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Non-overlapping Schwarz algorithm for solving 2D m-DDFV schemes
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FLORENCEHUBERT & STELLA KRELL
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We propose a non-overlapping Schwarz algorithm for solving“Discrete Duality Finite Volume” schemes
(DDFV for short) on general meshes. In order to handle this problem, the first step is to propose and study
a convenient DDFV scheme for anisotropic elliptic problemswith mixed Dirichlet/Fourier boundary
conditions. Then, we are able to build the corresponding Schwarz algorithm and to prove its convergence
to the solution of the DDFV scheme on the initial domain. We finally give some numerical results both
in the case where the Schwarz iterations are used as a solver or as a preconditioner.

Keywords: Finite volume methods, Schwarz Algorithm, DDFV methods.

1. Introduction

This paper is devoted to the development and the analysis of anon-overlappingSchwarz iterative method
for solving finite volume schemes of the DDFV type for elliptic problems. On the continuous level, this
algorithm was first introduced and studied in [13]. It is based on Fourier transmission conditions across
the interfaces in a domain decomposition ofΩ. It has been adapted to several discrete approximation
of isotropic diffusion problems (see [1], [9] and [4]). The adaptation of this method to the discrete
framework is very useful since each subdomain of a non-overlapping decomposition of the domainΩ
can be meshed independently. This decomposition can be usedto design an iterative solver in itself or
to provide a preconditioner for any usual iterative method.

The DDFV method has been developed to approximate anisotropic diffusion problems on general
meshes. More precisely, the DDFV schemes have been first introduced and studied in [6, 12] to approx-
imate the Laplace equation with Dirichlet boundary conditions or homogeneous Neumann boundary
conditions on a large class of 2D meshes including non-conformal and distorted meshes. Such schemes
require unknowns on both vertices and centers of primal control volumes and allow us to build two-
dimensional discrete gradient and divergence operators being in duality in a discrete sense. The DDFV
scheme is extended in [2] to the case of the approximation of solutions to general linear and nonlinear el-
liptic problems with non homogeneous Dirichlet boundary conditions, including the case of anisotropic
elliptic problems.

Convergence of such schemes is shown in [2] anda priori error estimates are given in the case
where the coefficients of the operator and the exact solutionu are assumed to be smooth enough. In
[3], a modified DDFV scheme, called m-DDFV, is proposed and analysed in order to take into account
possible discontinuities in the coefficients of the elliptic problem under study. In particular, first order
convergence of the m-DDFV scheme is proved for the problem (1.1) withΓ = ∅ and piecewise smooth



2 of 35 F. BOYER, F. HUBERT, S. KRELL

coefficients. This framework is recalled in Section 2.
In Section 3, we propose to adapt the m-DDFV scheme to mixed Dirichlet/Fourier boundary condi-

tions : 




−div(A(x)∇u(x)) = f(x), in Ω,

u = h, on∂Ω \ Γ,

−(A∇u, ~n) = λu − g, onΓ.

(1.1)

whereΩ is an open bounded polygonal domain ofR
2. The measurable matrix-valued mapA : Ω →

M2,2(R) is supposed to fulfill the following assumption: there existsCA > 0 such that

(A(x)ξ, ξ) >
1

CA
|ξ|2, and |A(x)ξ| 6 CA|ξ|, ∀ξ ∈ R

2, and for a.e.x ∈ Ω,

This assumption ensures that the Problem (1.1) has a unique solution inH1(Ω) for anyf ∈ H−1(Ω)

andh, g ∈ H
1
2 (∂Ω). We restrict our attention, in this paper, to source termsf ∈ L2(Ω). The parameter

λ > 0 is given andΓ is an open subset of∂Ω.
With these preliminary results at hand we describe in Section 4 the non-overlapping iterative method

we propose and prove its convergence.
We finally give in Section 5 some numerical results illustrating the performance of the iterative

Schwarz algorithm.

2. The DDFV framework

The meshes:we recall here the main notations and definitions taken from [2]. A DDFV meshT is
constituted by a primal meshM and a dual meshM∗ ∪ ∂M∗ (Figure 2.1).

K∗

xK∗

Interior nodexK∗ of the dual cell
Primal nodexK

Primal control volumes

Interior dual cellK∗

The boundary dual cellK∗

Node of the boundary dual cellxK∗
xK

K

FIG. 2.1. The meshT

The primal meshM is a set of disjoint open polygonal control volumesK ⊂ Ω such that∪K = Ω.
We denote by∂M the set of edges of the control volumes inM included in∂Ω, which we consider as
degenerate control volumes. To each control volume and degenerate control volumeK ∈ M ∪ ∂M, we
associate a pointxK ∈ K. This family of points is denoted byX = {xK, K ∈ M ∪ ∂M}.
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Let X∗ denote the set of the vertices of the primal control volumes in M that we split intoX∗ =
X∗
int ∪ X∗

ext whereX∗
int ∩ ∂Ω = ∅ andX∗

ext ⊂ ∂Ω. With any pointxK∗ ∈ X∗
int (resp. xK∗ ∈

X∗
ext), we associate the polygonK∗ whose vertices are{xK ∈ X, such thatxK∗ ∈ K, K ∈ M} (resp.

{xK∗} ∪ {xK ∈ X, such thatxK∗ ∈ K, K ∈ (M ∪ ∂M)}) sorted with respect to the clockwise order of
the corresponding control volumes. This defines the setM∗ ∪ ∂M∗ of dual control volumes.

Remark that our dual control volumes are not exactly the samethan in [5]. In [5], they builtK∗

by joining not only the barycentersxK associated to the elements of the primal mesh of whichxK∗

is a vertex but also the middles of the edges of whichxK∗ is a vertex. This construction is usually
called thebarycentric dual mesh. The following analysis can easily be extended to this sligthly different
framework.

We assume that any∀ (K∗, L∗) ∈ M
∗ ∪ ∂M

∗ such thatK∗ 6= L∗, we have
◦

K∗ ∩
◦

L∗= ∅. For all
neighbor control volumesK andL, we assume that∂K ∩ ∂L is an edge of the primal mesh denoted by
σ = K|L. We note byE the set of such edges. We also noteσ∗ = K∗|L∗ andE∗ for the corresponding
dual definitions.

Given the primal and dual control volumes, we define the diamond cellsDσ,σ∗ being the quad-
rangles whose diagonals are a primal edgeσ = K|L = (xK∗ , xL∗) and a corresponding dual edge
σ∗ = K∗|L∗ = (xK, xL), (see Fig. 2.2). Note that the diamond cells are not necessarily convex. If
σ ∈ E ∩ ∂Ω, the quadrangleDσ,σ∗ degenerate into a triangle. The set of the diamond cells is denoted by
D and we haveΩ = ∪

D∈D

D.

xL

~nσ∗K∗

~nσK

xK

σ = K|L

σ∗ = K
∗|L∗

~τK,L

αD

~τK∗,L∗

xK

σ = K|L

σ∗ = K
∗|L∗

mK∗,L

mL∗,L

xK∗

xL∗xL∗

xK∗

xL

FIG. 2.2. Notations in the diamond cells. (Left) Interior cell.(Right) Boundary cell.

Notations:
For any primal control volumeK ∈ M ∩ ∂M, we note

• mK its Lebesgue measure,

• EK the set of its edges (ifK ∈ M), or the one-element set{K} if K ∈ ∂M.

• DK = {Dσ,σ∗ ∈ D, σ ∈ EK},

• ~nK the outward unit normal vector toK.

We will also use corresponding dual notations:mK∗ , EK∗ , DK∗ and~nK∗ .
For a diamond cellD = Dσ,σ∗ whose vertices are(xK, xK∗ , xL, xL∗), we note
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• xD the center of the diamond cellD, that is the intersection of the primal edgeσ and the dual edge
σ∗,

• mD its measure,

• mσ the length of the primal edgeσ,

• mσ∗ the length of the dual edgeσ∗,

• ~nσK the unit vector normal toσ oriented fromxK to xL,

• ~nσ∗K∗ the unit vector normal toσ∗ oriented fromxK∗ to xL∗ ,

• ~τK,L the unit vector parallel toσ∗ (oriented fromxK to xL),

• ~τK∗,L∗ the unit vector parallel toσ (oriented fromxK∗ to xL∗ ),

• αD the angle between~τK,L and~τK∗,L∗ , andmK∗,L (respectivelymL∗,L) the length betweenxK∗

(respectivelyxL∗ ) andxL for any boundary degenerate diamond cell.

• mσK (respectivelymσL ) the length betweenxK (respectivelyxL) andxD,

• mσK∗ (respectivelymσL∗ ) the length betweenxK∗ (respectivelyxL∗ ) andxD,

• DK = D ∩ K the intersection of the diamondD and the primal control volumeK.

The boundary unit normal vectors are denoted by~nD ∈ (R2)D such that~nD = ~nσK. We have to
differentiate the interior diamond cells to the different boundary diamond cells by introducing the sets

• Dext = {D ∈ D, D ∩ ∂Ω 6= ∅},

• Dint = D\Dext,

• DΓ = {D ∈ D, D ∩ Γ 6= ∅}.

REMARK 2.1 For all D ∈ Dext, we havemσK∗ = mK∗,L andmσL∗ = mL∗,L.

Finally we denote byfK (resp. fK∗) the mean-value of the source termf on K ∈ M (resp. on
K∗ ∈ M

∗ ∪ ∂M
∗). The family((hK)K∈∂M, (hK∗)K∗∈∂M∗) is also defined by:

hK =
1

mσK

∫

σK

h(s)ds, ∀K ∈ ∂M, and hK∗ =
1

mσK∗

∫

σK∗

h(s)ds, ∀K∗ ∈ ∂M
∗.

HereσK = B(xK, ρK) ∩ ∂Ω andσK∗ = B(xK∗ , ρK∗) ∩ ∂Ω andρK andρK∗ are positive numbers
associated to the meshT and such thatσK ⊂ K andσK∗ ⊂ ∂K∗.

The unknowns: the m-DDFV method associates to all primal control volumesK ∈ M ∪ ∂M an
unknown valueuK and to all dual control volumesK∗ ∈ M∗ ∪ ∂M∗ an unknown valueuK∗ . We denote
the approximate solution on the meshT by uT ∈ R

T where

uT =
(
(uK)

K∈(M∪∂M) , (uK∗)
K∗∈(M∗∪∂M∗)

)
.
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Inner products: we define the two following inner products

JvT , uT KT =
1

2




∑

K∈M

mKuKvK +
∑

K∗∈(M∗∪∂M∗)

mK∗uK∗vK∗



 , ∀uT , vT ∈ R
T , (2.1)

(ξD, ηD)D =
∑

D∈D

mDξ
D · ηD, ∀ξD, ηD ∈ (R2)D,

and the corresponding norm

||ξD||2D = (ξD, ξD)D, ∀ξD ∈ (R2)D.

