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Non-overlapping Schwarz algorithm for solving 2D m-DDFV stiemes

FRANCK BOYER
Université Paul Cézanne, , Laboratoire d’Analyse, Top@ag Probabilités
FST Saint-Jérdme, Case Cour A
Avenue escadrille Normandie-Niemen, 13397 Marseille £20¢France

FLORENCEHUBERT & STELLA KRELL
Université de Provence, Laboratoire d’Analyse, Topolagi€robabilités,
39 rue F. Joliot-Curie, 13453 Marseille Cedex 13, France

We propose a non-overlapping Schwarz algorithm for solVidigcrete Duality Finite Volume” schemes
(DDFV for short) on general meshes. In order to handle theblam, the first step is to propose and study
a convenient DDFV scheme for anisotropic elliptic problewith mixed Dirichlet/Fourier boundary
conditions. Then, we are able to build the correspondingM@chalgorithm and to prove its convergence
to the solution of the DDFV scheme on the initial domain. Walfingive some numerical results both
in the case where the Schwarz iterations are used as a solasagreconditioner.

Keywords Finite volume methods, Schwarz Algorithm, DDFV methods.

1. Introduction

This paper is devoted to the development and the analysisarii-@verlapping Schwarz iterative method
for solving finite volume schemes of the DDFV type for ellgiroblems. On the continuous level, this
algorithm was first introduced and studied in [13]. It is lthea Fourier transmission conditions across
the interfaces in a domain decompositionfof It has been adapted to several discrete approximation
of isotropic diffusion problems (see [1], [9] and [4]). Thdaptation of this method to the discrete
framework is very useful since each subdomain of a non-apeihg decomposition of the domafih

can be meshed independently. This decomposition can betaisiesign an iterative solver in itself or

to provide a preconditioner for any usual iterative method.

The DDFV method has been developed to approximate anisotidfusion problems on general
meshes. More precisely, the DDFV schemes have been firgtlinted and studied in [6, 12] to approx-
imate the Laplace equation with Dirichlet boundary comaii or homogeneous Neumann boundary
conditions on a large class of 2D meshes including non-cardband distorted meshes. Such schemes
require unknowns on both vertices and centers of primalrobeblumes and allow us to build two-
dimensional discrete gradient and divergence operatang lie duality in a discrete sense. The DDFV
scheme is extended in [2] to the case of the approximatioolafisns to general linear and nonlinear el-
liptic problems with non homogeneous Dirichlet boundargdaitions, including the case of anisotropic
elliptic problems.

Convergence of such schemes is shown in [2] arqtiori error estimates are given in the case
where the coefficients of the operator and the exact solutiare assumed to be smooth enough. In
[3], a modified DDFV scheme, called m-DDFV, is proposed aralysed in order to take into account
possible discontinuities in the coefficients of the eligtroblem under study. In particular, first order
convergence of the m-DDFV scheme is proved for the probleft) (&ith I" = () and piecewise smooth
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coefficients. This framework is recalled in Section 2.
In Section 3, we propose to adapt the m-DDFV scheme to mixadHhet/Fourier boundary condi-
tions :
—div(A(z)Vu(z)) = f(x), in 2,
u=nh, ond2\ T, (1.2)
—(AVu,7n) = u—g, onrl.

wheres? is an open bounded polygonal domaink#. The measurable matrix-valued map: 2 —
Mo 5 (R) is supposed to fulfill the following assumption: there extS > 0 such that

(A(2)€,€) > Ci|g|2, and |A(z)¢] < Calé], VE € R2, and fora.ez € 0,
A

This assumption ensures that the Problem (1.1) has a urotutes in 1 (2) forany f € H=1(02)
andh, g € H= (052). We restrict our attention, in this paper, to source tefnas L2 (§2). The parameter
A > 0is given and" is an open subset &ff?.

With these preliminary results at hand we describe in Seetithe non-overlapping iterative method
we propose and prove its convergence.

We finally give in Section 5 some numerical results illustrgtthe performance of the iterative
Schwarz algorithm.

2. The DDFV framework

The meshes:we recall here the main notations and definitions taken frain A DDFV mesh7 is
constituted by a primal meght and a dual mesii* U 09t* (Figure 2.1).

