.6 the performances of the conjugate gradientadgpneconditioned with our discrete non
overlapping Schwarz algorithm for solving the DDFV finitelmme scheme on the whole domdih

The DDFV method has been developed to approximate anisotudffusion problems on general
meshes. More precisely, it has been first introduced andestud [6, 12] to approximate the Laplace
equation with Dirichlet boundary conditions or homogengehNigumann boundary conditions on a large
class of 2D meshes including non-conformal and distortedh@g Such schemes require unknowns
on both vertices and centers of primal control volumes alwhalis to build two-dimensional discrete
gradient and divergence operators being in duality in ardissense. The DDFV scheme is extended in
[2] to the case of the approximation of solutions to genénadr and nonlinear elliptic problems with
non homogeneous Dirichlet boundary conditions, includireggcase of anisotropic elliptic problems.

Convergence of such schemes is shown in [2] aratiori error estimates are given in the case
where the coefficients of the operator and the exact solutiare assumed to be smooth enough. In
[3], a modified DDFV scheme, called m-DDFYV, is proposed aralysed in order to take into account
possible discontinuities in the coefficients of the eltgtroblem under study. In particular, first order
convergence of the m-DDFV scheme is proved for the problef) (ith I" = () and piecewise smooth
coefficients. This framework is recalled in Section 2.

In Section 3, we propose to adapt the m-DDFV scheme to mixeadtdet/Fourier boundary condi-
tions :

—div(A(z)Vu(z)) = f(x), in L,
u=nh, ondR\ T, 1.1)
—(AVu, ) = Au—g, onl.

where(? is an open bounded polygonal domaink#. The measurable matrix-valued map: 2 —
Mo 2 (R) is supposed to fulfill the following assumption: there extSy > 0 such that

(A(2)€,€) > Ci|g|2, and |A(z)¢] < Calé], V€ € R2, and for a.ez € 2.
A

This assumption ensures that the Problem (1.1) has a urotutes in 1 (2) forany f € H=1(2)
andh, g € H= (0£2). We restrict our attention, in this paper, to source tefms L2 (£2). The parameter
A > 0 is given andl" is an open subset of(2.

With these preliminary results at hand we describe in Sedithe non-overlapping iterative method
we propose and prove its convergence.

We finally give in Section 5 some numerical results illustrgtthe performance of the iterative
Schwarz algorithm.

2. The DDFV framework

The meshes:we recall here the main notations and definitions taken fram A DDFV mesh7 is
constituted by a primal meght and a dual mesi* U 09t* (Figure 2.1).

The primal mesHt is a set of disjoint open polygonal control volumes: 2 such thatux = (2.
We denote byt the set of edges of the control volumeSihincluded indf2, which we consider as
degenerate control volumes. To each control volume andraggte control volume € 9t U 09, we
associate a point, € k. This family of points is denoted b = {z,, k£ € MU IN}.
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R = i

— The boundary dual celt*
m  Nodex -« of the boundary dual cell

O |Interior nodex .« of the dual cell
O Primal nodez
_ _ Primal control volumes

_._ Interior dual cellc*

FIG. 2.1. The mesif’

Let X* denote the set of the vertices of the primal control volunme¥ii that we split intoX™* =
X;, UXE, whereX}, NoR = §and X}, C 9. With any pointzc € X7, (resp. xx+ €
X?.;), we associate the polygaer whose vertices aréz,. € X, suchthatr,.« € X, £k € M} (resp.
{z+} U{zc € X, suchthatre- € €, k£ € (M UIM)}) sorted with respect to the clockwise order of

the corresponding control volumes. This defines th&Betu 091 of dual control volumes.

REMARK 2.1 Remark that our dual control volumes are not exactly the sdrag in [5] or [12]. In

[5], k£ is a union of trianglesz,, ., x.~] whereo denote an edge af that admitsz,.- as vertex. The
pointz, denotes the center of This construction is usually called th@rycentric dual meshie do
not choose such an approach here since the introductioneoffflDDFV method in this framework is a
little bit more intricate. Nevertheless, in some partiauj@ometric situations, we need to consider the
barycentric dual mesfsee for instance Remark 2.4).

For all neighbor control volumes and ¢, we assume thalx N dz is an edge of the primal mesh
denoted by = x|c. We note by€ the set of such edges. We also nete= «*|c* and&* for the
corresponding dual definitions.

Given the primal and dual control volumes, we define the diasncellsp, . being the quad-
rangles whose diagonals are a primal edge- x|z = (zx+,z.+) and a corresponding dual edge
o* = k*|cr = (zc,x.), (Se€ Fig. 2.2). Note that the diamond cells are not neagssanvex. If
o € £N0f2, the quadrangle, . degenerate into a triangle. The set of the diamond cellsristeel by
D and we have? = DLEJQE.

Notations:
For any primal control volume € 2t N 991, we note

e my its Lebesgue measure,
e & the set of its edges (if € 71), or the one-element sék} if k£ € IM.
e D.={p,,- €D, 0€&},
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0= Klc

mi* ¢

Mme* ¢

FIG. 2.2. Notations in the diamond cells. (Left) Interior c€Right) Boundary cell.

e 7i, the outward unit normal vector to.

We will also use corresponding dual notationsg«, Exc+, D« andri-.
For a diamond celb = p, .. whose vertices arer,c, xc+, -, .+ ), We note

e 1, the center of the diamond cel| that is the intersection of the primal edg@nd the dual edge

o*,

e my itS measure,

e m, the length of the primal edge,

e m, the length of the dual edge",

e i, the unit vector normal te- oriented fromuz, to z .,

e 7i,«+ the unit vector normal to* oriented fromz,.« to .+,
e T . the unit vector parallel to™* (oriented frome, to z.),

e T« .~ the unit vector parallel te (oriented frome .- to z.+),

e oy the angle betweefi. . and 7y« .-, andmy- . (respectivelym.- ) the length betweemn,-
(respectivelyr ) andx . for any boundary degenerate diamond cell.

e m,. (respectivelyn, ) the length between, (respectivelyr,) andz,,
e m,, . (respectivelymn, .) the length between,. (respectivelyr.-) andzp,
e D = pN k the intersection of the diamondand the primal control volume.

The boundary unit normal vectors are denotediy € (R?)® such thati® = 7i,,.. We have to
differentiate the interior diamond cells to the differentmdary diamond cells by introducing the sets

e Doy ={PED, DNIN # D},
o :Dvm‘ :©\©emta
° @pZ{DGfD, DQF#@}

REMARK 2.2 Forall p € ©.,¢, We haven,,.. = m-  andmg, .. = me« ..
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Finally we denote byf. (resp. fc-) the mean-value of the source terfron x € 9t (resp. on
i € M U oM™). The family ((hi)ccom, (hiex )+ coom+ ) is also defined by:
1 1

hye = / h(s)ds, Vk € 09, and hy- =
mB;C B mBK:*

/ h(s)ds, VK= € OM™.
Byex
Here By = B(wx,pc) N2 and B = B(xxx, pe+) N L2 and p and p,+ are positive numbers
associated to the meghand such thaB, C K€ andB.- C dk*.

REMARK 2.3 In practice, during implementation, we do not constructliexy the dual mesh. We
only construct a diamond cell structure, which contains ithfermation of vertices and centers that
define a diamond cell. This structure also contains the nreasofo N k, » N £* and the normal
Vectorsm, iy, Mo+ Ty« c+. If ONE USes thbarycentric dual mesimstead of the above definition of the
dual mesh (see Remark 2.1), then the natural choice for thiece,, of the diamond celb is not the
diagonal intersection but the middte, of the edger. In that case, the above definitions have to be
modified accordingly.

The matrix of the discrete problem can then be completelyraked by using only this data struc-
ture.

From now on, for simplicity reasons, we will make the follegiassumption.
HYPOTHESIS2.1 We assume that diamond cefisare convex.

This hypothesis implies that the centey of the diamond celb (resp. the node - of the dual cell
k~) lies insidep (resp.x*). We also have for atb € ©.,, thatm,, . > 0 andm,.. > 0, and for all

(K, %) € 9* U 0M* such thatc* # £+, we havec* N £+= 0.

REMARK 2.4 If the hypothesis 2.1 is not satisfied, for instance as in lE@du3, it is needed, at least
for those of the diamonds that are not convex, to takebtirgcentric dual mesfsee Remark 2.1) and
then to define the centet, of this diamond celb, ... as the middle of the edge Remarks 3.1 and 4.2
specify how to adapt the Schwarz algorithm in this case.