Boundary inner products: we define the followingL2 inner product on the boundary ofΩ

(uD, vD)∂Ω =
∑

Dσ,σ∗∈Dext

mσu
D · vD, ∀uD, vD ∈ R

D.

Trace operators: we will need the following definition of a trace operator in the DDFV framework

γT (uT ) = (γD(uT ))D∈D
, ∀uT ∈ R

T ,

where

γD(uT ) =
mK∗,L

mσ

γK∗,L(uT ) +
mL∗,L

mσ

γL∗,L(uT ) and γK∗,L(uT ) =
uK∗ + uL

2
(2.2)

Discrete gradient: we define (like in [6, 12]) a consistent approximation of the gradient operator
denoted by∇D : uT ∈ R

T 7→ (∇DuT )D∈D
∈ (R2)D, as follows:

∇DuT =
1

2mD

[(uL − uK)mσ~nσK + (uL∗ − uK∗)mσ∗~nσ∗K∗ ] , ∀D ∈ D. (2.3)

Discrete divergence:we define a consistent approximation of the divergence operator denoted by
divT : ξ = (ξD)D∈D 7→ divT ξ ∈ R

T , as follows:

divKξ =
1

mK

∑

D∈DK

mσ(ξ
D, ~nσK), ∀K ∈ M, and divKξ = 0, ∀K ∈ ∂M, (2.4a)

divK∗

ξ =
1

mK∗

∑

D∈DK∗

mσ∗(ξD, ~nσ∗K∗), ∀K∗ ∈ M
∗, (2.4b)

divK∗

ξ =
1

mK∗




∑

D∈DK∗

mσ∗(ξD, ~nσ∗K∗) +
∑

D∈D
K∗

D∩∂Ω 6=∅

mK∗,L(ξD, ~nσK)


 , ∀K∗ ∈ ∂M

∗. (2.4c)

These two operators are indiscrete duality(giving its name to the scheme) since it is possible to
prove a discrete Stokes formula using these two operators (see for instance [2, 5, 6]).

THEOREM 2.1 (STOKES FORMULA) For anyξD ∈ (R2)D, uT ∈ R
T , we have

JdivT (ξD), uT KT = −(ξD,∇DuT )D + (ξD · ~nD, γT (uT ))∂Ω . (2.5)
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3. The m-DDFV scheme with mixed Dirichlet/Fourier boundaryconditions

We consider problem (1.1) and we assume that the primal mesh is chosen in such a (natural) way
that ∂Γ ⊂ X∗. We note : ∂MD = {K ∈ ∂M, xK 6∈ Γ}, ∂MΓ = {K ∈ ∂M, xK ∈ Γ}, ∂AΓ =
{The half-edges belonging toΓ, [xK∗xL] ⊂ L ∈ ∂MΓ }, ∂M∗

D = {K∗ ∈ ∂M
∗, xK∗ ∈ ∂Ω\Γ}∪{K∗ ∈

∂M
∗, xK∗ ∈ ∂Γ}, ∂M∗

Γ = {K∗ ∈ ∂M
∗, xK∗ ∈ Γ andxK∗ 6∈ ∂Γ}. We now introduce two new flux

unknownsϕK∗,L andϕL∗,L for each degenerate boundary control volumeL = [xK∗xL∗ ] belonging to
∂MΓ . These two unknowns are meant to approximate(A∇u, ~nσL) along respectively[xK∗ , xL] and
[xL, xL∗ ]. Notice that there are other, somewhat more simple, ways to deal with Fourier boundary
conditions in the m-DDFV framework but the introduction of these additional unknowns is needed to
be able to build a convergent non-overlapping Schwarz iterative method, which is our main objective in
this paper (see Section 4).

Let us denote byΦT

Γ the set of these new unknowns

ΦT

Γ =
{
φT = (ϕK∗,L, ϕL∗,L)

L=[xK∗xL∗ ]∈∂MΓ

}
.

The new approximate m-DDFV solution is now a coupleUT = (uT , φT ) ∈ R
T × ΦT

Γ solving the
following set of linear equations:

−divK (AD∇DuT ) = fK, ∀ K ∈ M, (3.1a)

−divK∗

(AD∇DuT ) = fK∗ , ∀ K∗ ∈ M
∗, (3.1b)

−
∑

Dσ,σ∗∈DK∗

mσ∗

mK∗

(AD∇
DuT , ~nK∗) −

∑

D∈D
K∗

D∩Γ 6=∅

mK∗,L

mK∗

ϕK∗,L = fK∗ , ∀ K∗ ∈ ∂M
∗
Γ , (3.1c)

mK∗,L

mσ

ϕK∗,L +
mL∗,L

mσ

ϕL∗,L = (AD∇
DuT , ~nσL) , ∀ L = [xK∗xL∗ ] ∈ ∂MΓ , (3.1d)

uK = hK, ∀ K ∈ ∂MD, uK∗ = hK∗ , ∀ K∗ ∈ ∂M
∗
D, (3.1e)

ϕK∗,L + λ
uK∗ + uL

2
= gK∗,L, ∀ [xK∗xL] ∈ ∂AΓ , (3.1f)

whereAD = (AD)D∈D,AD is a definite positive matrix which approximatesA on the diamondD.

In order to simplify the notations a little, we will now denote the fact thatUT=(uT , φT ) ∈ R
T ×ΦT

Γ

solves (3.1), for some data(fT , hT , gT ), in the following compact way

LT

Ω,Γ (uT , φT , fT , hT , gT ) = 0.

The above m-DDFV finite volume scheme is obtained by formallyintegrating the equation (1.1)
on each interior primal control volumes (3.1a), on interiordual control volumes (3.1b) and also on
boundary dual control volumes belonging to∂M∗

Γ (3.1c). The numerical fluxes are approximated by
using the discrete gradient operator∇D for edges lying inside the domain or on∂Ω \ Γ , and by using
the flux unknownsφT onΓ .

We link up these unknownsφT to the discrete m-DDFV gradient on each Fourier boundary control
volumes by equation (3.1d). Finally, we impose the Dirichlet boundary condition on the boundary
primal control volumes belonging to∂MD and on boundary dual control volumes belonging to∂M

∗
D

(3.1e) and we impose the Fourier boundary condition using the flux unknownsφT on each half-edge
lying into Γ (3.1f), gK∗,L being a discrete boundary Fourier data which can be, for instance, the mean-
value of a functiong on [xK∗xL].

There exist many possibilities to define the matrixAD. We mainly consider the two following cases.



Non-overlapping Schwarz Algorithm for Solving 2D m-DDFV Schemes 7 of 35

• If A is smooth with respect to the space variablex, ie there existCA > 0 such that:

‖A(x) −A(x′)‖ 6 CA|x− x′|, ∀x, x′ ∈ Ω,

we choose, for example, to takeAD = A(xD), for anyD ∈ D.

• If A is possibly discontinuous across primal or dual edges in themesh, then a good choice forAD

is more intricate. We recall here the main lines of the so-called m-DDFV scheme (see [12, 3]).
In the case whereA(x) is constant on each primal control volume, we denote byAK the value
A(x) on the control volumeK. For all D ∈ Dext, we chooseAD to be equal toAK whereK is
the unique primal control volume such thatD ⊂ K, and for allD ∈ Dint, we defineAD by the
following formulas

(AD~nK, ~nK) =
mσ∗(AK~nK, ~nK)(AL~nK, ~nK)

mσL(AK~nK, ~nK) +mσK(AL~nK, ~nK)
, (3.2a)

(AD~nK∗ , ~nK∗) =
mσL(AL~nK∗ , ~nK∗) +mσK(AK~nK∗ , ~nK∗)

mσ∗

−
mσKmσL

mσ∗

((AK~nK, ~nK∗) − (AL~nK, ~nK∗))
2

mσL(AK~nK, ~nK) +mσK(AL~nK, ~nK)
,

(3.2b)

(AD~nK, ~nK∗) =
mσL(AL~nK, ~nK∗)(AK~nK, ~nK) +mσK(AK~nK, ~nK∗)(AL~nK, ~nK)

mσL(AK~nK, ~nK) +mσK(AL~nK, ~nK)
. (3.2c)

We recognize in (3.2a) the weighted harmonic mean-value of(AK~nK, ~nK) and(AL~nK, ~nK) and in
the first term of (3.2b) the weighted arithmetic mean-value of (AK~nK∗ , ~nK∗) and(AL~nK∗ , ~nK∗).
This particular choice ofAD ensures the consistency of the discrete normal flux on each edges of
primal and dual meshes.

As shown in [3], this particular choice forAD imply a first order convergence of the scheme in
the case of Dirichlet boundary conditions. More precisely,if we introduce the spaceH2(M) = {u ∈
H1

0 (Ω), u|K ∈ H2(K), ∀K ∈ M}, the following theorem is proved in [3]:

THEOREM 3.1 (ERROR ESTIMATE FOR M-DDFV, DIRICHLET BOUNDARY CONDITIONS) Assume
that the exact solutionu, to the problem(1.1) with Γ = ∅, lies inH2(M). Under suitable regularity
assumptions on the meshes,uT and∇DuT are first order approximations ofu and∇u, respectively, in
theL2 norm.

In the case of Dirichlet/Fourier boundary conditions understudy in this section, the error estimate
of Theorem 3.1 can also be proved but we will not give the proof.

The main result of this section is the following existence and uniqueness theorem.

THEOREM 3.2 The finite volume scheme(3.1) which approximate Problem(1.1)on a DDFV meshT
possesses a unique solutionUT = (uT , φT ) ∈ R

T × ΦT

Γ .

We first introduce a preliminary result saying that if the source term and the Dirichlet boundary data
are both equal to 0, then we can develop the inner productJdivT (AD∇DuT ), uT KT as follows.
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LEMMA 3.1 For all gT ∈ ΦT

Γ , andUT=(uT , φT ) ∈ R
T × ΦT

Γ such that

LT

Ω,Γ (uT , φT , 0, 0, gT ) = 0,

we have

−JdivT (AD∇DuT ), uT KT = −
λ

4

∑

D∈DΓ

Mσ(uK∗ −uL∗)2−
1

2

∑

K∗∈∂M∗
Γ

uK∗

∑

D∈D
K∗

D∩Γ 6=∅

Mσ(gL∗,L−gK∗,L),

whereMσ =
mK∗,LmL∗,L

mσ
.