N
— The boundary dual cek*
Node of the boundary dual cet =

Interior nodex -« of the dual cell
Primal nodez
Primal control volumes

Interior dual cellx*

FIG. 2.1. The mesi”

The primal mesH is a set of disjoint open polygonal control volumes: 2 such thatux = (2.
We denote byt the set of edges of the control volumeSihincluded indf2, which we consider as
degenerate control volumes. To each control volume andraggte control volume € 9t U 09, we
associate a point, € k. This family of points is denoted b = {z,, k£ € MU IN}.
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Let X* denote the set of the vertices of the primal control volunme®ii that we split intoX™* =
X, UXe, whereX?, NoR2 = @ and X}, C 0f2. With any pointzc- € X/, (resp. xx- €
XZ..), we associate the polygaer whose vertices arézr,. € X, suchthats,.« € X, £k € M} (resp.
{ze«} U{zc € X, suchthatee- €%, k£ € (9 UIM)}) sorted with respect to the clockwise order of
the corresponding control volumes. This defines th&Betu 091 of dual control volumes.

Remark that our dual control volumes are not exactly the sdrae in [5]. In [5], they builtxc*
by joining not only the barycenters. associated to the elements of the primal mesh of whigh
is a vertex but also the middles of the edges of whigh is a vertex. This construction is usually
called thebarycentric dual meshThe following analysis can easily be extended to thisishgdifferent
framework.

We assume that any (x+, %) € 9M* U 9OM* such thatc* # £+, we havec N £*= (. For all
neighbor control volumes andc, we assume thalx N Oz is an edge of the primal mesh denoted by
o = Kk|c. We note by€ the set of such edges. We also nete= «*|c* and&* for the corresponding
dual definitions.

Given the primal and dual control volumes, we define the diasnecellsp, .. being the quad-
rangles whose diagonals are a primal edge- x|z = (xx+,2.+) and a corresponding dual edge
o* = k*|cr = (zc,x.), (Se€ Fig. 2.2). Note that the diamond cells are not neagssanvex. If
o € £N0f2, the quadrangle, . degenerate into a triangle. The set of the diamond cellsristeel by
D and we have? = Dg@a

FIG. 2.2. Notations in the diamond cells. (Left) Interior c€Right) Boundary cell.
Notations:
For any primal control volume € 9t N 990, we note
e m, its Lebesgue measure,
o & the set of its edges (if € M), or the one-element s¢k} if k£ € IM.
e D.={p,,- €D, 0€&},
e 71, the outward unit normal vector to.

We will also use corresponding dual notationsg, Ex«, D« andii,c«.
For a diamond celb = p, .. whose vertices arer,c, T+, ., .+ ), We note
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e 1, the center of the diamond cel| that is the intersection of the primal edg@nd the dual edge

o*,

e my itsS measure,

e m, the length of the primal edge,

e m, the length of the dual edge",

e 7i_, the unit vector normal te- oriented fromuw, to z .,

e i+~ the unit vector normal te* oriented fromz,« t0 x .+,
e T . the unit vector parallel to* (oriented frome, to z.),

e T~ .- the unit vector parallel to (oriented frome .« to z.-),

e o, the angle betweefi. . and7c« .-, andmy- . (respectivelym,- ) the length between,-
(respectivelyr ) andx . for any boundary degenerate diamond cell.

e m,. (respectivelyn, ) the length between, (respectivelyr,) andz,,
® m, . (respectivelyn, ..) the length between,- (respectivelys.-) andzrp,
e D = pN k the intersection of the diamondand the primal control volume.

The boundary unit normal vectors are denoted®y ¢ (R?)® such thati® = 7i,,.. We have to
differentiate the interior diamond cells to the differenundary diamond cells by introducing the sets

e Do ={DED, DNIN # 0},
® Dint = D\Deat,
e Dr={pe®D, pNI #0}.
REMARK 2.1 Forall p € D¢, We haven, . = my- . andmg, .. = me« ..

Finally we denote byf. (resp. fc-) the mean-value of the source terfron x € 2t (resp. on
K € M U oM). The family ((hi)xceam, (hic+ ) x+cam=) iS also defined by:

he = — /h(s)ds, e e om, and hy. = — / h(s)ds, vk € OM".