ﬁ D hon convex

./' .\‘\.
7 _=o

FIG. 2.3. An example where the diamond cetiould be non convex.
The unknowns: the m-DDFV method associates to all primal control volumes 2t U 99t an

unknown valueu, and to all dual control volumes: € 9t* U 99t* an unknown value,.-. We denote
the approximate solution on the meghby «” € R” where

u” = ((Uic);ce(imuazm) ) (U;c*);c*e(m*uam*))'
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Inner products: we define the two following inner products

1
[v7,u"] 7 = 5 Z MU Vg + Z My UV |, YuT,v7 € R7, (2.1)
KeM K£*E(M*UOM™)

(fgﬂlgb = E mev : 77D7 Vfgﬂl@ € (RQ)Da
DeD
and the corresponding norm

12115 = (€°,6°)n, VEP € (R?)®.
Boundary inner products: we define the following.? inner product on the boundary 61
W®,v®)o0 = Z meu® -v?, Yu®,v® e R®.
Dy oy €D et
Trace operators: we will need the following definition of a trace operator irrtBDFV framework
V(W) = (77(u"))pen, Vu' €RT,
Myc* Mex ¢

U + U
Y (u”) = m[,/ Yo e(u”) + m[, Yer o (u”) and Yo e (u”) = %

(2.2)
Discrete gradient: we define (like in [6, 12]) a consistent approximation of thiadjent operator
denoted b= : u” € R” — (VPu”)p o € (R?)?, as follows:

1

VD T —
u 2mop

[(up — U )MeTgr + (Upx — Ugs )MgsTgeg+], VD ED. (2.3)

Discrete divergence:we define a consistent approximation of the divergence ¢pedanoted by
div” : £ = (£€P)pep — div € € R7, as follows:

divee = € D me(€7, i), Ve €M, and divE =0, Vi € M, (2.4a)
K DeD
dive¢ = 3 Mo (€7 Figer), VKT € N, (2.4b)
sy DED ox
dive'¢ = D M (€0 T ) + D e o (6 Tigx) |, Vir € OM. (2.4c)
e \pemy- Deoya
Dnon#0

These two operators are discrete duality(giving its name to the scheme) since it is possible to
prove a discrete Stokes formula using these two operateesf¢s instance [2, 5, 6]).

THEOREM2.1 (STOKES FORMULA) For any¢® € (R?)®, u” € R”, we have

[div7 (£),u )7 = —(£°,V2uT)p + (£F - 7°,77 (u7))oq- (2.5)
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3. The m-DDFV scheme with mixed Dirichlet/Fourier boundary conditions

We consider problem (1.1) and we assume that the primal neshdsen in such a (natural) way
thatoI' C X*. We note : 9Mp = {k € M,z € '}, OMp = {k € OM,x € '}, OUAr =
{The half-edges belonging 8, [xx~xz.] C £ € OMp}, 0N, = {k* € M, 2+ € NI JU{K" €
OM™, x,x € O}, OM} = {K* € OM", x» € I’ andz,« ¢ OI'}. We now introduce two new flux
unknownsy,..- . andy, . for each degenerate boundary control volume: [x.-z.-] belonging to
OMpr. These two unknowns are meant to approxim@&u, 7i,.) along respectivelyz,-,z.] and
[x.,z.~]. Notice that there are other, somewhat more simple, ways#&b @ith Fourier boundary
conditions in the m-DDFV framework but the introduction bese additional unknowns is needed to
be able to build a convergent non-overlapping Schwarztiteranethod, which is our main objective in
this paper (see Section 4).

Let us denote by7. the set of these new unknowns

r= {(bT = (@K*,Zh¢£*7£)£:[m’c*x£*]€89ﬁp}'

The new approximate m-DDFV solution is now a couplé = (u”,¢”) € R” x @7, solving the
following set of linear equations:

—div® (A°V®u") = f, Yk eM, (3.1a)
—div®” (A°V2u") = fr«, VKr e M, (3.1b)
YT AV i) — Y e = fe, Y kT € 0Mp, (3.10)
peDe 2oz
Mic* ¢ Me ¢ D T =
Pr*,c + m Pr*,c = (ADV u 7”01;)7 Ve= [xic*xz:*] € oMmr, (3.1d)
U = he, VK € IMp, Uer = hyex, V£ € 0MY, (3.1e)
U + U
Pr*,c+ /\% = Gk*,c; v [xic*xc] € o0Ar, (3.1f)

whereA® = (A,)pen, Ap is a definite positive matrix which approximatéson the diamona.

In order to simplify the notations a little, we will now derdhe fact that/” =(u”, ¢ ) € R” x &7,
solves (3.1), for some datg”, h”, g7), in the following compact way

?27]"(“7-7 (bTv fTv hTagT) = O

The above m-DDFV finite volume scheme is obtained by formatggrating the equation (1.1)
on each interior primal control volumes (3.1a), on interitrral control volumes (3.1b) and also on
boundary dual control volumes belongingd@t;. (3.1c). The numerical fluxes are approximated by
using the discrete gradient opera®?f for edges lying inside the domain or @2 \ I", and by using
the flux unknowng” onI".

We link up these unknowng” to the discrete m-DDFV gradient on each Fourier boundaryrobn
volumes by equation (3.1d). Finally, we impose the Dirittdeundary condition on the boundary
primal control volumes belonging @Mt and on boundary dual control volumes belongin@f®7,
(38.1e) and we impose the Fourier boundary condition usiegfltix unknowns)” on each half-edge
lying into I" (3.1f), gx~, . being a discrete boundary Fourier data which can be, foants, the mean-
value of a functiory on [z« x.].

There exist many possibilities to define the matfix. We mainly consider the two following cases.
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e If Ais smooth with respect to the space variahlee. there exists”'4 > 0 such that:
[A(z) = A@")|| < Calz — 2|, Vx,2’ € 2,
we choose, for example, to take, = A(z, ), foranyp € D.

e If Ais possibly discontinuous across primal or dual edges imtégh, then a good choice fdf
is more intricate. We recall here the main lines of the séedain-DDFV scheme (see [12, 3]).
In the case wherel(x) is constant on each primal control volume, we denotedhythe value
A(x) on the control volumec. For allp € ©.,¢, we choosed,, to be equal tad,. wherek is
the unique primal control volume such thatC «, and for allp € ©;,,;, we defined, by the
following formulas

Mea* (A}CﬁIC; ﬁic)(Az:ﬁ/c; ﬁic)

Apiix, Tix) = ——— ——, 3.2a
( Dn}c nlC) mo-L(A)CTLK,TL,C) +mo—K(ALTLK,'I/L,C) ( )
N mMe Aﬁ*,ﬁ* —|—mo- Aﬁ*yﬁ*
(ApTcn, T ) = o (ATl i )mg* i (Axc e, Tix-) .
 MgeMo,  ((Axfi, i) — (Apfte, e ))? '
Mg~ Mo, (A)cﬁmﬁ)c) + Moy (Acﬁmﬁ)c),
(Avﬁmﬁ;c*) — Mo, (Az:ﬁmﬁ/c*)(A/cﬁmﬁ/c) + Moy (Aicﬁmﬁ/c*)(Acﬁmﬁ/c) (3.2C)

Mo, (A)cﬁm ﬁ)c) + Moy (Aﬂﬁ’C7 ﬁ’C)

We recognize in (3.2a) the weighted harmonic mean-valyelfi,., 7i,.) and(A 7., 7 ) andin
the first term of (3.2b) the weighted arithmetic mean-valtieA. i, -, 7+ ) and (A 7, g+ ).
This particular choice ofA® ensures the consistency of the discrete normal flux on eagdsenf
primal and dual meshes.

REMARK 3.1 (BARYCENTRIC DUAL MESH) In the case we use thmarycentric dual meshhe compu-
tations leading to those formulas can be obviously adapseé (12]). We find that formuléB.2a)is
unchanged and that formulg8.2b)and (3.2c)change as follows (using notations of Figure 3.1):

m ,* m ,*
92 91

mo*(ALﬁo'*)C* ﬁa*)c*)
(ADﬁU*}C*7ﬁ(T*IC*) = : : : Moe

+ moi* (A)cna;‘)c* ) nai*)c* ) Mo

M .
9 (3.2b-his)

Moy Moy —

Mo Mo, A, Moy Noyicr — Ax Tox Ngrc*s Nox

Lz ((A)Cmo'g + ALmo')g) ﬁa)c, ﬁo')c)

)

Moy (AxTlgi, Tox) (Az;ﬁn;/c* ) ﬁmc) + Moy (ArTlox, ox) (A/cﬁaf/c* ) ﬁmc)

Apilyic, flgeie) = - s T
(ApTox, Hoxrxx) Mo (AcTlor, Tox ) + Mo (ArTiowe, Tox)

)

(8.2c-his)
With 7 s o« = flier @NdTT g = Tigc.



Non-overlapping Schwarz Algorithm for Solving 2D m-DDFVI&snes 9 of 38

/‘ '\' U; = xDﬂDC}
of =[xk, xp] &

FiG. 3.1. Notation for a diamond cell whose centes is the middle ofo = [z, z .+ ].

As shown in [3], this particular choice fod® imply a first order convergence of the scheme in
the case of Dirichlet boundary conditions. More precisilwe introduce the spac&?(IM) = {u €

HL(92), uj € H?(x), Vi € M}, the following theorem is proved in [3]:

THEOREM 3.1 (ERROR ESTIMATE FOR MDDFV, DIRICHLET BOUNDARY CONDITIONS) Assume
that the exact solutiom, to the problen(1.1)with I" = §, lies in H?(91). Under suitable regularity
assumptions on the meshe$,and V=7 are first order approximations af and Vu, respectively, in
the L2 norm.

In the case of Dirichlet/Fourier boundary conditions unsteidy in this section, the error estimate
of Theorem 3.1 can also be proved but we will not give the proof
The main result of this section is the following existencd aniqueness theorem.

THEOREM 3.2 The finite volume schen(@.1) which approximates Problei.1)on a DDFV mesi”
possesses a unique solutibif = (u”,¢”) € R” x &7..

We first give a technical Lemma which is useful in the proof bEdrem 3.2 and 4.2.