Proof. The vectorUT = (uT , φT ) ∈ R
T × ΦT

Γ solves :

−divK (AD∇DuT ) = 0, ∀ K ∈ M, (3.3a)

−divK∗

(AD∇DuT ) = 0, ∀ K∗ ∈ M
∗, (3.3b)

−
∑

Dσ,σ∗∈DK∗

mσ∗

mK∗

(AD∇
DuT , ~nK∗) −

∑

D∈D
K∗

D∩Γ 6=∅

mK∗,L

mK∗

ϕK∗,L = 0, ∀ K∗ ∈ ∂M
∗
Γ , (3.3c)

mK∗,L

mσ

ϕK∗,L +
mL∗,L

mσ

ϕL∗,L = (AD∇
DuT , ~nσL) , ∀ L = [xK∗xL∗ ] ∈ ∂MΓ , (3.3d)

uK = 0, ∀ K ∈ ∂MD, uK∗ = 0, ∀ K∗ ∈ ∂M
∗
D, (3.3e)

ϕK∗,L + λ
uK∗ + uL

2
= gK∗,L, ∀ [xK∗xL] ∈ ∂AΓ . (3.3f)

By using the definition (2.1) ofJ·, ·KT onΩ and successively (3.3a)-(3.3c), then (3.3d), (3.3e) and finally
(3.3f) it follows:

−JdivT (AD∇DuT ), uT KT = −
1

2

∑

K∗∈∂M∗
Γ

uK∗

∑

D∈D
K∗

D∩Γ 6=∅

mK∗,L ((AD∇
DuT , ~nσ,Lk

) − ϕK∗,L)

= −
1

2

∑

K∗∈∂M∗
Γ

uK∗

∑

D∈D
K∗

D∩Γ 6=∅

mK∗,LmL∗,L

mσ

(ϕL∗,L − ϕK∗,L)

= −
1

2

∑

K∗∈∂M∗
Γ

uK∗

∑

D∈D
K∗

D∩Γ 6=∅

Mσλ (γK∗,L(uT ) − γL∗,L(uT ))

−
1

2

∑

K∗∈∂M∗
Γ

uK∗

∑

D∈D
K∗

D∩Γ 6=∅

Mσ (gL∗,L − gK∗,L) .

The claim follows by noting that, since∂Γ ⊂ X∗, the first term in the right hand side above can be
written

1

2

∑

K∗∈∂M∗
Γ

uK∗

∑

D∈D
K∗

D∩Γ 6=∅

Mσ

λ

2
(uK∗ − uL∗) =

1

2

∑

D∈DΓ

Mσ

λ

2
(uK∗ − uL∗)2 .

�

We can now proceed to the proof of the Theorem 3.2.
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Proof of the Theorem 3.2.The wellposedness of this square linear system is equivalent to showing that
it has a trivial kernel. LetUT = (uT , φT ) ∈ R

T × ΦT

Γ which solves

LT

Ω,Γ (uT , φT , 0, 0, 0) = 0. (3.4)

By using Lemma 3.1, we have :

−JdivT (AD∇DuT ), uT KT = −
λ

4

∑

D∈DΓ

Mσ(uK∗ − uL∗)2.

The discrete Stokes formula (2.5) gives:

−JdivT (AD∇DuT ), uT KT = (AD∇DuT ,∇DuT )D − (AD∇DuT · ~n, γT (uT ))∂Ω

=
∑

D∈D

mD(AD∇
DuT ,∇DuT ) −

∑

D∈DΓ

mσγ
D(uT )(AD∇

DuT , ~nσL).

Combining the last two equalities, we get

0 =
∑

D∈D

mD(AD∇
DuT ,∇DuT ) +

λ

4

∑

D∈DΓ

Mσ(uK∗ − uL∗)2

−
∑

D∈Di,Γ

mσγ
D(uT )(AD∇

DuT , ~nσL). (3.5)

By using (3.3d), the last term becomes

−
∑

D∈DΓ

mσγ
D(uT )(AD∇

DuT , ~nσL)

= −
∑

D∈DΓ

mσ

(
mK∗,L

mσ

γK∗,L(uT ) +
mL∗,L

mσ

γL∗,L(uT )

) (
mK∗,L

mσ

ϕK∗,L +
mL∗,L

mσ

ϕL∗,L

)

=
∑

D∈DΓ

mσλ

(
mK∗,L

mσ

γK∗,L(uT ) +
mL∗,L

mσ

γL∗,L(uT )

)2

,

sinceϕK∗,L + λγK∗,L(uT ) = 0 andϕL∗,L + λγL∗,L(uT ) = 0. It follows from (3.5) that

0 =
∑

D∈D

mD(AD∇
DuT ,∇DuT ) +

λ

4

∑

D∈DΓ

Mσ(uK∗ − uL∗)2

+
∑

D∈DΓ

mσλ

(
mK∗,L

mσ

γK∗,L(uT ) +
mL∗,L

mσ

γL∗,L(uT )

)2

.

Since all the terms above are non-negative, we deduce that:

0 =
∑

D∈D

mD(AD∇
DuT ,∇DuT ).

Finally, AD being definite positive for anyD ∈ D, the above equality leads to∀ D ∈ D, ∇DuT = 0.
Hence there exist two constantsc0 andc1 so that :
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∀ K ∈ (M ∪ ∂M), uK = c0,

∀ K∗ ∈ (M∗ ∪ ∂M∗), uK∗ = c1,

and sinceuT satisfies (3.4), we deducec0 = c1 = 0 and finallyuT = 0. AsϕK∗,L + λγK∗,L(uT ) = 0
andϕL∗,L + λγL∗,L(uT ) = 0, we obtain thatϕK∗,L = 0, andϕL∗,L = 0, thereforeUT = 0. �

4. Non-overlapping Schwarz algorithm

Consider a domainΩ split into several non-overlapping subdomainsΩi. The Schwarz algorithm in-
troduced by Lions (see [7],[8],[13]) for the Laplace problem with homogeneous Dirichlet boundary
condition consists, instead of solving the problem inΩ, to solve the Laplace equation successively
on each subdomains with homogeneous Dirichlet boundary condition on∂Ωi ∩ ∂Ω and with Fourier
boundary condition on the interface∂Ωi ∩ ∂Ωj if j 6= i.

We only consider here the case whereΩ1, Ω2 are two connected subdomains such thatΩ = Ω1 ∪
Ω2 ∪ Γ , Γ being the interface between the two subdomainsΓ = Ω1 ∩ Ω2 and we assume thatΓ
is connected and thatΓ ∩ ∂Ω 6= ∅. These assumptions are not mandatory but let us simplify the
presentation a little.

4.1 Compatible meshes. Composite mesh

For each subdomainΩi, we consider a m-DDFV meshTi = (Mi,M
∗
i ∪ ∂M∗

i ) and the associated
diamond meshDi. We noteDi,Γ = {D ∈ Di, D ∩ Γ 6= ∅}. We will assume that the two meshes are
compatible in the following sense.

DEFINITION 4.1 We say thatT1 andT2 are compatible, if the following two conditions hold:

1. The two meshes have the same vertices onΓ : X∗
1 ∩Γ = X∗

2 ∩Γ . This implies in particular that
the two meshes have the same degenerate control volumes onΓ , that is∂M1,Γ = ∂M2,Γ .

2. The centerxL of a degenerate interface control volumeL = [xK∗ , xL∗ ] ∈ ∂M1,Γ = ∂M2,Γ is
the intersection of(xK∗ , xL∗) and(xK1

, xK2
), whereK1 ∈ M1 andK2 ∈ M2 are the two primal

control volumes such thatL ⊂ ∂K1 andL ⊂ ∂K2.

Dual mesh
Primal mesh

Γ

FIG. 4.1. A DDFV meshT of the whole domainΩ.
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Dual mesh
Primal mesh

xK2,1

xK1,1

xK
∗

N+1

xL1

xK
∗
1

FIG. 4.2. The compatible meshesT1, T2corresponding to the DDFV meshT of the whole domainΩ of Figure 4.1.

REMARK 4.1 In practice, the two compatibility conditions do not represent important constraints on
the meshes under consideration. Indeed, we will usually encounter two opposite situations:

1. We are given a DDFV meshT of the whole domainΩ (see Figure 4.1) such that any primal
control volumeK ∈ M is such that eitherK ⊂ Ω1 or K ⊂ Ω2. In that case, the construction of
the two compatible meshesTi only amounts to split into pieces the dual control volumes crossing
the interfaceΓ (see Figure 4.2).

2. We are givena priori independent DDFV meshesTi for both subdomainsΩi (see Figure 4.3).
In that case, we only have to add some vertices onΓ , ensuring that∂M1,Γ = ∂M2,Γ and
then to split the interface dual control volumes in∂Mi,Γ into pieces in order to take these new
vertices into account. The centersxL of the degenerate interface control volumes are then defined
following the second item in Definition 4.1 (see Figure 4.4).Notice that this modification of the
meshes do not increase significantly the number of degrees offreedom in the problem.

Dual mesh
Primal mesh

FIG. 4.3. Two independent DDFV meshesT1, T2 for both subdomainsΩi.

For two given compatible meshesT1 andT2, we denote byN + 1 the number of vertices in the two
meshes belonging to the interfaceΓ (these are the same for the two meshes thanks to the compatibility
conditions).
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Dual mesh
Primal meshxL

xL∗

xK∗

xK1

xK2

FIG. 4.4. The compatible meshes corresponding to two independent DDFV meshesT1, T2 of Figure 4.3 .

For the sake of clarity of some computations below we need to sort and number theseN +1 vertices
xK∗

1
, · · · , xK∗

N+1
, in such a way that[xK∗

k
, xK∗

k+1
] ∈ ∂Mi,Γ = ∂Mj,Γ and such that{xK∗

1
, xK∗

N+1
} =

Γ ∩ ∂Ω (see Figure 4.5). We do the same with theN centersxL ∈ Γ which are then sorted and
numbered as follows :xL1

, · · · , xLN
with Lk = [xK∗

k
, xK∗

k+1
].

xK∗
N+1

xLN

xK∗
2

xL1

xK∗
1

Γ

FIG. 4.5. Notations.

Given two compatible meshesT1, T2 in the sense of Definition 4.1, a composite DDFV meshT =
(M,M∗ ∪ ∂M∗) can be built on the whole domainΩ. Notice that in the case 1 of Remark 4.1, this
composite meshT is already available by construction (see Figure 4.1). In other cases, the composite
primal mesh is simply given byM = M1 ∪ M2. Then, we need to join corresponding interface dual
control volumes in the two meshes. To this end, we introduce the set

M
∗
Γ = {K∗ =

◦

K∗
1 ∪ K∗

2, K
∗
1 ∈ ∂M

∗
1,Γ , K

∗
2 ∈ ∂M

∗
2,Γ , such thatxK∗

1
= xK∗

2
},

so that the composite interior dual meshM∗ is then defined byM∗ = M∗
1 ∪ M∗

2 ∪ M∗
Γ . Finally,

the boundary dual cells are the ones in∂M∗ = ∂M∗
1,D ∪ ∂M∗

2,D (see Figure 4.6). Notice that the
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degenerate interface control volumesL ∈ ∂M1,Γ = ∂M2,Γ are no more present in the composite mesh.
In particular, the corresponding unknowns in the followingschemes have no natural corresponding
unknown for the m-DDFV scheme on the meshT .