Mo Jox Moys S
Hereox = B(zx,pc) N OS2 andoes = B(xxx, per) N 982 and px and p- are positive numbers
associated to the meghand such that, C  ando,« C dk*.

The unknowns: the m-DDFV method associates to all primal control volumes 9t U 99t an
unknown value:, and to all dual control volumes* € 9t* U 99t an unknown value:,.-. We denote
the approximate solution on the meghoy u” € R” where

u’ = ((u)c);ce(smuaim) ) (Uic*);c*e(m*uaim*))'
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Inner products: we define the two following inner products

1
[, u"]r = 5 Z MU Uk + Z My UV |, VuT,v7 € R7, (2.1)
KeEM K*E (M UOM™)

(€2 n%)0 = Y mpt” -7, VE2,n° € (R?)®
DeD
and the corresponding norm

1€°115 = (€7,6%)0, ¥E® € (R?)®.
Boundary inner products: we define the following.? inner product on the boundary 6f
(u®,0°)o0 = Z meu® - 0P, Yu®,v® € R®.
Dy o €EDeat

Trace operators: we will need the following definition of a trace operator irrtBDFV framework

Y (u) = (V" (u"))pen, Yu' €RT,

My M+ U + U
=—= 75’7&*,5(“” +—= ,£7£*7£(u7) and Yo e (u”) = ==

Mg Mg 2

(2.2)
Discrete gradient: we define (like in [6, 12]) a consistent approximation of thiadient operator
denoted byv® : u” € R” — (VPu”)p.o € (R?)?, as follows:

1

VD T —
“ 2mop

[(up — g )MoTlox + (Ups — Uxs )MgsTlpeie], VD ED. (2.3)

Discrete divergence:we define a consistent approximation of the divergence ¢opedanoted by
div?’ : £ = (£P)pep +— diva € R7, as follows:

divee = — Z me (& , Ve emMm, and dive =0, Vk € OM, (2.4a)
DE@)C
- 1
dive ¢ = > Mg (€8, yene), VT €M, (2.4b)
sy DED ox

dive ¢ = - > Mo (€7 )+ Y e £ (67 T,x) |, VT € O (2.4c)

DE@;C* DEQ

Dman;ﬁ@

These two operators are discrete duality(giving its name to the scheme) since it is possible to
prove a discrete Stokes formula using these two operateesf¢s instance [2, 5, 6]).

THEOREM2.1 (STOKES FORMULA) For any¢® € (R?)®, u” € R”, we have

[div7 (£°),uT]7 = —(£°, V2uT)p + (€7 - 7,77 (u”))on- (2.5)
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3. The m-DDFV scheme with mixed Dirichlet/Fourier boundary conditions

We consider problem (1.1) and we assume that the primal neshdsen in such a (natural) way
thatoI" C X*. We note : 0Mp = {k €Mz €1}, OMr = {k €Mz €'}, OAr =
{The half-edges belonging I8 [zx~xz.] C £ € OMp}, My, = {K* € IM*, 2 € INT'FU{K" €
OM*,xpv € OI'}, OMy = {K* € OM", x4~ € ' andz- ¢ OI'}. We now introduce two new flux
unknownsp,- . andy,.- . for each degenerate boundary control volume: [z.-z.+] belonging to
OMp. These two unknowns are meant to approxim(@®&u, i, .) along respectivelyz .-, z.] and
[z, z.+]. Notice that there are other, somewhat more simple, ways#b @ith Fourier boundary
conditions in the m-DDFV framework but the introduction bese additional unknowns is needed to
be able to build a convergent non-overlapping Schwarztiteranethod, which is our main objective in
this paper (see Section 4).

Let us denote by7. the set of these new unknowns

r= {¢T = (px= e @L*,L)Lz[m,c*mﬁ]eagmp} :

The new approximate m-DDFV solution is now a couplé = (u”,¢”) € R” x &7 solving the
following set of linear equations:

—div* (A°V?uT) = f, Yk eM, (3.1a)
—div®" (A°V2uT) = fee, YV Kr €M, (3.1b)
- D AoV fie) — Y T = e, Yokt € 0Ny, (3.1c)
D, oeeDp " DeD s KT
M —_— DNI#0
"l e o e = (ApVPUT T,.), VL= [me-zpe] € OMp, (3.1d)
U = he, VK€ IMp, Ur = hyer, V&0 € OMY, (3.1e)
U= + U
Pr*,c + )\% = Jk*,c, v [x/c*xa] € 0Ur, (3-1f)

whereA® = (A, )pen, Ap is a definite positive matrix which approximatéson the diamond.