LEmmMA 3.1 For all g” € &7, andU”=(u", ¢") € R* x &7 such that

67F(’U'Ta ¢Ta 07 OagT) = 07

we have

. A 1
_[[dNT(A@vDUT)aUTHT = _Z Z Ma(u)c* _uc*)Q - 5 Z U= Z Ma(gc*,c _g)c*,a)a
DeDr K*€0MT, ?foli);;

whereM,, = "&nL etL

My

Proof. The vectolU” = (u”,¢”) € R” x &7 solves :
—div® (4°V?u”) =0, Yk €M, (3.4a)
—div®" (A°V®°uT) =0, VKk* €M, (3.4b)
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— Y T (A VP ) — Y . = 0, Y kT € 9Mp, (3.40)
'DEDK;’TLK* Dpii;; Myc=
Mic* Mex o - DT o -
Oicx e T - O e = (ApVPuT [ Mye), V= |xxrao] € 0Mp, (3.4d)
ue =0, VKeomp, U =0, Vk* € 0Mp, (3.4e)
U + U
O + A% =g o, V[rea,] €O0AP. (3.4f)

Using the definition (2.1) of-, -]+ on £2 and successively (3.4a)-(3.4c) and (3.4d), then (3.4e) and
finally (3.4f) it follows:

. 1 1,
—[divT (A*V2uT), uT]r = 3 ST uee Y e (ApVPU7 Tigr) = Pre i)
K*€OME DED

DN #D
1 Myc* M p*
SR I DI DT R
K*eam}: DEDK:* g
DNI#0
1
= 5 D w3 MoA(eee(w”) e cfu”)
K*€OME DED jox
DN #)
1
-5 Z U+ Z Mo (9e+.c — Gre=z) -
K*€OME DED jcx
DN #D

The claim follows by noting that, sincg@l” C X*, the first term in the right hand side above can be

written . \ ) \
5 Z U Z MO-E('LL,C* —’LLE*): 5 Z MO-E(UK* —UL*)2.

K*€0MT DED = DeDr
DNI#0

]
We can now proceed to the proof of the Theorem 3.2.
Proof of the Theorem 3.2.The wellposedness of this square linear system is equiMaehowing that
it has a trivial kernel. LeV” = (u”, ¢”) € R” x &7 which solves

E,F(UT5¢T507050) =0. (35)
Using Lemma 3.1, we have :
. A
—[div (A®V2u"),u” |7 = -1 Z My (e — up-)?.
DeDr
The discrete Stokes formula (2.5) gives:
—[divi (A*V2u"),u” ] = (A°Vu”,V?u")p — (A°V2u” - 7,77 (u”))an
= Z mp(ApVPu?, VPuT) — Z mey" (u?)(ApVPuT fy.).

DeD DeDr
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Combining the last two equalities, we get

A
0= E mp(ApVPu” , VPu”) + 1 E My (e — ug-)?
DeD DED

- Z mey” () (ApVPu”, 7.).  (3.6)

DeED;,r

Using Definition 2.2 of the trace operatef and (3.4d), the last term becomes
— Z mey” (u” ) (ApVPuT i)

DeDr
M+ ¢ T Mpex o T Mic* ¢ Mpex o
= - E Mg ( 'Y;c*,a(u )"’ 'YL*,L('U' ) Pr*,c+ Pr*.c
Deor Mg Mg Mg Mg
m m 2
K*, L T L*,L T
= E Mg A ( 'ch*,c(u ) + 'VL*,L(U )) )
Mg Mg
DeDr

sinceg,cx » + Ay (u”) = 0andp,« » + v+ (u”) = 0. It follows from (3.6) that

A
0 = D mo(ApVPul, VPuT) + 5 Y Mo (uge — uge)?
DeD Dedr
2
My, Mex ¢
b Y o (M )+ 7))
DeDr Mo Mo

Since all the terms above are non-negative, we deduce that:
0= mp(ApVPu”, VPu7).
DeD

Finally, A, being definite positive for anyp € ©, the above equality leads top € ©, VPu” = 0.
Hence there exists two constangsandc; so that :

Ve (DMuUom), Ue = Co,

Vier e (M UIM™), uex = cq,
and sinceu” satisfies (3.5), we dedueg = ¢; = 0 and finallyu” = 0. AS g+ + Ayer (u”) =0
andyg.- » + A+ . (u”) = 0, we obtain thatp,.- . = 0, andg,.« . = 0, thereforeU” = 0. O

4. Non-overlapping Schwarz algorithm

Consider a domairi? split into several non-overlapping subdomaids The Schwarz algorithm in-
troduced by Lions (see [7],[8],[13]) for the Laplace prablevith homogeneous Dirichlet boundary
condition consists, instead of solving the problemfnto solve the Laplace equation successively
on each subdomains with homogeneous Dirichlet boundargliton on 92; N 92 and with Fourier
boundary condition on the interfack?; N 092; if j # .

We only consider here the case whé?e, (2, are two connected subdomains such that 2, U
2, U I, T being the interface between the two subdomdins= 2, N 2, and we assume thdt
is connected and thdt N 92 # (. These assumptions are not mandatory but let us simplify the
presentation a little.
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4.1 Compatible meshes. Composite mesh

For each subdomairy;, we consider a m-DDFV mesh;, = (9;, M7 U 9M}) and the associated
diamond mestD;. We note®; r = {p € ©;, p NI # 0}. We will assume that the two meshes are
compatible in the following sense.

DEFINITION 4.1 We say tha?; and7; are compatible, if the following two conditions hold:

1. The two meshes have the same vertices otX; N 1" = X5 N I". This implies in particular that
the two meshes have the same degenerate control voluniégtoat iso9t; = 0Mo 1.

2. The center. of a degenerate interface control volume= [z, z.+] € 0, = IMa IS
the intersection ofz,c+, x.+) and (zx, , x«, ), Wherex; € 9, andk, € M, are the two primal
control volumes such that C dx; andz C Oks.

i * ]
: ___Primal mesh
"1 "*""% ___Dual mesh
|
L] ' |
|
|
-—-r--6®---9
|
|
T u

L .
P v T —Primal mesh
7 T--o-_l__e--4 - -Dual mesh
| 1
N [ + L + I
| |
0«17£1 (3 \l‘__ __“___“
Trag
Wlpr ® ® = ° u

FIG. 4.2. The compatible mesh&$ and7; corresponding to the DDFV mesh of the whole domairf2 of Figure 4.1.

REMARK 4.1 In practice, the two compatibility conditions do not regrasimportant constraints on
the meshes under consideration. Indeed, we will usuallp@emer two opposite situations:

1. We are given a DDFV mesh of the whole domairf? (see Figure 4.1) such that any primal
control volumec € 91 is such that eithex C (21 or & C (2. In that case, the construction of
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the two compatible mesh&sonly amounts to split into pieces the dual control volumessing
the interfacel” (see Figure 4.2).

2. We are givera prioriindependent DDFV meshé&s for both subdomaing?; (see Figure 4.3).
In that case, we only have to add some vertices/grensuring thatodt, » = 09, r and
then to split the interface dual control volumesdii; 1 into pieces in order to take these new
vertices into account. The centers of the degenerate interface control volumes are then defined
following the second item in Definition 4.1 (see Figure 4Mjtice that this modification of the
meshes do not increase significantly the number of degreiesealom in the problem.

T T T T T

| | | | | H

| . U PO Primal mesh
A G R | w | - - -Dual mesh

| | | |

| | | | |

| | | | |

| 1 At Batill ekl Sl alis Sl

| | | | |

| | 1 1 1
- — - — — - — —— — — I [ I

| [ R IR W B S

| | | | |

| | | | |

FiG. 4.3. Two independent DDFV mesh&s, 73 for both subdomains?;.

? ? JJK* ? A T

: o v, [T |4 _| _._ 4 ——Primal mesh
R o ! | - - -Dual mesh

| | S X o | | |

: I M l |

| | P ol e Bl e

I I y L7 | I

| 7 s ) } .
b———$——————-&/\ [ | |

! ! - b\¢-—-—4————‘—ﬂ

| I T [ I

| I I \ I

FIG. 4.4. The compatible meshes corresponding to two indepemieFV meshe¥;, 72 of Figure 4.3 .

For two given compatible mesh&s and7;, we denote byV + 1 the number of vertices in the two
meshes belonging to the interfafethese are the same for the two meshes thanks to the contipatibi
conditions).

For the sake of clarity of some computations below we needricasid number thest + 1 vertices
Tip, ey, s IN SUCh @ way thaﬂrqquﬂ] € 0N r = O, r and such tha{xq,xnml} =
I' N 012 (see Figure 4.5). We do the same with tNecentersz, € I" which are then sorted and
numbered as followsz.,, -+, x. With 2 = [zx;, zxp, |-
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r

Thi i1

.’ECN

.’1;;(;;

.’ECI

.’1;;(;;

FIG. 4.5. Notations.

Given two compatible meshé&g and7Z; in the sense of Definition 4.1, a composite DDFV mesh
T = (I, JM* UoM™*) can be built on the whole domain. Notice that in the case 1 of Remark 4.1, this
composite mesh is already available by construction (see Figure 4.1). heptases, the composite
primal mesh is simply given bt = 9t; U 91,. Then, we need to join corresponding interface dual
control volumes in the two meshes. To this end, we introdbeeset

o
T

M; = {k* =k UK}, K} € 0M] 1, K5 € OM; -, such thate,: =z},

so that the composite interior dual me$h* is then defined byt* = 9t U 95 U M. Finally,
the boundary dual cells are the onesdin* = oM; ,, U 9M3 |, (see Figure 4.6). Notice that the
degenerate interface control volumes 09t = 09, r are no more presentin the composite mesh.
In particular, the corresponding unknowns in the followisthemes have no natural corresponding
unknown for the m-DDFV scheme on the mésh

r

.
| .