Dual mesh
Primal mesh

Γ

FIG. 4.6. The composite meshT corresponding to the 2 compatibles meshes of Figure 4.4.

4.2 Presentation of the iterative domain decomposition solver

The idea of the domain decomposition method is to use the scheme (3.1) on each of the two subdomains
in order to build an iterative Schwarz method which will converge to the solution of the standard m-
DDFV scheme on the whole domainΩ for the meshT . More precisely, we propose the following
algorithm

• For anyi ∈ {1, 2}, choose anygT i

0 ∈ ΦT i

Γ .

• For anyn > 0, and anyi, j ∈ {1, 2}, j 6= i:

– CalculateUT i

n+1 = (uT i

n+1, φ
T i

n+1) ∈ R
T i × ΦT i

Γ solution to

LT i

Ωi,Γ
(uT i

n+1, φ
T i

n+1, f
T i , hT i , gT j

n ) = 0. (4.1)

– CalculategT i

n+1 by

∀ [xK∗xL] ∈ ∂AΓ , gn+1
i,K∗,L = −ϕn+1

i,K∗,L + λ
un+1
i,K∗ + un+1

i,L

2
. (4.2)

Using Theorem 3.2, we have the following well-posedness result.

PROPOSITION4.1 The initial datagT i

0 being given, Algorithm(4.1)-(4.2) defines a unique sequence
(UT i

n )n in R
T i × ΦT i

Γ , for i = 1, 2.

We want now to show that this sequence converges towards the solution of the scheme on the com-
plete domainΩ, for the composite meshT .
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4.3 Preliminary construction

The first step in the analysis is to show that the solution of the m-DDFV scheme on the whole domain
Ω with homogeneous Dirichlet condition can be written as a possible limit of the sequence(UT i

n )n,
i ∈ {1, 2} obtained by the Schwarz algorithm. The precise result is thefollowing:

THEOREM 4.1 (LINK WITH THE M -DDFV SCHEME) Let uT be the solution of the m-DDFV scheme
with homogeneous Dirichlet condition (that is system(3.1)with Γ = ∅) on the whole domainΩ asso-
ciated the composite meshT built uponT1 andT2. For eachi ∈ {1, 2}, there exists(uT i , φT i , gT i) ∈
R

T i × ΦT i

Γ × ΦT i

Γ such that

LT i

Ωi,Γ
(uT i , φT i , fT i , hT i , gT i) = 0, (4.3)

for i = 1, 2 , we have {
ui,K = uK, for K ∈ Mi ∪ ∂Mi,D,

ui,K∗ = uK∗ , for K∗ ∈ M
∗
i ∪ ∂M

∗
i ,

(4.4)

and

N∑

k=1

(
ϕi,K∗

k
,Lk

− ϕi,K∗
k+1

,Lk

)
= 0 for i = 1, 2. (4.5)

Proof.

u1,D

ϕ1,K∗,D

ϕ2,L∗,D

ϕ1,L∗,D

u2,D

u2,L

ϕ2,K∗,D

u1,K

Ω2

Γ

uK∗

uL∗

Ω1

FIG. 4.7. Notations in a diamond cell intersecting the interface Γ .

Equations (4.4) define all the values ofuT i , except the values on the degenerate primal control volumes
insideΓ , on both sides of the interface, therefore it remains to define the values ofui,D andϕi,K∗,D on
the interfaceΓ .
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STEP 1 - COMPUTATION OF THE INTERFACE VALUES. Let us considerD ∈ D which intersects
Γ . Such a diamond cell writesD = D1 ∪ D2 whereD

1 ∈ D1, D
2 ∈ D2. We denote byK ∈ M1,

L ∈ M2, the primal control volumes such thatD
1 ⊂ K andD

2 ⊂ L respectively. We first require the
equalityu1,D = u2,D. Then the common valueuD of u1,D = u2,D is determined by requiring the local
conservativity of normal fluxes:

(
AK∇

D
1

uT 1 , ~nσK

)
=

(
AL∇

D
2

uT 2 , ~nσK

)
. (4.6)

Using the discrete gradient definition (2.3), this reads
(

1

2mDK

[(uD − u1,K)mσAK~nσK + (u1,L∗ − u1,K∗)mσKAK~nσ∗K∗ ] , ~nσK

)

=

(
1

2mDL

[−(uD − u2,L)mσAL~nσK + (u2,L∗ − u2,K∗)mσLAL~nσ∗K∗ ] , ~nσK

)

=

(
1

2mDL

[−(uD − u2,L)mσAL~nσK + (uL∗ − uK∗)mσLAL~nσ∗K∗ ] , ~nσK

)
.

As we have2mDK = sinαDmσmσK and2mDL = sinαDmσmσL , we obtain

uD

((
AK

mσK

+
AL

mσL

)
~nσK, ~nσK

)
= u1,K

(AK~nσK, ~nσK)

mσK

+ u2,L
(AL~nσK, ~nσK)

mσL

+
uL∗ − uK∗

mσ

((AL −AK)~nσ∗K∗ , ~nσK) ,

and we finally find the following value foruD:

uD =
mσKmσL

((AKmσL +ALmσK)~nσK, ~nσK)

[
u1,K

(AK~nσK, ~nσK)

mσK

+ u2,L
(AL~nσK, ~nσK)

mσL

+
uL∗ − uK∗

mσ

((AL −AK)~nσ∗K∗ , ~nσK)

]
.

(4.7)

STEP2 - CONSEQUENCES ON THE THE NUMERICAL FLUXES. The value ofuD given in (4.7) implies,
with our particular choice ofAD in (3.2a)-(3.2c), that the following equalities hold:

(
AD∇

DuT , ~nσK

)
=

(
AD1∇D

1

uT 1 , ~nσK

)
=

(
AD2∇D

2

uT 2 , ~nσK

)
, (4.8)

mσ∗

(
AD∇

DuT , ~nσ∗K∗

)
= mσK

(
AK∇

D
1

uT 1 , ~nσ∗K∗

)
+mσL

(
AL∇

D
2

uT 2 , ~nσ∗K∗

)
. (4.9)

Equality (4.8) comes from the definition (2.3) of the discrete gradient, the definition (3.2a) and (3.2c) of
AD and the value ofuD obtained in (4.7).

Let us now give a detailed proof for (4.9). By using the definition (2.3) of the discrete gradient, we
get

mσ∗

(
AD∇

DuT , ~nσ∗K∗

)
−mσK

(
AK∇

D
1

uT 1 , ~nσ∗K∗

)
−mσL

(
AL∇

D
2

uT 2 , ~nσ∗K∗

)

=
u2,L − u1,K

2mD

mσ∗mσ(AD~nσK, ~nσ∗K∗) +
(uL∗ − uK∗)

2mD

mσ∗mσ∗(AD~nσ∗K∗ , ~nσ∗K∗)

−
uD − u1,K

2mDK

mσKmσ(AK~nσK, ~nσ∗K∗) −
(uL∗ − uK∗)

2mDK

mσKmσK(AK~nσ∗K∗ , ~nσ∗K∗)

+
uD − u2,L

2mDL

mσLmσ(AL~nσK, ~nσ∗K∗) −
(uL∗ − uK∗)

2mDL

mσLmσL(AL~nσ∗K∗ , ~nσ∗K∗).
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By using formula (4.7), we can reorganize all the terms as follows

mσ∗

(
AD∇

DuT , ~nσ∗K∗

)
−mσK

(
AK∇

D
1

uT 1 , ~nσ∗K∗

)
−mσL

(
AL∇

D
2

uT 2 , ~nσ∗K∗

)

= u1,KTK + u2,LTL + (uK∗ − uL∗)T ∗,
(4.10)

where

TK =
1

sinαD

[
(AK~nσK, ~nσ∗K∗) − (AD~nσK, ~nσ∗K∗)

+ ((AL −AK)~nσK, ~nσ∗K∗)mσL

(AK~nσK, ~nσK)

((AKmσL +ALmσK)~nσK, ~nσK)

]
,

TL =
1

sinαD

[
(AD~nσK, ~nσ∗K∗) − (AL~nσK, ~nσ∗K∗)

+ ((AL −AK)~nσK, ~nσ∗K∗)mσK

(AL~nσK, ~nσK)

((AKmσL +ALmσK)~nσK, ~nσK)

]
,

and

T ∗ =
1

sinαD

[
mσ∗

mσ

(AD~nσ∗K∗ , ~nσ∗K∗) −
mσK

mσ

(AK~nσ∗K∗ , ~nσ∗K∗)

−
mσL

mσ

(AL~nσ∗K∗ , ~nσ∗K∗) +
mσKmσL ((AL −AK)~nσ∗K∗ , ~nσK)

2

mσ ((AKmσL +ALmσK)~nσK, ~nσK)

]
.

By using the definition (3.2c) of(AD~nσK, ~nσ∗K∗), TK becomes

TK =

[
mσL(AK~nσK, ~nσ∗K∗)(AK~nσK, ~nσK) +mσK(AK~nσK, ~nσ∗K∗)(AL~nσK, ~nσK)

−mσL(AK~nσK, ~nσK)(AL~nσK, ~nσ∗K∗) −mσK(AK~nσK, ~nσ∗K∗)(AL~nσK, ~nσK)

+mσL((AL −AK)~nσK, ~nσ∗K∗)(AK~nσK, ~nσK)

]/[
sinαD ((AKmσL +ALmσK)~nσK, ~nσK)

]
,

which givesTK = 0. Similarly, by using the definition (3.2c) of(AD~nσK, ~nσ∗K∗), we get thatTL is also
equal to zero. By using the definition (3.2b) of(AD~nσ∗K∗ , ~nσ∗K∗), T ∗ becomes

T ∗ =
1

mσsinαD

[
mσL(AL~nσ∗K∗ , ~nσ∗K∗) +mσK(AK~nσ∗K∗ , ~nσ∗K∗)

−mσKmσL

((AK −AL)~nσK, ~nσ∗K∗)2

((AKmσL +ALmσK)~nσK, ~nσK)

−mσK(AK~nσ∗K∗ , ~nσ∗K∗) −mσL(AL~nσ∗K∗ , ~nσ∗K∗)

+mσKmσL

((AK −AL)~nσK, ~nσ∗K∗)2

((AKmσL +ALmσK)~nσK, ~nσK)

]
,

and we see thatT ∗ = 0. Hence (4.10) leads to (4.9).
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STEP 3 - COMPUTATION OF THE FLUX UNKNOWNS. In the sequel, all mathematical objects associ-
ated to a subdomainΩi will be marked with the indexi as follows

• D
i
k is thekth diamond belonging toDi,Γ with respect to the numerotation introduced in Figure

4.5. In particular,Dik ⊂ Ωi.

• K
∗
i,k is thekth dual cell onΓ belonging to∂M∗

i,Γ , and thenK∗
i,k ⊂ Ωi.

We have2N unknownsϕi,K∗,L and only2N − 1 equations, that is the reason why we impose
the normalisation condition (4.5) in order to uniquely define the flux unknownsϕi,K∗,L. Let us study
separately what takes place on each sub-domain. We have to solve the following linear system for the
sub-domainΩ1




d1 d2

d2 d3

. . .
. . .

d2N−1 d2N

1 −1 · · · 1 −1




︸ ︷︷ ︸
=B




ϕ1,K∗
1
,L1

ϕ1,K∗
2
,L1

...
ϕ1,K∗

N
,LN

ϕ1,K∗
N+1

,LN




︸ ︷︷ ︸
=Φ1

=




mσ1

(
AD1

1
∇D1

1uT 1 , ~nσ,L1

)

−mK∗
1,2
fK∗

1,2
−

∑

D∈DK∗
1,2

mσ∗

(
AD∇

DuT 1 , ~nσ∗,K∗
2

)

...

mσN

(
AD1

N
∇D1

NuT 1 , ~nσ,LN

)

0




,

(4.11)
using the notationsd2k−1 = mK∗

k
,Lk

andd2k = mK∗
k+1

,Lk
for anyk = 1, · · · , N . We easily see thatB

is invertible, so that there exists a unique vectorΦ1 solving (4.11).
Let us now look at the sub-domainΩ2. We just defineΦ2 = −Φ1 and we have to prove thatΦ2

satisfies the following system onΩ2:

BΦ2 =




mσ1

(
AD2

1
∇D2

1uT 2 , ~nσ,L1

)

−mK∗
2,2
fK∗

2,2
−

∑

D∈DK∗
2,2

mσ∗

(
AD∇

DuT 2 , ~nσ∗,K∗
2

)

...

mσN

(
AD2

N
∇D2

NuT 2 , ~nσ,LN

)

0




, (4.12)

with the convention that~nσ,Lk
is the outward unit normal toΩ1 onσ, for all k = 1, · · · , N . By using

the fact thatΦ2 = −Φ1 and equation (4.11), we have for allk = 1, · · · , N

mK∗
k
,Lk
ϕ2,K∗

k
,Lk

+mK∗
k+1

,Lk
ϕ2,K∗

k+1
,Lk

= −mK∗
k
,Lk
ϕ1,K∗

k
,Lk

−mK∗
k+1

,Lk
ϕ1,K∗

k+1
,Lk

= −mσk

(
AD1

k
∇D1

kuT 1 , ~nσ,Lk

)
.

By using the local conservativity equation (4.6), we obtainfor all k = 1, · · · , N

mK∗
k
,Lk
ϕ2,K∗

k
,Lk

+mK∗
k+1

,Lk
ϕ2,K∗

k+1
,Lk

= −mσk

(
AD2

k
∇D2

kuT 2 , ~nσ,Lk

)
.

Let k ∈ {2, · · · , N}. On the one hand, by definition ofϕ1,K∗,L we have:

−
∑

D∈DK∗
1,k

mσ∗

(
AD∇

DuT 1 , ~nσ∗,K∗
k

)
−mK∗

k
,Lk
ϕ1,K∗

k
,Lk

−mK∗
k
,Lk−1

ϕ1,K∗
k
,Lk−1

= mK∗
1,k
fK∗

1,k
.



18 of 35 F. BOYER, F. HUBERT, S. KRELL

On the other hand, there exists a uniqueK
∗
k ∈ M∗, and we haveK∗

k = K∗
1,k ∪K∗

2,k, with K
∗
2,k ∈ M∗

2, see
Figure 4.8.

Since,uT solves the m-DDFV scheme on the meshT , we have in particular the following equation

−
∑

D∈DK∗
k

mσ∗

(
AD∇

DuT , ~nσ∗,K∗
k

)
= mK∗

k
fK∗

k
.

xK
∗

k

K
∗
k

Γ

xK
∗

k

Γ

xLk

K
∗
2,k

xLk−1

K
∗
1,k

Ω1 Ω2

FIG. 4.8. Decomposition ofK∗

k
into the two dual cells of the subdomains.

By using equality (4.9) and the fact thatΦ2 = −Φ1, it follows that

−
∑

D∈DK∗
2,k

mσ∗

(
AD∇

DuT 2 , ~nσ∗,K∗
k

)
−mK∗

k
,Lk
ϕ2,K∗

k
,Lk

−mK∗
k
,Lk−1

ϕ2,K∗
k
,Lk−1

= −
∑

D∈DK∗
k

mσ∗

(
AD∇

DuT , ~nσ∗,K∗
k

)
+

∑

D∈DK∗
1,k

mσ∗

(
AD∇

DuT 1 , ~nσ∗,K∗
k

)

+mK∗
k
,Lk
ϕ1,K∗

k
,Lk

+mK∗
k
,Lk−1

ϕ1,K∗
k
,Lk−1

= mK∗
k
fK∗

k
−mK∗

1,k
fK∗

1,k
=

∫

K∗
k

f(x) dx −

∫

K∗
1,k

f(x) dx

=

∫

K∗
2,k

f(x) dx = mK∗
2,k
fK∗

2,k
,

which exactly gives (4.12).

STEP 4 - CONCLUDING THE PROOF. It remains to definegT i , for i = 1, 2, as follows:

gi,K∗,L = −ϕi,K∗,L + λ
ui,K∗ + ui,L

2
. (4.13)

Collecting all the previous results, we see that we get a solution to

LT i

Ωi,Γ
(uT i , φT i , fT i , hT i , gT j ) = 0

for i = 1, 2, j 6= i and satisfying furthermore the condition (4.5).
�
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4.4 Convergence analysis of the iterative method

Let us state the discrete version of the Poincaré inequalitywhich is proved in [2, Lemma 3.3].

LEMMA 4.1 (DISCRETEPOINCARÉ INEQUALITY) Let T be a DDFV mesh ofΩ. There existsC > 0,
depending only on the diameter ofΩ and onreg(T ) such that for anyuT ∈ R

T and anyg ∈ H
1
2 (∂Ω),

we have
||uT ||2 6 ||uM||2 + ||uM

∗

||2 6 C
(
||∇DuT ||2 + ||g||

H
1
2 (∂Ω)

)
.

The numberC > 0 in this result depend on the numberreg(T ) which is a measure of the regularity
of the mesh. Since we are working in this paper with a fixed meshT , its precise definition is not needed
and we refer to [2] for the details. Let us only point out thatreg(T ) essentially measures how flat the
diamond cells are and how large is the ratio between the diameter of a primal cell (resp. dual cell) and
the diameter of a diamond cell as soon as they intersect.

It is now possible, as in [4] for the classical five point finitevolume scheme, to prove the main result
of this paper, that is the convergence of the Schwarz iterative method to the solution of the m-DDFV
scheme.

THEOREM 4.2 (CONVERGENCE OF THESCHWARZ ALGORITHM) For anygT i

0 ∈ ΦT i

Γ , i ∈ {1, 2}, the
solution(uT i

n )i=1,2 of the algorithm(4.1)-(4.2) converges to the solutionuT of the m-DDFV scheme
with homogeneous Dirichlet condition (that is system(3.1)with Γ = ∅) whenn −→ ∞.

Moreover, if we assume thatgT i

0 is chosen in such a way that

N∑

k=1

(
g0
i,K∗

k
,Lk

− g0
i,K∗

k+1
,Lk

)
=
λ

2

(
hK∗

1
− hK∗

N+1

)
, i = {1, 2}, (4.14)

then, the flux unknownsϕn+1
i,K∗,L given by algorithm(4.1)-(4.2)also converge to the flux approximations

ϕT

i,K∗,L of the scheme(4.3) whenn −→ ∞ that is to say that the solutionUn+1 of the algorithm
(4.1)-(4.2)converge to the solutionUT of the scheme(4.3)whenn −→ ∞.

Note that the values ofuT 1
n anduT 2

n corresponding to the same points on the interfaceΓ may not
coincide, in general, but they both converge to the same value whenn goes to infinity.
Proof.

For i ∈ {1, 2}, we define the errors on each sub-domain at iteration numbern as follows

eni = uT

i − uni , ψ
n
i,K∗,L = ϕi,K∗,L − ϕni,K∗,L, ḡ

n
i,K∗,L = gi,K∗,L − gni,K∗,L.

These error terms satisfy the following system : fori = 1, 2 andj 6= i.