+ - 4+ —Primal mesh
| - - -Dual mesh
|

|
?
|

\

/

\
b Antl et

|

1

|

s

]

|

T

|

\

I
T
! \/
¢ — ¢ —  —
|
|
AAIL44444444
|
T
|
-
|
Iy

FIG. 4.6. The composite mesh corresponding to the 2 compatible meshes of Figure 4.4.
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4.2 Presentation of the iterative domain decomposition solver

The idea of the domain decomposition method is to use thexseli@.1) on each of the two subdomains
in order to build an iterative Schwarz method which will cenye to the solution of the standard m-
DDFV scheme on the whole domain for the meshZ. More precisely, we propose the following
algorithm

e Forany; € {1,2}, choose any;‘ € &7'.
e Foranyn > 0,and anyi, j € {1,2},j #

— CalculateU, | = (u;’ 1, ¢,% ) € R™" x &7 solution to

T; T T i i A
ﬁn,;,r(“n+1’ Gnins fT AT g,7) = 0. (4.1)
— Calculatey, , by
n+1 n+1
Uy ow + Uy

V[xez,] € OUp, glnz*lﬂ = —@ZIE’L + A (4.2)

2

Remark that equality (4.2) is exactly the discrete couraterpf the Lions interface conditions, at the
continuous level [13]:

(A(z)Vul ™ ;) + Mt = —(A(z)Vul, i) + M,
whereri; is oriented fromf(2; to £2; andsi; = —7i;. Thatis

—(Ae)Vu i) = Mt - g7,

unJr} n+1
with g = —(A(z)Vu},ii;) + Au}. Indeed o}l (resp.% is supposed to approach
(A(z)Vul T i) (resp.aulth).
Using Theorem 3.2, we have the following well-posednesdltres
PrROPOSITION4.1 The initial datag;* being given, Algorithn{4.1)(4.2) defines a unique sequence
(UT#), inRTi x @7, fori =1,2.

We want now to show that this sequence converges towardslimgos of the scheme on the com-
plete domain?, for the composite mesh.

4.3 Preliminary construction

The first step in the analysis is to show that the solution efthDDFV scheme on the whole domain
£2 with homogeneous Dirichlet condition can be written as asjis limit of the sequencéJ”+),,,
i € {1, 2} obtained by the Schwarz algorithm. The precise result i$dhewing:

THEOREM4.1 (LINK WITH THE M-DDFV SCHEME) Letu” be the solution of the m-DDFV scheme
with homogeneous Dirichlet condition (that is syst@hi)with I" = (}) on the whole domaif? associ-
ated with the composite me$hbuilt upon7; and7;. For eachi € {1, 2}, there exist$u”?, ¢7¢, g7%) €
R7: x #7 x 7' such that

L5 (7 67 7R g7 =0, 43)
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for: =1, 2, we have

Uj e = Uk, fOI’/CEf)ﬁiuaf)ﬁi’D, (4 4)
U v = Ug=, TOr = € M UM, '
and
N
> (Spi,)cz,ak — QPi,)c;+1,£k) =0 fori=1,2. (4.5)
k=1
Proof.

I
.Ql QQ
U
e SN

FiG. 4.7. Notations in a diamond cell intersecting the intesfac

Equations (4.4) define all the valuesif:, except the values on the degenerate primal control volumes
inside", on both sides of the interface, therefore it remains to eédfie values ofi; , andy; .« » On
the interfacel".

STEP 1 - COMPUTATION OF THE INTERFACE VALUES Let us considem € ® which intersects
I'. Such a diamond cell writes = D' U p* wherep' € Dy, p* € D5. We denote by € Iy,

£ € My, the primal control volumes such that C x andp®> C . respectively. We first require the
equalityu, » = us 5. Then the common value, of u; » = us  is determined by requiring the local
conservativity of normal fluxes:

(A,CVDluTl,ﬁg,c) - (Aﬂvfu’fz,ﬁg,c) . (4.6)

Using the discrete gradient definition (2.3), this reads

1 . S L
(2mD [(UD - Ul,)c)maAicnmc + (Ul,z;* - ul,lc*)ma')cA)Cnd*)C*] ;nmc)
IS
1 . S _.
= omp [_(UD - UQ,L)maAﬂnmc + (UQ,L* - UQ,IC*)mG'L Acna*)c*] anmc)
c
1 ~ S ~
= omp [_(UD - u2,£)mo'A£no')C + (ua* - u)C*)mULALno'*)C*] anmc)~
c
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As we hav@myp, = sinapmyme, and2myp, = sinapm,m, ., we obtain

A A ATk, Ty Arfloi, Mo
Up <( == > ﬁamﬁmc> = ul,)c( e K) +u2,c( LT K)
ma;c mﬂc oK mag
Up+ — U N N
+ - ~ ((AC _A)C)no'*)C*yno')C)a
Mo
and we finally find the following value fai:

o o A _’(7 7ﬁ(7 A T_iﬂ )T_iﬂ

Up = MoxMoe — [umc( KMok ’c)+uQ7£M
(Axmo, + AeMioy ) Tioi, Tigx) Mo Mo, @.7)
Upx — Ug* - -
- Mo B ((AL - A)C)na*)c*ynmc):| .

STEP 2 - CONSEQUENCES ON THE NUMERICAL FLUXES The value ofu, given in (4.7) implies,
with our particular choice ofi® in (3.2a)-(3.2c), that the following equalities hold:

(AoVPU7 fig) = (Ap V7 4™ Tigx ) = (A0 V'™, ) (4.8)

Mg~ (ADvDuTaﬁa*K*) = Moy (AKVDIUTl,ﬁa*)C*) + Mo, (ALVD2u727ﬁU*K*) . (4.9)

Equality (4.8) comes from the definition (2.3) of the disergtadient, the definition (3.2a) and (3.2c) of
A® and the value ofi,, obtained in (4.7).
Let us now give a detailed proof for (4.9). Using the defimit{@.3) of the discrete gradient, we get

DT = ol T = D2 1o =
Mo+ (ApVPUT | Tigegs) — Moy (AKV u %naw) — Mg, (ALV u 27naw)

U2, — Ui,

u —Uu
= R T i (A ) £+ )

Mo+ Mg (Avﬁd*)c* ) ﬁa*ic*)

2mop 2mp
Up — U1 . Upr — Ugcr - -
- T;TD’KmU)CmU(AKnaKynU*K*) - %mmgmmc (A)Cna*)c*yna*)c*)
K K
Up — U L. Upr — Ugs " _
ZT’DLJLmULm‘T(ACn‘TK’ no*)c*) - (LTDC’C)mGLmGL (ALnU*IC*7n(T*KZ*)'

Using formula (4.7), we can reorganize all the terms as feglo

1 - 2 N
Me* (ADVDUT,TLU*K*) — Mgy (AKVD uﬂ,na*)c*) — Mg, (ALVD uTZ,na*’C*)

(4.10)
= Ul,;cT;c + u27£TL —+ (uic* _ U@*)T*,
where
1 n . — —
T sin ap (AKn”’C7n‘T*’C*) - (ADn(ﬂCﬂna*,C*)

A T_iﬂ 7ﬁ(7
+((Ac — A)C)ﬁUIC7ﬁ(T*IC*)m(7£ (Axion x) ] ,

((A)Cmo'g + Aﬁmo')c) Mo ﬁmc)
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1 L L
T, = [(ADnUKynU*K*) - (ALnU)Ca na*)c*)

n sin ap

+ ((AL - A)c)ﬁmo T e * )mo')c

(ALTgx, Tlox)
((Aicm(n; + Acma;c) ﬁm@ ﬁmc) ’

and

Meye

(ADﬁU*K*aﬁU*K*) - (A)cﬁa*)c*aﬁa*)c*)

mey me

1 o
T = — lm
SIhap

Mg,

- - 2
o o MM ((AL_AK)TLU*K*,TLU)C)
AT gon, T o ) 4 —2K £ = = .
Mo (Aeflomce, floic) Mo (Axmo, + ArMoy ) ok, Rox )

Using the definition (3.2¢) ofAp iy, Mo+ ), T becomes

Ty = | (A ) A ) + M (A o) A o)
— Mo (AxTlow; Tox ) (AcTlox, ot i) — Moy (AxTior, o s ) (AcTlow, Tlax)
(A = Ao ) (A )| /[ S0 (At + Actin) o i) |
which givesT. = 0. Similarly, by using the definition (3.2c) ¢fA,7i,«, 7o+ ), We get thafl. is also
equal to zero. Using the definition (3.2b) 057+ xc+ , o xc+ ), T becomes

1

T = —
meSin ap

mag (Aaﬁo'*lc* ) ﬁo’*)c*) + mo’;g (A)cﬁa*)c* ) ﬁo’*)c*)

((Ax — Aa)ﬁmmﬁa*;c*)z
((A)Cmaa + Acma;c) Mo, ﬁmc)

— Mo Moy

Moy (A’Cﬁa*’c* ) ﬁU*K*) — Mo, (Acﬁa*)c* » ﬁa*)c*)

((A)C - Aﬁ)ﬁmm ﬁa*)c*)Q
((Aicm(n; + Acma;c) ﬁm@ ﬁmc)

+ Moy Mo, )

and we see thal™ = 0. Hence (4.10) leads to (4.9).
STEP 3 - COMPUTATION OF THE FLUX UNKNOWNS In the sequel, all mathematical objects associ-
ated to a subdomaif?; will be marked with the index as follows

e D! is thek'" diamond belonging t®; - with respect to the numerotation introduced in Figure
4.5. In particularpi, C (2;.