−divK
(
AD∇Den+1

i

)
= 0, ∀ K ∈ Mi, (4.15a)

−divK∗ (
AD∇Den+1

i

)
= 0, ∀ K∗ ∈ M

∗
i , (4.15b)

−
∑

D∈DK∗
k

mσ∗

(
AD∇

Den+1
i , ~nσ∗,K∗

k

)
−mK∗

k
,Lk
ψn+1
i,K∗

k
,Lk

−mK∗
k
,Lk−1

ψn+1
i,K∗

k
,Lk−1

= 0, ∀ k ∈ {2, · · · , N}, (4.15c)

mK∗
k
,Lk

mσ

ψn+1
i,K∗

k
,Lk

+
mL∗

k+1
,Lk

mσ

ψn+1
i,L∗

k+1
,Lk

−
(
AD∇

Den+1
i , ~nσ,Lk

)
= 0, ∀ k ∈ {1, · · · , N}, (4.15d)
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en+1
i,K = 0, ∀ K ∈ ∂MD, en+1

i,K∗ = 0, ∀ K∗ ∈ ∂M
∗
D, (4.15e)

ψn+1
i,K∗

k
,Lk

+ λγK∗
k
,Lk

(
en+1
i

)
= ḡnj,K∗

k
,Lk

∀ k ∈ {1, · · · , N}, (4.15f)

ψn+1
i,K∗

k+1
,Lk

+ λγK∗
k+1

,Lk

(
en+1
i

)
= ḡnj,K∗

k+1
,Lk

∀ k ∈ {1, · · · , N}, (4.15g)

with

ḡnj,K∗,L = −ψnj,K∗,L + λγK∗,L

(
enj

)
∀[xK∗xL] ∈ ∂AΓ . (4.16)

STEP 1. Let us defineIn+1
i = −JdivT (AD∇Den+1

i ), en+1
i KTi

. By using Lemma 3.1, we have :

In+1
i =−

λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

−
1

2

N∑

k=2

en+1
i,K∗

k
Mσk

(
ḡnj,K∗

k+1
,Lk

− ḡnj,K∗
k
,Lk

)
−

1

2

N∑

k=2

en+1
i,K∗

k
Mσk−1

(
ḡnj,K∗

k−1
,Lk−1

− ḡnj,K∗
k
,Lk−1

)
,

where we recall thatMσk
=

mK∗
k

,Lk
mK∗

k+1
,Lk

mσk

. Equation (4.16) for the Fourier data error term and the

definition (2.2) ofγK∗,L lead to

In+1
i = −

λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

−
1

2

N∑

k=2

en+1
i,K∗

k
Mσk

(
−

(
ψnj,K∗

k+1
,Lk

− ψnj,K∗
k
,Lk

))

−
1

2

N∑

k=2

en+1
i,K∗

k
Mσk−1

(
−

(
ψnj,K∗

k−1
,Lk−1

− ψnj,K∗
k
,Lk−1

))

−
λ

4

N∑

k=2

en+1
i,K∗

k
Mσk

(
enj,K∗

k+1
− enj,K∗

k

)
−
λ

4

N∑

k=2

en+1
i,K∗

k
Mσk−1

(
enj,K∗

k−1
− enj,K∗

k

)
.

As a consequence, by gathering all the similar terms, we get

In+1
i =−

λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

−
1

2

N∑

k=1

Mσk

(
−

(
ψnj,K∗

k+1
,Lk

− ψnj,K∗
k
,Lk

)) (
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

+
λ

4

N∑

k=2

Mσk

(
enj,K∗

k+1
− enj,K∗

k

)(
en+1
i,K∗

k+1

− en+1
i,K∗

k

)
.

(4.17)
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STEP 2 . We can now computeIn+1
i in a different way, by using the discrete Stokes formula (2.5) on

the sub-domainΩi:

In+1
i = (AD∇Den+1

i ,∇Den+1
i )Di

− (γDi(AD∇Den+1
i · ~n), γT (en+1

i ))∂Ωi

=
∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i ) −

∑

D∈Di,Γ

mσγ
D(en+1

i )(AD∇
Den+1

i , ~nσL). (4.18)

By comparing (4.17) and (4.18), we obtain

0 =
∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i )

+
λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

−
λ

4

N∑

k=2

Mσk

(
enj,K∗

k+1
− enj,K∗

k

) (
en+1
i,K∗

k+1

− en+1
i,K∗

k

)

+
1

2

N∑

k=1

Mσk

(
−

(
ψnj,K∗

k+1
,Lk

− ψnj,K∗
k
,Lk

)) (
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

︸ ︷︷ ︸
=B1

−
∑

D∈Di,Γ

mσγ
D(en+1

i )(AD∇
Den+1

i , ~nσL)

︸ ︷︷ ︸
=B2

.

(4.19)

Equation (4.15d) and Definition (2.2) of the trace operatorγD imply that the termB2 writes

B2 =

N∑

k=1

mσk

(
mK∗

k
,Lk

mσk

γK∗
k
,Lk

(en+1
i ) +

mK∗
k+1

,Lk

mσk

γK∗
k+1

,Lk
(en+1
i )

)

×

(
mK∗

k
,Lk

mσk

ψn+1
i,K∗

k
,Lk

+
mK∗

k+1
,Lk

mσk

ψn+1
i,K∗

k+1
,Lk

)
.

We now use (4.15f)-(4.15g) and (4.16) to find that

ψnj,K∗
k+1

,Lk
− ψnj,K∗

k
,Lk

=
λ

2

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)
+
λ

2

(
enj,K∗

k+1
− enj,K∗

k

)
+ ψn+1

i,K∗
k
,Lk

− ψn+1
i,K∗

k+1
,Lk
,

in the termB1, it follows thatB̃ = B1 −B2 writes:

B̃ = −
λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

+
λ

4

N∑

k=1

Mσk

(
enj,K∗

k
− enj,K∗

k+1

) (
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

−
1

2

N∑

k=1

Mσk

(
ψn+1
i,K∗

k
,Lk

− ψn+1
i,K∗

k+1
,Lk

)(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

−
N∑

k=1

(
mK∗

k
,Lk

mσk

γK∗
k
,Lk

(en+1
i ) +

mK∗
k+1

,Lk

mσk

γK∗
k+1

,Lk
(en+1
i )

)

×
(
mK∗

k
,Lk
ψn+1
i,K∗

k
,Lk

+mK∗
k+1

,Lk
ψn+1
i,K∗

k+1
,Lk

)
,






= B̃2
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and by gathering the two sums iñB2, we easily get

B̃2 =
N∑

k=1

(
mK∗

k
,Lk
ψn+1
i,K∗

k
,Lk
γK∗

k
,Lk

(en+1
i ) +mK∗

k+1
,Lk
ψn+1
i,K∗

k+1
,Lk
γK∗

k+1
,Lk

(en+1
i )

)
.

Hence, (4.19) becomes

0 =
∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i )

+
λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

−
λ

4

N∑

k=2

Mσk

(
enj,K∗

k+1
− enj,K∗

k

)(
en+1
i,K∗

k+1

− en+1
i,K∗

k

)

−
λ

4

N∑

k=1

Mσk

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)2

+
λ

4

N∑

k=1

Mσk

(
enj,K∗

k
− enj,K∗

k+1

)(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

−
N∑

k=1

[
mK∗

k
,Lk
ψn+1
i,K∗

k
,Lk
γK∗

k
,Lk

(en+1
i ) +mK∗

k+1
,Lk
ψn+1
i,K∗

k+1
,Lk
γK∗

k+1
,Lk

(en+1
i )

]
,

and we see that the sum of the second, third, fourth and fifth terms cancels, so that it finally remains

0 =
∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i )

−
N∑

k=1

[
mK∗

k
,Lk
ψn+1
i,K∗

k
,Lk
γK∗

k
,Lk

(en+1
i ) +mK∗

k+1
,Lk
ψn+1
i,K∗

k+1
,Lk
γK∗

k+1
,Lk

(en+1
i )

]
.

We can do exactly the same computation on the sub-domainΩj . Adding the two results, we obtain

0 =
∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i ) +

∑

D∈Dj

mD(AD∇
Den+1

j ,∇Den+1
j )

−
N∑

k=1

[
mK∗

k
,Lk
ψn+1
i,K∗

k
,Lk
γK∗

k
,Lk

(en+1
i ) +mK∗

k+1
,Lk
ψn+1
i,K∗

k+1
,Lk
γK∗

k+1
,Lk

(en+1
i )

]

−
N∑

k=1

[
mK∗

k
,Lk
ψn+1
j,K∗

k
,Lk
γK∗

k
,Lk

(en+1
j ) +mK∗

k+1
,Lk
ψn+1
j,K∗

k+1
,Lk
γK∗

k+1
,Lk

(en+1
j )

]
.

(4.20)

STEP 3. Using the formula

−ab =
1

4λ

(
(a− λb)2 − (a+ λb)2

)
,

and equations (4.15f)-(4.15g) and (4.16), we get that for any k = 1, . . . , N :
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−ψn+1
i,K∗

k
,Lk
γK∗

k
,Lk

(en+1
i ) − ψn+1

j,K∗
k
,Lk
γK∗

k
,Lk

(en+1
j )

=
1

4λ




(
−ψn+1

i,K∗
k
,Lk

+ λγK∗
k
,Lk

(en+1
i )

)2

−
(
ψn+1
i,K∗

k
,Lk

+ λγK∗
k
,Lk

(en+1
i )

)2

︸ ︷︷ ︸
=−ψn

j,K∗
k

,Lk
+λγK∗

k
,Lk

(en
j )




+
1

4λ




(
−ψn+1

j,K∗
k
,Lk

+ λγK∗
k
,Lk

(en+1
j )

)2

−
(
ψn+1
j,K∗

k
,Lk

+ λγK∗
k
,Lk

(en+1
j )

)2

︸ ︷︷ ︸
=−ψn

i,K∗
k

,Lk
+λγK∗

k
,Lk

(en
i )




=
1

4λ

[(
−ψn+1

i,K∗
k
,Lk

+ λγK∗
k
,Lk

(en+1
i )

)2

−
(
−ψni,K∗

k
,Lk

+ λγK∗
k
,Lk

(eni )
)2

]

+
1

4λ

[(
−ψn+1

j,K∗
k
,Lk

+ λγK∗
k
,Lk

(en+1
j )

)2

−
(
−ψnj,K∗

k
,Lk

+ λγK∗
k
,Lk

(enj )
)2

]
.

We can do the same for computing−ψn+1
i,K∗

k+1
,Lk
γK∗

k+1
,Lk

(en+1
i )−ψn+1

j,K∗
k+1

,Lk
γK∗

k+1
,Lk

(en+1
j ). Thus, we

find that (4.20) becomes:

0 =
∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i ) +

∑

D∈Dj

mD(AD∇
Den+1

j ,∇Den+1
j )

+
∑

[xK∗ ,xL]∈∂AΓ

mK∗,L

4λ

[(
−ψn+1

i,K∗,L + λγK∗,L(en+1
i )

)2
−

(
−ψni,K∗,L + λγK∗,L(eni )

)2
]

+
∑

[xK∗ ,xL]∈∂AΓ

mK∗,L

4λ

[(
−ψn+1

j,K∗,L + λγK∗,L(en+1
j )

)2
−

(
−ψnj,K∗,L + λγK∗,L(enj )

)2
]
.