® Kj,ls thek'" dual cell onl” belonging toOM; -, and thenc;; C £2;.

We have2N unknownsy; - . and only2N — 1 equations, that is the reason why we impose
the normalisation condition (4.5) in order to uniquely defthe flux unknowns; .- .. Let us study
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separately what takes place on each sub-domain. We havévéotke following linear system for the

sub-domain2;

Dl =
Mgy (AD%V 1 1,ng£1)

di  dsy P1,x%,21 D T =
T —mmicy , frr, — Z Mo (ApVPu™ fgeics)
d2 d3 <‘017’C.2751 1,2 1,2 'De@’q2 2
don—1 don || Pixy.en o
1= 1 =1 ) \preyen Moy (AD}VVDNuTl,ﬁMN)
B 5, 0
(4.11)
using the notationdsy,—1 = my: -, anddzy, = Mics e foranyk =1,--- , N. We easily see thaB
is invertible, so that there exists a unique ve@egrsolving (4.11).
Let us now look at the sub-domai,. We just definep, = —@; and we have to prove that,
satisfies the following system an:
Moy (AWVD%UTZ,T'L'MI)
_m’cg.zf’cg.z - Z Mg (ADVDUT27ﬁa*1c§)
DG@;C; R
B®, = ’ : (4.12)
Moy (AD?VVD?VuTz,ﬁMN)
0
with the convention tha@, ., is the outward unit normal t62, ono, forall k = 1,--- , N. Using the

fact thatd, = —@; and equation (4.11), we have foral=1,--- | N

Mucy, ek P25, cn T et kP25, ek = T, Pk 2 — TG ek PLEE, ok

= —mg, (ADiVD’iuTl,fiMk) )
Using the local conservativity equation (4.6), we obtaindibk =1,--- , IV
Mict, o 2,50 T MG e P25 0,00 = Moy (Apgvpiunyﬁack) :
Letk € {2,---, N}. Onthe one hand, by definition ¢f .- . we have:

D,,T1 =
- § Mo (ADV u v"a*fc;;) = Micr cp Pl e — Mk e 1 PLEE Lra
'DE@)C{ *

=mes frer .
Kl,kf)cl,k

On the other hand, there exists a uniguec 2*, and we haver = ki , U K3 ., with k3, € 05, see
Figure 4.8.

Sinceu” solves the m-DDFV scheme on the mé&hwe have in particular the following equation

= > Mo (ApVPUT gy = iy fr
DG@;C;;
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; A

2 2 4

e - I

pe //

// : P xﬁk :

// |

PRGN B2 - - Tyex L
P * Phd * IC |
o _ Kk : o Kk 2k
-~ — T - I
-|- _ L., @
- fr-t *

FiG. 4.8. Decomposition of} into the two dual cells of the subdomains.

Using equality (4.9) and the fact thét = —&., it follows that

D,, T2 =
- § Mg~ (ADV Uu 7n0*)€z) = My, ceP2i5,c0 — My, cp—1P2,K5,Lo—1

'DE@)Cgk
D, T = D, T =
= - g Mo+ (ApVPUT  igeic: ) + E Mo+ (Ap VU™, fger)
'DE@K: DEDKT,’C

TMcr 2, PLict,cn T Mt 21 PLKE 21

My ey — My fry, = /}C f(x)dx—/)c* vf(l') dx

(x) dr = ULTS f:c;yk,
K3k

which exactly gives (4.12).

STEP4 - CONCLUDING THE PROOF It remains to defing”¢, fori = 1, 2, as follows:

Ui o+ + Ui o

Gicr,c = —Pix*,c+ A D) (4-13)
Collecting all the previous results, we see that we get aisoltio
Lo p(uT @7 TR gT) = 0
fori = 1,2, j # i and satisfying furthermore the condition (4.5).
O

REMARK 4.2 (BARYCENTRIC DUAL MESH) If we use théarycentric dual mesand the notations of
Figure 3.1, we have a new definition of the common valyes follows

o MoxMo, (AICﬁUIC; ﬁmc) (Az:ﬁmc; ﬁmc)
Up = - |t U
(Axmo, + Aemoy ) Tigx, Tlox) My mmU (4.7-bis)
[} —
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Using the corresponding modified definitiondf (3.2a) (3.2b-bis)and(3.2c-bis) and the value ofi,,
given in(4.7-bis) the equality(4.8)still holds whereas the equalif4.9) naturally becomes:

Mo- (AnVPUT Tigie) = Moy (AT 0™ T ) oz (AcVZU™ gz ) . (4.9-bis)

Hence, the proof of Theorem 4.1 can be easily adapted to disis. dNotice in particular that the choice
of the barycentric dual mesh implies that the entig®f matrix B in (4.11)are always positive and
then B is always invertible. Note also that the convergence pragérgin the following section can be
easily adapted to this case.

4.4 Convergence analysis of the iterative method

Let us state the discrete version of the Poincaré inequaliigh is proved in [2, Lemma 3.3].

LEMMA 4.1 (DISCRETEPOINCARE INEQUALITY) Let T be a DDFV mesh aP. There exists > 0,
depending only on the diameter@fand onreg(7) such that for any.” € R” and anyg € Hz(912),
we have

a1z < ™2 + ™ [l < € (92672 + N9l 3 )

The number” > 0 in this result depends on the numbeg(7) which is a measure of the regularity
of the mesh. Since we are working in this paper with a fixed n¥esits precise definition is not needed
and we refer to [2] for the details. Let us only point out thaf(7 ) essentially measures how flat the
diamond cells are and how large is the ratio between the dexroéa primal cell (resp. dual cell) and
the diameter of a diamond cell as soon as they intersect.

Itis now possible, as in [4] for the classical five point finidume scheme, to prove the main result
of this paper, that is the convergence of the Schwarz iteratiethod to the solution of the m-DDFV
scheme.

THEOREM4.2 (CONVERGENCE OF THESCHWARZ ALGORITHM) Foranygg’ € 7,7 € {1,2}, the
solution (u}#);=1,2 of the algorithm(4.1)-(4.2) converges to the solution” of the m-DDFV scheme
with homogeneous Dirichlet condition (that is syst@m)with I" = ()) whenn — oc.

Moreover, if we assume thg§’ is chosen in such a way that

A .
Z (92'67;7% - g?x’c;é+1v£k) = 5 (h,q B h’c}f\r-ﬂ) » 1= {1’2}’ (414)

k=1

then, the flux unknow Z.;,{L given by algorithn(4.1)(4.2) also converge to the flux approximations
@i v . Of the schemg4.3) whenn — oo that is to say that the solutiotr™*! of the algorithm
(4.1)(4.2) converge to the solutioti” of the schemé.3)whenn — co.

Note that the values af’* andu;? corresponding to the same points on the interfAcmay not
coincide, in general, but they both converge to the sameswahenn goes to infinity.
Proof.

Fori € {1, 2}, we define the errors on each sub-domain at iteration numbsrfollows

n T n n . _an —n . _.n
— U, L,K* L T Pi,k*, Spi,)c*,u gi,)c*,c = Gi,x*,c gi,)c*,c'
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These error terms satisfy the following system : fef 1, 2 andj # .
—div® (A°V®e! ) =0, Yk eM,, (4.15a)

—div" (A°V®el ) =0, Ve M, (4.15b)

D _n+l = n+1
- 2 : Mo (ADV €; 7n‘7*’CZ) _m’CZ%kwi,n;,Lk

’DE@)C;Q
— m,ci’akflnggl;ck% =0, Vke{2,---,N}, (4.15¢c)
Mict 2y paq MKy 1Lk pat n+l -
n;U ST ﬁlﬂi;zwak — (ApVPel i, ) =0, YEE{1,--- N}, (4.15d)
efft =0, VkedMp,  eltl=0, V€ oMy, (4.15¢e)
w:f:g,ak + Mz (677 = s o VRE{L - N}, (4.15f)
Ui e T M e (€87) =G e, YEE{L N}, (4.159)
with
g;;,c*!ﬂ = _¢;;K*,a + M e (e?) V([ze-x.] € OAp. (4.16)
Stepl. Letusdefind!™ = —[div? (A®V?e!!) e’ 1] 1. Using Lemma 3.1, we have :
2
n+1 n+l _ n+l
Iz‘ ZMUk( z)ck “CZH)
1 1
_n n+1 —-n -n
D) Ze Mo, (gj Khp1:Lk gj,)cz,ak) 9 Z@ M”k 1 (gj,KZ,l,Ck—l o gj7’CZ7Ck—1) )
k=2 k=2
micy.Ly, MK

where we recall thad/,,, = bt1%k Equation (4.16) for the Fourier data error term and the

definition (2.2) ofy,« . lead to

Moy,

2
o+ My, (et =ertd )

LR LR+

ol
M=

~
Il
—

n+1 _ n YA ()
ei,)c;;MUk( ( 3K 1oLk j,ic;;,ak))

+1 n n
6 M‘” 1 (_ (wjﬁz,lvﬁk—l B ¢j7’CZ7Ck—1))

N | =

- M M-

N | =

| >

N
A
+1 A n+1 n _.n
Mok ( j)ckJrl j)Ck) 4 E €, K5 Mgk 1 ( ‘])C271 ej’,q;) .
k=2

~
||
N
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As a consequence, by gathering all the similar terms, we get
n+1 n+1 2
€, KE €; )CE_H
n n n+1 n+1
Mak (_ ( JKrp Ll j,;cz,z:k)) (ei,)cz - ei,)c*,;+1) (4-17)

n _n n+1 _ n+l1
My, (ej!,c;;+1 ej!,c;;) (ei’,c;;+1 ei,}cz)'

=

DO | =
I ] M
§

+
=~ >
M=

>
U

2

STEP2 . We can now computE'*! in a different way, by using the discrete Stokes formula)2r5
the sub-domair;:

IinJrl _ (A®v®€?+1, vne?Jrl)@i _ ( @i(ADvI) n+1 .ﬁ)’77(6n+1))80i

= Z mD(ADvD€?+1,VD€?+1 Z Moy n+1)(ADvD6?+1aﬁo'L)~ (4.18)

De®D; DeDi,r

By comparing (4.17) and (4.18), we obtain

0= Z mD(ADVDe;’H,VDe;’H)

DeD;
N N
A . 2 )
- “+1 n+1 A _on n+1 o n+1
+4 ZM”’“ (eiﬂcz € ’Ck+1) 4 ZM”" ( &, K1 eJ?’C}t) (eiv’cz+1 eiv’cz)
k=1 k=2
N
1
n n n+1 n+1
T3 ZMak (— ( K ek JICkLk)) <6i,)<;; - ei,qﬂ) (4.19)
k=1
=B
1 1 =
Z mey” (el T (ApVPel T i) .
DeDi,r

=Bs

Equation (4.15d) and Definition (2.2) of the trace opergtoimply that the termB;, writes

N
Mycx o miex | Ly,
_ Lk n+1 k+15k n+1
- § Mgy, ( Moy, %Ck,llk(e )+ Moy, %C;;Jrlyﬂk(ei )

% Micyck wn+1 + ek 152k wn—!—l
1,K 5, Lk Ky 1Lk |

1,K
Mgy, Mg, Frrr

We now use (4.15f)-(4.15g) and (4.16) to find that

A A
n n _ - n+1l _ n+1 - n _n n+1 _ n+l
- wj,)c;;,ak = (ei,:c;; € x: ) + (6‘ : ej,fé*,;) + wz’,fc;;,z:k ¢i,icz+17£k’

TR g1 £H 2 LR 2\ IR

in the termB;y, it follows that B = B; — By writes:
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).

Pyl 2
o n+1 n+1
B = _Z ZMUA-, ( 1K} i,)c*,;+1)
k=1
A N
- n _.n n+1l _ n+l
+4 kZMUk (ej”q; 67”%“) (ei”z i”czﬂ)
1 N
- n+1 _ o ntl n+l _ _n+l
2 kE: ( 1,5 Lk wi,)c*,;+1,ck,) <6i,)c;; ei,)czﬂ)
=1
N ~
Z My ck (enJrl) + My 1oLk B} (enJrl) =B
m — Uxj.ck m Kri1-Lr\%4
k=1 T Tk
n+1 n+1
X (m’czvakwtﬂl’;ik + m’clt+17£kwi7’<2+17£k) i
and by gathering the two sums By, we easily get
N
~ n+1
B2 - Z (ka,Lsz )Ck Lk’}/}ckvﬂk (e ) + m}ck+17£kw7 ch+1 Lk’}/}ck+1 (ei

x>
—

Hence, (4.19) becomes

_ D _n+l1 D _n+l
0 = E mp(ApVTe] ™, VPel ™)
DeD;
)‘ al M n+1 n+1 2 )‘ al M n n n+1
+Z kg . o emc;: K5 - Z ]; - ok SR €j,;<z ez’,;c;g_H —e
N N
A 2 A
-~ n+1 n+1 - n _on n+l
1 ZMM (ei,;c: k+1) T Z Mo, (ej,n;; e],;c;H) (ei,»c;;

n+1

k=
N
> [m)c;;,aﬁ/’

and we see that the sum of the second, third, fourth and fifthgeancels, so that it finally remains

DeD;

_Z [m’cpﬂsz )Ck,Lk’kavﬁk(e ) +m)ck+1,

(3 )Ck,Ck ’y)Ck,[,k

n+1

@

3

n+1 n+1
(6 ) + m)cz+1!£kt d}z Khp1oLk ’Y’CkJrl’

3 mo(ApVPert, VPt

n+1
)

n+1
Ekw ls+1’

(e

)]

£w VG 10 Ln
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We can do exactly the same computation on the sub-dofaiddding the two results, we obtain

0= Z mD(ADvDe?’+1,VDe?+1)+ Z mD(ADVD€?+1,VD6;'+1)

De®; DeD;
N
+1 +1 +1 +1
- Z {mKZ:Lk:wZ)C;;,Lk’szvﬁk (ef™) + mfc*,;ﬂ,aﬁ/’?;ckﬂ,ck%kﬂ, L (edf )} (4.20)
k=1
N
+1 1 1 1
_Z {m,ck Lklﬂ?,cwak%ck z:k( ; ) + m;c2+1,£k¢;;ck+l7£k'71ck+l, (6? )}

STep3. Using the formula

1 2 2
—ab= 75 ((a = Ab)* — (a + Ab)°).

and equations (4.15f)-(4.15g) and (4.16), we get that fgrias 1, ..., N:

+1 +1 +1 +1
w?)ck,ak’yK,cyﬁk(en ) w;l)ck,ck’%ck,ﬂk (en )

n+1

J
_ 1 n+1 n+1 2 n+1
RN _wi’)czygk + )\’y)ck,ﬂk( ) - wly)cz’gk + )\’ka;Lls
=97 Kt Lk-iﬂ’)’;c* c,, (e})

1
_)\ J’C Lk

2
P L Ay e (e ?“)) - (Z/J;H;ngk-F)\%c PR Ciany

4)\ 4K Lk

1 n n 2 n n
- |: +l +)\’Yick z:k( +1)) - (_¢¢7,€z’£k +/\’Y;c’,;,z:k ei
2
( 'ng Kis Lk +)‘%Ck,ﬂk( ])) :|

2
4)\ |: ;chri,ak +)\’Y)Ck7£k( ;LJrl)) -

We can do the same for computingbfzi+l7£k%k+l7£k (enthy— Wtiﬂ i en(e " +1) with (4.15g)
and (4.16). Thus, we find that (4.20) becomes:

0= mo(Ap Vel V2 ) 4 37 mp (AP Ve

De®; De®D;

S B [y M () = (< + M e (€0)] (4.21)

+
[z, xc]€0Ur

+ Z et [(_@Z};I} + Ay o (e 7}+1)) - (_w;t)c*,c + )"Y’C*vﬁ(ey))Q} '

[z, xc]€0Ur
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STerP 4. LetM € N*, we sum the equality (4.21) for varying from 1 toM, and we remark that
simplifications occur in the interface terms from iteratioandn + 1. It follows that

M M
DY mp(ApVPet VP T ) T Y mp (A, Vel VP

n=1DeD; n=1DeD,
+ Z My .z (_¢M+1 A ( M+1))2+ Z Mir,e (_¢M+1 A ( M+1))2

AN i, Vicx,c\€; AN % Ve, e (€5

[x)cx,xc]E0UAL [z)ex ,x ]edAr
>0
m * 2 m * 2

= Z % (_ z’l,ic*,z: + )‘%C*,L(ezl)) + Z % <_ jl‘,)c*,z: + )\’YK*,E(ejl)) )
[x)cx,xc]€0Ur [,z ]€0Ar

which gives that there exists > 0, independent ofi, such that

M M
SN mo (A VPt VPt 3T YT mp (A, Ve VRt < C

n=1DeD; n=1DeD;

Using the coercivity of the matrix-valued majy we obtain
M M
DNV S, + D [[VRe I, < CaC.
n=1 n=1

We deduce that the two serids_ [|[V2:ef*!||3,, and»  |[V®7el |2, converge and as a result we
n>1 n>1
have that for = 1,2

IV2iei 5, — 0.
n—-+o0o

According to the discrete Poincaré inequality Lemma 4.1¢eguce the convergence@ffrl to 0, for
i =1, 2, whenn goes toco.

STEP5. Letus now prove that the fluxd:,{j:}?l: converge td). Using equations (4.15c)-(4.15d), we
already have that k € {1,--- ,N}:

*
m’ck+17£k

Myc* £y
ko n+1 n+1 _ A VD n+l -
— . o = e; n — 0
My %;ck,ak + My ¢z,;ck+1,z;k ( D ) ’ lelk) n—too
andvke{2,---,N}
n+1 n+1 _ D n+l =
m’cz7£k¢i,}c2,ak +m’cz7ﬁk—1wi,)c;,ck,1 = E : Mo (ADV € ,nq*,c;;) S, 0.