(4.21)

STEP 4. LetM ∈ N
∗, we sum the equality (4.21) forn vaying from 1 toM , and we remark that

simplifications occur in the interface terms from iterationn andn+ 1. It follows that

M∑

n=1

∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i ) +

M∑

n=1

∑

D∈Dj

mD(AD∇
Den+1

j ,∇Den+1
j )

+
∑

[xK∗ ,xL]∈∂AΓ

mK∗,L

4λ

(
−ψM+1

i,K∗,L + λγK∗,L(eM+1
i )

)2
+

∑

[xK∗ ,xL]∈∂AΓ

mK∗,L

4λ

(
−ψM+1

j,K∗,L + λγK∗,L(eM+1
j )

)2

︸ ︷︷ ︸
>0

=
∑

[xK∗ ,xL]∈∂AΓ

mK∗,L

4λ

(
−ψ1

i,K∗,L + λγK∗,L(e1i )
)2

+
∑

[xK∗ ,xL]∈∂AΓ

mK∗,L

4λ

(
−ψ1

j,K∗,L + λγK∗,L(e1j)
)2
,

which gives that there existsC > 0, independent ofn, such that

M∑

n=1

∑

D∈Di

mD(AD∇
Den+1

i ,∇Den+1
i ) +

M∑

n=1

∑

D∈Dj

mD(AD∇
Den+1

j ,∇Den+1
j ) 6 C.
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Using the coercivity of the matrix-valued mapA, we obtain

M∑

n=1

||∇Dien+1
i ||2Di

+

M∑

n=1

||∇Djen+1
j ||2Dj

6 CAC.

We deduce that the two series
∑

n>1

||∇Dien+1
i ||2Di

and
∑

n>1

||∇Djen+1
j ||2Dj

converge and as a result we

have that fori = 1, 2
||∇Dien+1

i ||2Di
−→

n→+∞
0.

According to the discrete Poincaré inequality Lemma 4.1, wededuce the convergence ofen+1
i to 0, for

i = 1, 2, whenn goes to∞.

STEP 5. It remains to prove that the fluxesψn+1
i,K∗,L also converge to 0 provided that (4.14) holds. By

using equations (4.15c)-(4.15d), we already have that∀ k ∈ {1, · · · , N}:

mK∗
k
,Lk

mσ

ψn+1
i,K∗

k
,Lk

+
mK∗

k+1
,Lk

mσ

ψn+1
i,K∗

k+1
,Lk

=
(
AD∇

Den+1
i , ~nσ,Lk

)
−→

n→+∞
0,

and∀ k ∈ {2, · · · , N}

mK∗
k
,Lk
ψn+1
i,K∗

k
,Lk

+mK∗
k
,Lk−1

ψn+1
i,K∗

k
,Lk−1

= −
∑

D∈DK∗
k

mσ∗

(
AD∇

Den+1
i , ~nσ∗,K∗

k

)
−→

n→+∞
0.

We first prove by induction that for anyn > 0, we have

N∑

k=1

(
ḡni,K∗

k
,Lk

− ḡni,K∗
k+1

,Lk

)
= 0. (4.22)

For the initialisation, we use the definition ofḡ0
i,K∗,L to obtain

N∑

k=1

(
ḡ0
i,K∗

k
,Lk

− ḡ0
i,K∗

k+1
,Lk

)
=

N∑

k=1

(
gi,K∗

k
,Lk

− gi,K∗
k+1

,Lk

)
−

N∑

k=1

(
g0
i,K∗

k
,Lk

− g0
i,K∗

k+1
,Lk

)
.

By using (4.13), we have

N∑

k=1

(
gi,K∗

k
,Lk

− gi,K∗
k+1

,Lk

)
= −

N∑

k=1

(
ϕi,K∗

k
,Lk

− ϕi,K∗
k+1

,Lk

)
+
λ

2

N∑

k=1

(
ui,K∗

k
− ui,K∗

k+1

)

= −
N∑

k=1

(
ϕi,K∗

k
,Lk

− ϕi,K∗
k+1

,Lk

)
+
λ

2

(
hK∗

1
− hK∗

N+1

)
,

and then, by using (4.5), we finally have

N∑

k=1

(
gi,K∗

k
,Lk

− gi,K∗
k+1

,Lk

)
=
λ

2

(
hK∗

1
− hK∗

N+1

)
.
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This implies by using (4.14) that

N∑

k=1

(
ḡ0
i,K∗

k
,Lk

− ḡ0
i,K∗

k+1
,Lk

)
= 0. (4.23)

We assume that the equality (4.22) is true for somen > 0. By using the definition (4.16) of̄gn+1
i,K∗,L and

successively equations (4.15f)-(4.15g) then (4.15e), it follows that
N∑

k=1

(
ḡn+1
i,K∗

k
,Lk

− ḡn+1
i,K∗

k+1
,Lk

)
=

N∑

k=1

(
ψn+1
i,K∗

k+1
,Lk

− ψn+1
i,K∗

k
,Lk

)
+
λ

2

N∑

k=1

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

=
N∑

k=1

(
ḡnj,K∗

k+1
,Lk

− ḡnj,K∗
k
,Lk

)

︸ ︷︷ ︸
=0 by induction

+λ
N∑

k=1

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

= λ

N∑

k=1

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)

= λen+1
i,K∗

1
− λen+1

i,K∗
N+1

= 0.

Furthermore, we also have
N∑

k=1

(
ψn+1
i,K∗

k+1
,Lk

− ψn+1
i,K∗

k
,Lk

)
=

N∑

k=1

(
ḡn+1
i,K∗

k
,Lk

− ḡn+1
i,K∗

k+1
,Lk

)
−
λ

2

N∑

k=1

(
en+1
i,K∗

k
− en+1

i,K∗
k+1

)
= 0.

To sum up, we proved that:




∀ k ∈ {1, · · · , N}, mK∗
k
,Lk
ψn+1
i,K∗

k
,Lk

+mK∗
k+1

,Lk
ψn+1
i,K∗

k+1
,Lk

−→
n→+∞

0,

∀ k ∈ {2, · · · , N}, mK∗
k
,Lk
ψn+1
i,K∗

k
,Lk

+mK∗
k
,Lk−1

ψn+1
i,K∗

k
,Lk−1

−→
n→+∞

0,

N∑

k=1

(
ψn+1
i,K∗

k+1
,Lk

− ψn+1
i,K∗

k
,Lk

)
= 0,

that is to say, in a more compact form, that:

BΨn+1 −→
n→+∞

0,

with B is the matrix being defined in (4.11). Since this matrixB is invertible, we deduce

Ψn+1 −→
n→+∞

0,

and the claim is proved.
�

5. Numerical results

We illustrate in this section the convergence properties ofthe Schwarz algorithm presented above on
various test cases. We also illustrate how this convergencedepend onλ. Finally, the performance of the
method as a preconditioner is also investigated.

For each test case we give the formulas for the diffusion tensor A and the exact solutionue from
which we deduce the source termf = −div(A∇ue) to be used in the numerical computations.
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5.1 Initialization

In all the following numerical simulations, we choose the initial guess foruT

i to be

u0
i = 0, ∀ i ∈ {1, 2},

and we take the initial Fourier datagT i

0 in such a way that

N∑

k=1

(
g0
i,K∗

k
,Lk

− g0
i,K∗

k+1
,Lk

)
=
λ

2

(
hK∗

1
− hK∗

N+1

)
, ∀ i ∈ {1, 2}.

Following Theorem 4.2, this choice will imply the convergence of the flux unknownsϕni,K∗,L.

5.2 The domains and the meshes

In the sequel,Ω will be a domain decomposed into rectangular subdomainsΩ =
N
∪
k=1

Ωk, withN equal

to 2, 3 or 4.
Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the coarsest meshesMeshk1 of the family of refined meshes

(Meshkm)m that we use in the sequel. More precisely,Meshkm is obtained fromMeshkm−1 by dividing
into two equal parts all the edges in the mesh, which implies that each control volume is divided into
four parts.

(0,0)

Γ

Ω2Ω1

(0,0)

Γ

Ω2Ω1

FIG. 5.1. The domainΩ = [−1, 1] × [0, 1] is divided in 2 subdomains. (Left)Mesh1
1. (Right)Mesh2

1.

(0,0)

Γ1

Γ2 Γ3

Γ4

Ω1 Ω2

Ω4Ω3

Γ1

Γ3

Γ4(0,0)

Γ2

Ω1

Ω3 Ω4

Ω2

FIG. 5.2. The domainΩ = [0, 1]2 is divided in 4 subdomains. (Left)Mesh3
1. (Right)Mesh4

1.
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Γ1

Γ2

(0,0)

Ω2 Ω3

Ω1

FIG. 5.3. The L-shaped domainΩ = [−0.5, 0.5]2\[0, 0.5]2 is divided in 3 subdomains.Mesh5
1.

(1,0)

Γ

Ω1 Ω2

Γ1 Γ2

(1,0)

Ω1 Ω2 Ω3

FIG. 5.4. The domainΩ = [−1, 2] × [0, 1]. (Left) Ω is divided in 2 subdomainsMesh6
1. (Right)Ω is divided in 3 subdomains

Mesh7
1.

5.3 Convergence of the Schwarz algorithm used as a solver

Let us first illustrate the convergence of the Schwarz algorithm on some simple cases.

• Case 1 : Homogeneous Dirichlet Boundary Conditions:

ue(x, y) = sin(πx) sin(πy) sin(π(x+ y)),

and

A(x, y) =

(
1.5 0.5
0.5 1.5

)
for x < 0, andA(x, y) =

(
1.5 0.5
0.5 1

)
for x > 0.

• Case 2 : Non Homogeneous Dirichlet Boundary Conditions:

ue(x, y) = cos(2.5πx) cos(2.5πy),

(0, 0)

Ω1 Ω2

Γ1

Ω1

Γ1

(0, 0)

Γ3Γ2

Ω4Ω3Ω2

FIG. 5.5. The domainΩ = [−1, 1] × [0, 1]. (Left) Ω is divided in 2 subdomainsMesh8
1. (Right)Ω is divided in 4 subdomains

Mesh9
1.
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and

A(x, y) =

(
1.5 0.5
0.5 1.5

)
for x < 0, andA(x, y) =

(
1.5 0.5
0.5 1

)
for x > 0.

In order to illustrate the convergence of the Schwarz algorithm, we decide to stop the algorithm
when

||uT i
n − uT i ||2
||uT i ||2

< 10−7.

We observe for Case 1 (resp. Case 2) on meshesMesh1
5 andMesh2

5, (see Figure 5.6), that almost103

iterations are necessary to achieve convergence.
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5 Case 2,Mesh1

5
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E
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FIG. 5.6. Evolution ofE1 =
||uT i

n − uT i ||2

||uT i ||2
andE2 =

||uT i
n − ue||2

||ue||2
as a function of the number of iterations. (Left) Case 1.

(Right) Case 2.

SinceuT i
n converges touT i whenn goes to∞, for i = 1, 2, we expect the error

||uT i
n − ue||2
||ue||2

to be

of the same order than
||uT i − ue||2

||ue||2
, for large enough values ofn. Thus, a natural stopping criterion
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could be the following
||uT i

n − uT i ||2
||uT i ||2

< η
||uT i − ue||2

||ue||2
, (5.1)

for someη < 1. Unfortunately, in practical casesue is obviouslya priori unknown, but we know that
the error for the m-DDFV scheme behaves likehα whereα = 1 in general andα = 2 for rectangular
meshes. Hence, we can use, in practice, the following stopping criterion

||uT i
n − uT i ||2
||uT i ||2

< ηhα, (5.2)

with η = 0.1.
Let us investigate the number of iterations required to achieve condition (5.1) in the following cases

proposed in theBenchmark on Discretization Schemes for Anisotropic Diffusion Problems on General
Gridselaborated for the FVCA5 conference [11].

• Case 3 : Mild anisotropy diffusion:

ue(x, y) = sin((1 − x)(1 − y)) + (1 − x)3(1 − y)2, A =

(
1.5 0.5
0.5 1.5

)
.

• Case 4 : Heterogeneous rotating anisotropy diffusion:

ue(x, y) = sin(πx) sin(πy), A(x, y) =
1

x2 + y2

(
10−3x2 + y2 (10−3 − 1)xy
(10−3 − 1)xy x2 + 10−3y2

)
.

Table 1 gives the iteration numbernbit needed to fulfill (5.1).

Case 3 -Mesh3
5 - λ = 160 nbit = 99

Case 4 -Mesh4
5 - λ = 205 nbit = 134

Table 1. Iteration numbernbit needed to fulfill (5.1) for Case 3 and 4.

Case 5 illustrates the behaviour of the Schwarz algorithm whenue 6∈ H2(Ω). The first order error
estimate for m-DDFV given in Theorem 3.1 is no more valid. Nevertheless, the scheme is known to be
convergent (see [2]).

• Case 5 : Isotropic constant diffusion on an L-shaped domain,ue 6∈ H2(Ω):

ue(x, y) = ue(r, θ) = r
2
3 sin

(
2

3

(
θ +

π

2

))
, A =

(
1 0
0 1

)
.

Table 2 gives the iteration numbernbit needed to fulfill (5.1).

Case 5 -Mesh5
5 - λ = 800 nbit = 139

Table 2. Iteration numbernbit needed to fulfill (5.1) for Case 5.



30 of 35 F. BOYER, F. HUBERT, S. KRELL

5.4 Influence of the shape of the domain decomposition

We compare the algorithm for different decompositions of the same domainΩ = [−1, 2] × [0, 1] (see
Figure 5.4) and for the same test case corresponding to a spatially localized source term.

• Case 6 : Anisotropic diffusion. The source term is given by

f(x, y) =

{
− 1000 sin(2.5π(x− 1.3)) for 1.3 < x < 1.7,

0 otherwise,

and the diffusion tensor by

A(x, y) =

(
1.5 0.5
0.5 1.5

)
for x < 0 or x > 1, andA(x, y) =

(
1.5 0.5
0.5 1

)
otherwise.

The exact solution is given by

ue(x, y) =





x for − 1 < x < 1.3,

x+
1000

1.5

(
x− 1.3

2.5π
−

1

(2.5π)2
sin(2.5π(x− 1.3))

)
for 1.3 < x < 1.7,

x+
1000

1.5

(
1

5π
−

1

(2.5π)2
sin(5π)

)
for 1.7 < x < 2.

Mesh6
5 - primal mesh -||uT

n − uT ||∞ = 0.311 Mesh7
5 - primal mesh -||uT

n − uT ||∞ = 0.798

Mesh6
5 - dual mesh -||uT

n − uT ||∞ = 0.118 Mesh7
5 - dual mesh -||uT

n − uT ||∞ = 0.62

FIG. 5.7. Plot of|uT
n − uT |. Case 6,λ = 250, iteration n = 11. (Left) two domains decompositionΩ = Ω1 ∪ Ω2.

(Right) three domains decompositionΩ = Ω1 ∪ Ω2 ∪ Ω3.

Figure 5.7 is representing the error|uT
n − uT | for different iterationsn on the primal mesh (resp.

dual mesh) withλ = 250.
The supremum norm||uT

n − uT ||∞ for the decomposition into 2 subdomains (Mesh6
5) on the primal

(resp. dual) mesh decreases from1.07 (resp. 0.4) to 0.31 (resp. 0.12) after 10 iterations. For the



Non-overlapping Schwarz Algorithm for Solving 2D m-DDFV Schemes 31 of 35

decomposition into 3 subdomains (Mesh7
5) ||uT

n − uT ||∞ on the primal (resp. dual) mesh decreases
from 1.1 (resp. 1.08) to 0.8 (resp. 0.62) after 10 iterations. Notice that the composite meshT is
the same for the two decompositions under study. It seems that, for this localized source term, the
decomposition into 2 subdomains is more accurate.

5.5 Influence of the Fourier parameterλ

Until now, the value ofλ > 0 was arbitrarily fixed, but it is known that the choice ofλ generally
influences the number of necessary iterations needed to achieve convergence of the algorithm (see [1]).
We illustrate this behavior in our framework in Figure 5.8. The optimal choice forλ, as shown in Figure
5.8, seems to increase with the number of degrees of freedom.
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FIG. 5.8. The number of necessary iterations as a function of theλ value for Case 2.

More precisely, we give in Table 3 the optimal value ofλ as a function of the mesh size for the Case
2. Since the mesh sizeh is divided by2 at each level of refinement, we observe that, in that case,λopt
seems to behave like1

h
as described in [7], [8].

Mesh2
3 Mesh2

4 Mesh2
5

λopt 94 164 333

Table 3. The optimal value ofλ as a function of the size of the meshh for the Case 2

Let us consider again the case 6 with 2 different decomposition ofΩ with the stopping criterion
parameterη = 0.01. For our particular source term, we see in Figure 5.9 that forthe decomposition into
2 subdomains we need less than 20 iterations to achieve (5.1)for anyλ, 0.1 6 λ 6 400, whereas for
the decomposition into 3 subdomains we need at least 60 iterations (achieved aroundλ ∼ 225). Table
4 sums up the iteration numbernbit needed to achieve (5.1) withη = 0.01 for the optimal value ofλ.
Hence, in that case the decomposition into 2 subdomains is more efficient than the decomposition into
3 subdomains, which is quite natural.

In fact, this behavior is not always observed, and we will nowgive an example where increasing the
number of subdomains in the decomposition ofΩ actually improves the performance of the solver. Let
us consider again the test case 1 with 2 different decompositions ofΩ into 2 or 4 subdomains that is with
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FIG. 5.9. Case 6 - The number of necessary iterations as a function of λ for the two meshesmesh6
5 andmesh7

5

2 subdomainsλopt = 20 nbit = 2
3 subdomainsλopt = 250 nbit = 59

Table 4. Iteration numbernbit needed to fulfill (5.1) for Case 6.

the meshesMesh8
j andMesh9

j (see Figure 5.5) for different levels of refinement (j = 3 or j = 5). For
the coarsest meshes (j = 3), left-hand side part of Figure 5.10 shows that the performance of the solver
for the two decompositions are equivalent. Nevertheless, for finer meshes (j = 5), the right-hand part
of the same figure shows that for the decomposition into 4 subdomains we need less than 36 iterations
to achieve (5.1) for any10 6 λ 6 300, whereas for the decomposition into 2 subdomains we need at
least 135 iterations (achieved aroundλ ∼ 150).

As a conclusion, for this test case larger is the number of subdomains better seems to be the perfor-
mance of the solver.
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FIG. 5.10. Case 1 - The number of necessary iterations as a function of λ for the two mesh familiesmesh8
j andmesh9

j . (Left)
For j = 3. (Right) Forj = 5.

5.6 Application to the preconditioning of the conjugate gradient solver

The non-overlapping Schwarz method we study in this paper isprimarily an iterative solver for our
finite volume scheme. Nevertheless, as usual, its performances are not good enough to be used as it. In
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practice, one uses some iterations of the domain decomposition algorithm as a preconditioner for the
conjugate gradient method (or any other efficient iterativemethod adapted to the problem).

We propose in this section some illustrations by evaluatingthe number of iterations necessary to
achieve convergence of the conjugate gradient method. We study in particular how it depends on the
numbern of Schwarz subiterations we used as a preconditioner at eachmain iteration of the CG. A
number of subiterationsn = 0 means that no preconditioning was used. The test case we usedis
described below and the results are given in Figure 5.11.

• Case 7 : Constant anisotropic diffusion:

ue(x, y) = 16y(1 − y)(1 − x2), andA(x, y) = Id.

We observe that for reasonable values ofn (sayn = 3), the number of necessary CG iterations increases
very slowly with respect to the size of the linear system we are solving. Hence, our Schwarz method
seems to be a satisfactory preconditioner for solving the m-DDFV numerical scheme.

Case 7,Mesh1
5, λ = 205
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FIG. 5.11. The number of iterations as a function of the number ofunknowns.

As shown in Section 5.5, the value of the Fourier parameterλ has an influence on the performance
of the Schwarz algorithm and it seems that there exists an optimal choice for this value. We want to
see now if there exists also an optimal choice of the value ofλ when the Schwarz method is used as
preconditionner. To this end, we consider the results obtained for the test case 7. The optimal value
of λ for the Schwarz algorithm, used as an iterative solver, is around 115 (see Figure 5.12) to achieve
an error of10−8. Figure 5.12 is also showing the number of iterations of the conjugate gradient solver
preconditioned by 2 subiterations of the Schwarz algorithmnecessary to achieve the same precision as
a function ofλ. We observe that the influence ofλ is not so clear than for the Schwarz algorithm as a
solver but it seems that the optimal value ofλ is around 3 (see the zoom in the right-hand side part of
Figure 5.12).

6. Conclusions

In this paper we propose a m-DDFV finite volume scheme with mixed Dirichlet/Fourier boundary con-
ditions for anisotropic elliptic problems. As a result, we provide a non-overlapping Schwarz algorithm
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FIG. 5.12. The number of iterations to achieve an error of10−8 as a function ofλ. Case 7. (Left) For the Schwarz algorithm as a
solver. (Middle and Right) For the conjugate gradient method with the Schwarz algorithm as a preconditioner.

associated to a subdomain decomposition ofΩ for solving the m-DDFV scheme. The Schwarz algo-
rithm we obtained is proved to converge to the solution of them-DDFV scheme on the whole domain.
The properties of this algorithm are illustrated by numerical results on anisotropic elliptic equations.
We illustrate in particular the existence of a unique value of the Fourier parameter for which the con-
vergence is the fastest. Nevertheless, we also observe that, as usual, the performances of such a method
as a solver are not very good whereas it is of real practical interest to use a few subiterations of this
algorithm as a preconditioner for the conjugate gradient solver.

In further works, such a Fourier/Robin transmission condition should be compared to second order
optimized condition or to two-sided Robin condition in thisDDFV framework as it is done in [10] for
the classical two point flux approximation finite volume approach.
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