DE@K;;

We first prove by induction that for any > 0, we have

N
Z (§ZK27Lk - gz;c;g_*_l?ck) =0. (422)
k=1
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For the initialisation, we use the definition gf,... . to obtain

27 of 38

N N N
0 —0 _ E ' , — _ E 0 —qY
E (gi,)c;;,ck - gi,)c*,;+1,ck,) = (gh’CLCk g%/Cerka) (gi,)cz,ck gi,)czﬂ,ak) :

k=1 k=1 k=1
Using (4.13), then (4.4) and (3.1e), we have
N

N
§ (Qi,fc;;,ck - gi,)czﬂ,ck) = - E (%ch,ak - 901‘,)6;;“,@,)

k=1 k=1 k=1

N
- E (Spi,)cz,z:k - @i,n2+1,ck) +
k=1

and then, by using (4.5), we finally have

_|_

N >~

N

A
Z (gi,)c;;,ck - gl‘,)Cz+17Ck) = 9 (h’q - h’q\wrl) ’

k=1
This implies by using (4.14) that

N
—0 ~0 _
E (gi,;c;,ck _gi,;chrl,z:k) =0.

k=1

N
A
B} E Wi,y — Wik,

(h’q - h)c}‘v+1) ’

(4.23)

We assume that the equality (4.22) is true for somg 0. Using the definition (4.16) o} . and

successively equations (4.15f)-(4.159) then (4.15ed]livdvs that
N N

n+1 —n+1 _

S (e -0 ) =

k=1 =

n+1
1,K

Il
M=

=N =N
(gg‘,}czﬂ,ck - gj,nz,ck) +>‘ e

k=1 1

=0 by induction

_ )\ n+1 n+1

- € Ky € )C*,;+1
n+1 n+1

Ae o — Xe; Kiir

0.

Furthermore, we also have

N N A N
n+1 n+1 n+1 —n+1 n+1l
Z (wi,ic’,g+1,ck - wi,ic;;,z;k) Z (gz kpcn i K z:k) 9 Z ( ik}
k=1 k=1 k=1
To sum up, we proved that:
. . n+1 . n+1
Vke {1’ ’N}’ m’ckxﬂkwi,i@,i,ﬁk + m’CkJrl’Ekwi:’CiiJrlka n—-+o0
n+ n+
Vke {2’ o N m’CZkawiﬁZ,ck + m)c;;’ﬁk—lwi:’cz:ﬂk—l n—-+oo

N
wn-{-l o wn-{-l _
LR 1Lk 1,K 5Lk -

k=1

A N
n+1 n+1 n+1
Z (wi,)c;;ﬂ,ck R )ck,ck) + § Z (
=1

i,K* L

n+1 )
& Khga

_n+l1
ei”chl)

n+1 — O
€ ;c;+1)

)

0,
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that is to say, in a more compact form, that:

Byt 0,

n—-+4o0o
with B is the matrix being defined in (4.11). Since this matBixs invertible, we deduce

gt 0,

n—-+o0o

and the claim is proved.

5. Numerical results

We illustrate in this section the convergence propertiehefSchwarz algorithm presented above on
various test cases. We also illustrate how this convergeéepend on\. Finally, the performance of the
method as a preconditioner is also investigated.

For each test case we give the formulas for the diffusionadiedsand the exact solution, from
which we deduce the source tegim= —div(AVu,) to be used in the numerical computations.

5.1 |Initialization

In all the following numerical simulations, we choose thigi@ih guess foru! to be
u? =0, vie {1,2},

and we take the initial Fourier datg ' in such a way that

N
A )
Z (g?,)cz,ck _g?,)c*,;+1,ck,) = 5 (hic{ - hic}‘\,_H) s Vie {172}'

k=1

ke for i for ea 0 A

One can take for instance, for eacks {1,2}, g; o+ ., = 3
0 —

k<N, andgmzwﬂk_ 0,VI<Ek<N.

Following Theorem 4.2, this choice will imply the convergerof the flux unknowng?, .. ..

(i = hes,,, ) @ndgd, o, = 0,2 <

5.2 The domains and the meshes

N
In the sequelf? will be a domain decomposed into rectangular subdomﬁiﬁskL_Jle, with V equal

t02,3 or4.

Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the coarsest thﬂé’ of the family of refined meshes
(Mesh” ),,, that we use in the sequel. More preciséligsh”, is obtained fromMesh”, | by dividing
into two equal parts all the edges in the mesh, which imphes ¢ach control volume is divided into
four parts.



Non-overlapping Schwarz Algorithm for Solving 2D m-DDFVI&mes 29 of 38
r r

( 2] _(22 ) {25

(0,0) (0,0)
FiG. 5.1. The domair2 = [—1, 1] x [0, 1] is divided in 2 subdomains. (Lef§lesh}. (Right) Mesh?.

I I

{12 {2 { 1 {20

=

I I3 I I3

(2 0y s {2

(0,0) Iy 0,0 Iy

FIG. 5.2. The domair2 = [0, 1]2 is divided in 4 subdomains. (Lef}lesh?. (Right) Mesh7.

5.3 Convergence of the Schwarz algorithm used as a solver
Let us first illustrate the convergence of the Schwarz atjorion some simple cases.
e Case 1: Homogeneous Dirichlet Boundary Conditions:
ue(x,y) = sin(rz) sin(my) sin(w(z + y)),

and

A(z,y) = ((1)2 (1)2) fore <0, andA(x,y)= (ég Of)) for z > 0.

e Case 2 : Non Homogeneous Dirichlet Boundary Conditions:

Ue(x,y) = cos(2.5mx) cos(2.57my),

(=
©
=

I (0,0)

)
N

[
o
[

I

FiG. 5.3. The L-shaped domai? = [—0.5, 0.5]2\[0, 0.5]2 is divided in 3 subdomaingviesh?.
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I Iy I

2 (@2 3 2 .Shg

4

1,0) (1,0)

FIG. 5.4. The domain? = [—1,2] x [0, 1]. (Left) 2 is divided in 2 subdomainslesh. (Right) £2 is divided in 3 subdomains
Mesh].

I I Iy Iy

92 _Q‘) Ql 92 93 _(24

(0,0) (0,0)

FiIG. 5.5. The domair? = [—1, 1] x [0, 1]. (Left) £2 is divided in 2 subdomainsleshf. (Right) 2 is divided in 4 subdomains
Mesh?.

and

A(z,y) = (ég (1)?) forz <0, andA(x,y)= (ég 015) forz > 0.

In order to illustrate the convergence of the Schwarz atborj we decide to stop the algorithm

when
lJup' —u”

21077,

[[uT]|2

We observe for Case 1 (resp. Case 2) on mem}, andMesh?), (see Figure 5.6), that almosh?
iterations are necessary to achieve convergence.

Jun' — tell2

Sinceu* converges ta.” whenn goes tox, fori = 1, 2, we expect the err T to be
Ue||2
T __
of the same order thaH“Hiﬁ'b, for large enough values of. Thus, a natural stopping criterion
Ue |2
could be the following
o —ufly o™~ tella (5.1)
[[uTi]]2 [[el]2

for somen < 1. Unfortunately, in practical cases is obviouslya priori unknown, but we know that
the error for the m-DDFV scheme behaves like wherea = 1 in general andv = 2 for rectangular
meshes. Hence, we can use, in practice, the following stgppiterion

g —

o

2 < ph, (5.2)

2

with n = 0.1.
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Case 1Mesh;
A =160

2 -0-0000@ -0-6 oo

10°
The numbers of iterations

Case 1Mesh?
A =160

10

Case 2Mesh;
A =200

The numbers of iterations

Case 2Mesh?
A =200

310f38

~R.0-0 06060 -0-0 c0ccaTEmEED

10 10° 10
The numbers of iterations

10! 10° 10
The numbers of iterations

llun’ —uTill2

a7 ]2

_ lun? —uell2

FIG. 5.6. Evolution ofE; = andFEo =

(Right) Case 2.

el as a function of the number of iterations. (Left) Case 1.
Uel|2

Let us investigate the number of iterations required to@ahtondition (5.1) in the following cases
proposed in th&enchmark on Discretization Schemes for Anisotropic Bifia Problems on General
Grids elaborated for the FVCA5 conference [11].

e Case 3: Mild anisotropy diffusion:

ue(z,y) =sin((1 —z)(1 —y))+ (1 — x)g(l - 9)27 A= <(1)g ?g) :

e Case 4 : Heterogeneous rotating anisotropy diffusion:

A(J),y) =

1 =32 2
Ue(x,y) = Sin(ﬂ'a:) Sin(ﬂ'y)7 <10 ¢4y

‘ (1073 — 1)zy
22 +y2 \ (1072 = )zy :

2 +107 %>

Table 1 gives the iteration numbebit needed to fulfill (5.1).
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Case 3 Mesh; - A = 160 | nbit = 99
Case 4 Mesh; - A\ = 205 | nbit = 134

Table 1. Iteration numbaetbit needed to fulfill (5.1) for cases 3 and 4.

Case 5 illustrates the behaviour of the Schwarz algorithrarwh ¢ H?(£2). The first order error
estimate for m-DDFV given in Theorem 3.1 is no more valid. di#ireless, the scheme is known to be
convergent (see [2]).

e Case 5 : Isotropic constant diffusion on an L-shaped domaig, H?(2):

ue(x,y)zue(r,a)zrisin@ (9+g)) A:(é ‘1))

Table 2 gives the iteration numbelbit needed to fulfill (5.1).

| Case 5 Mesh? - A = 800 | nbit = 139 |

Table 2. Iteration numbetbit needed to fulfill (5.1) for Case 5.

5.4 Influence of the shape of the domain decomposition

We compare the algorithm for different decompositions &f $ame domait? = [—1,2] x [0, 1] (see
Figure 5.4) and for the same test case corresponding to ialbphicalized source term.

e Case 6 : Anisotropic diffusion. The source term is given by

—1000sin(2.57(x — 1.3)) forl.3 <ax < 1.7,
f(r,y) = .
0 otherwise,

and the diffusion tensor by

A(z,y) = <(1)g (1)2) forz <Oorz>1, andA(x,y)= ((1)2 Oi5> otherwise

The exact solution is given by

. for —1 <a < 1.3,
1000 [z — 1.3 1
- 5in (2.5 - 1.3 for1.3 1.7
uelwy) =4 T 15 ( 251  (2.5m)2 sin(2.5m(x D) <a <17,
1000 /1 1
T T oo sind for 1.7 2.
1.5 (57T (2.57)2 sin( 77)) orl7<az<

Figure 5.7 is representing the erfaff; — «” | on the primal mesh (resp. dual mesh) with= 250.
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Mesh$ - primal mesh {|uZ — u”||o = 0.311  Mesh; - primal mesh 4|uZ — u7 ||~ = 0.798

' ‘

Mesh? - dual mesh {ju? — u”||o = 0.118 Mesh! - dual mesh ju? — u”||o = 0.62

\

FiG. 5.7. Plot ofju? — u7|. Case 6\ = 250, iterationn = 11.  (Left) two domains decompositio® = 27 U £25.
(Right) three domains decompositidh = 21 U 22 U §23.

The supremum norru? — u” || for the decomposition into 2 subdomainddsh?) on the primal
(resp. dual) mesh decreases fram7 (resp. 0.4) to 0.31 (resp. 0.12) after 10 iterations. For the
decomposition into 3 subdomainsi¢sh?) ||uZ — u” |- on the primal (resp. dual) mesh decreases
from 1.1 (resp. 1.08) to 0.8 (resp. 0.62) after 10 iterations. Notice that the composite mé&stis
the same for the two decompositions under study. It seents fthrathis localized source term, the
decomposition into 2 subdomains is more accurate.

5.5 Influence of the Fourier parameter

Until now, the value ofA > 0 was arbitrarily fixed, but it is known that the choice »dfgenerally
influences the number of necessary iterations needed tevecbonvergence of the algorithm (see [1]).
We illustrate this behavior in our framework in Figure 5.&€loptimal choice foi, as shown in Figure
5.8, seems to increase with the number of degrees of freedom.

More precisely, we give in Table 3 the optimal value\ads a function of the mesh size for the Case
2. Since the mesh siZeis divided by2 at each level of refinement, we observe that, in that cage,
seems to behave Iik}; as described in [7], [8].

Mesh3 | Mesh] | Mesh:
Aopt 94 164 333

Table 3. The optimal value of as a function of the size of the mekHor the Case 2

Let us consider again the case 6 with 2 different decompositof {2 with the stopping criterion
parameter; = 0.01. For our particular source term, we see in Figure 5.9 thattferdecomposition into
2 subdomains we need less than 20 iterations to achievef(.ahy A, 0.1 < A < 400, whereas for
the decomposition into 3 subdomains we need at least 6Qidtesa(achieved aroundl ~ 225). Table
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The numbers of iterations

4 sums up the iteration numbebit needed to achieve (5.1) with= 0.01 for the optimal value of\.
Hence, in that case the decomposition into 2 subdomainsiis gfficient than the decomposition into

F. BOYER, F. HUBERT, S. KRELL

Mesh;

Mesh?

600,

—+— Mesh1_3| 600|
—&—Mesh1_4|
—&— Mesh1_5|

—+—Mesh2_3|
—o—Mesh2_4|
—&— Mesh2_5

FIG. 5.8. The number of necessary iterations as a function ok tvedue for Case 2.

300 400 500 600 700 (] 100

Lambda

3 subdomains, which is quite natural.

FiG. 5.9. Case 6 - The number of necessary iterations as a fanaftid for the two meshesmesh§ andmesh?

In fact, this behavior is not always observed, and we will rgive an example where increasing the
number of subdomains in the decompositiorfbéctually improves the performance of the solver. Let
us consider again the test case 1 with 2 different decompnsiof (2 into 2 or 4 subdomains that is with
the meshed/lesh} andMesh (see Figure 5.5) for different levels of refinemejt£ 3 or j = 5). For
the coarsest mesheg£ 3), left-hand side part of Figure 5.10 shows that the perfarceaof the solver
for the two decompositions are equivalent. Neverthelesdjdier meshesj(= 5), the right-hand part
of the same figure shows that for the decomposition into 4 eoizdns we need less than 36 iterations
to achieve (5.1) for any0 < A < 300, whereas for the decomposition into 2 subdomains we need at

200 300 400 500 600 700
Lambda

5 —+— Mesh6_5|
180] i - &~ Mesh7_5
& 160] %
2 8
g Q
= 120 %
S S,
@ 10 Q
2 %o
£ 80l Q%O
5 e
2
© 60 SOs000000008000°
E
a0
® M

2 subdomaing,,; = 20

nbit = 2

3 subdomains,,; = 250

nbit = 59

least 135 iterations (achieved arouknd- 150).

Table 4. Iteration numbaetbit needed to fulfill (5.1) for Case 6.
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As a conclusion, for this test case larger is the number ofismains better seems to be the perfor-
mance of the solver.

o0 —e— 4 subdomains| —©—4 subdomains

The numbers of iterations
The numbers of iterations
8

100 200 250 300 0 50 100 200 250 300

150 150
Lambda Lambda

FIG. 5.10. Case 1 - The number of necessary iterations as adanati\ for the two mesh familiesnesh;‘. andmesh?. (Left)
Forj = 3. (Right) Forj = 5.

5.6 Application to the preconditioning of the conjugate gradisolver

The non-overlapping Schwarz method we study in this papg@insarily an iterative solver for our finite
volume scheme. Nevertheless, we saw in previous sectiahgslperformances can be poor, at least if
we do not choose the optimal value of the Fourier paramesacisted to a given situation (it depends
on the anisotropy and heterogeneity of the problem, but atsthe mesh itself and the subdomains
considered). Since the value of this optimal parametertsaleays known precisely, we can also take
advantage of the domain decomposition method by consigléras a preconditioner.

Indeed, both efficiency and robustness of iterative tealesgcan be improved by using precondi-
tioning. It simply consists in solving a linear system thdiréts the same solution as the original one.
In order to speed up iterative methods, this new linear systechosen to have a better conditioning
property. We refer to the standard preconditioning techegjn [14]. In particular, the non overlapping
Schwarz methods can be seen as block Jacobi solvers, anavéhkenow that a few iterations of the
domain decomposition algorithm can be an efficient predrair for the conjugate gradient method.

We propose in this section some illustrations by evaluatimgnumber of iterations necessary to
achieve convergence of the conjugate gradient method. Mdy & particular how it depends on the
numbern of Schwarz subiterations we used as a preconditioner at madh iteration of the CG. A
number of subiterations = 0 means that no preconditioning was used. The test case weisised
described below and the results are given in Figure 5.11.

e Case 7 : Constant anisotropic diffusion:
ue(,y) = 16y(1 —y)(1 — 2?), andA(z,y) = Id.

We observe that for reasonable valuesnothere,n = 3), the number of necessary CG iterations
increases very slowly with respect to the size of the lingatesn we are solving. Hence, our Schwarz
method seems to be a satisfactory preconditioner for spittie m-DDFV numerical scheme.



36 of 38 F. BOYER, F. HUBERT, S. KRELL

Case 7Mesh;, A = 205

—+—grad

[1—e—grad prec n=1|
—=— grad prec n=2|
—— grad prec n=3|
a00|| —F— grad prec n=4
—+—grad prec n=5|

250 | —&— grad prec n=6|

The numbers of iterations

FIG. 5.11. The number of iterations as a function of the numbem&howns.

As shown in Section 5.5, the value of the Fourier paramgteas an influence on the performance
of the Schwarz algorithm and it seems that there exists amapthoice for this value. We want to
see now if there exists also an optimal choice of the valug when the Schwarz method is used as
preconditioner. To this end, we consider the results obthfior the test case 7. The optimal value of
A for the Schwarz algorithm, used as an iterative solver,aésiad 115 (see Figure 12(a)) to achieve an
error of 10~8. Figure 12(b) is also showing the number of iterations of¢hejugate gradient solver
preconditioned by 2 subiterations of the Schwarz algoritt@oessary to achieve the same precision as
a function of\. We observe that the influence dfis not so clear than for the Schwarz algorithm as a
solver but it seems that the optimal value)o around 3 (see the zoom in Figure 12(c)).

6. Conclusions

In this paper, we proposed a m-DDFV finite volume scheme witethDirichlet/Fourier boundary con-
ditions for anisotropic elliptic problems. As a result, we@pde a non-overlapping Schwarz algorithm
associated to a subdomain decompositioti2dr solving the m-DDFV scheme. The Schwarz algo-
rithm we obtained is proved to converge to the solution ofth®DFV scheme on the whole domain.
The properties of this algorithm are illustrated by numari@sults on anisotropic elliptic equations.
We illustrate in particular the existence of a unique valtithe Fourier parameter for which the con-
vergence is the fastest. Nevertheless, we also observathasual, the performances of such a method
as a solver are not very good whereas it is of real practidat@st to use a few sub-iterations of this
algorithm as a preconditioner for the conjugate gradieiveso

In further works, such a Fourier/Robin transmission cdndishould be compared to second order
optimized condition or to two-sided Robin condition in tR®FV framework as it is done in [10] for
the classical two point flux approximation finite volume agpguzh.

Acknowledgments : The authors would like to thank the referees for their cdregading of the paper and
their valuable remarks.
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