In order to simplify the notations a little, we will now demadhe fact that/” =(u”, ¢”) € R” x &7,
solves (3.1), for some datg”, h”, g7), in the following compact way

67[‘(,“’[’ ¢Ta fTa hT7gT) = 0

The above m-DDFV finite volume scheme is obtained by formitggrating the equation (1.1)
on each interior primal control volumes (3.1a), on interitaral control volumes (3.1b) and also on
boundary dual control volumes belongingd@1;. (3.1c). The numerical fluxes are approximated by
using the discrete gradient operatéf for edges lying inside the domain or ad2 \ I, and by using
the flux unknowng” onI".

We link up these unknowns” to the discrete m-DDFV gradient on each Fourier boundaryrobn
volumes by equation (3.1d). Finally, we impose the Dirithdeundary condition on the boundary
primal control volumes belonging @t and on boundary dual control volumes belongin@7,
(3.1e) and we impose the Fourier boundary condition usiegfltik unknowns)” on each half-edge
lying into I" (3.1f), g« . being a discrete boundary Fourier data which can be, foants, the mean-
value of a functiory on [z,c-x.].

There exist many possibilities to define the matix. We mainly consider the two following cases.
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e If Ais smooth with respect to the space variahlée there existC'4 > 0 such that:
[A(z) — A@@)|| < Calz — 2|, Va,2’ € £,
we choose, for example, to take, = A(z, ), foranyp € ©.

e If Ais possibly discontinuous across primal or dual edges imtégh, then a good choice fd
is more intricate. We recall here the main lines of the séedain-DDFV scheme (see [12, 3]).
In the case wherel(z) is constant on each primal control volume, we denotedhythe value
A(x) on the control volumec. For allp € ®.,:, we choosed,, to be equal tod,. wherex is
the unique primal control volume such thatC x, and for allp € ©;,,,, we defined,, by the
following formulas

Mg (Aicﬁ)c; ﬁlc)(ALﬁIC7 ﬁ)c)

Apfix, Tix) = —— . 3.2a
( Dn)C n)C) mUE (A)CTL)C,TL)C) +mU)C (ALTL,C,TLK) ( )
N - Me (Az:ﬁ)c* ﬁ)c*) + Mo (Aicﬁ)c* ﬁic*)
ot = 3.2b)
_ Mo Mo, ((Aicﬁmﬁ)C*) — (Atlﬁic;ﬁic*))Q .
Uz Mg, (A)cﬁ)ca ﬁ)c) + Moy (Acﬁm T_i)c) ’
(Apﬁ,c, ﬁ;c*) _ Mo, (Acﬁna ﬁlc*)(A)CﬁlCa ﬁ;c) + Moy (A)CﬁIC; ﬁ;c*)(ALﬁmﬁ)c). (3.2)

Mg, (A)cﬁ)o ﬁ)C) + Moy (Aﬂﬁm ﬁ’c)

We recognize in (3.2a) the weighted harmonic mean-valyelfi,, i ) and(A 7., 7 ) and in
the first term of (3.2b) the weighted arithmetic mean-valti€A) 7+, 7~ ) and (A 7icx, T+ ).
This particular choice oA® ensures the consistency of the discrete normal flux on eaypsanf
primal and dual meshes.

As shown in [3], this particular choice fad® imply a first order convergence of the scheme in
the case of Dirichlet boundary conditions. More precisilwe introduce the spac&?(IM) = {u €
Hg(2),u),. € H*(x), Yk € 9}, the following theorem is proved in [3]:

THEOREM 3.1 (ERROR ESTIMATE FOR MDDFV, DIRICHLET BOUNDARY CONDITIONS) Assume
that the exact solutiom, to the problen(1.1) with I" = {), lies in H2(9). Under suitable regularity
assumptions on the meshe$,and V=7 are first order approximations af and Vu, respectively, in
the L2 norm.

In the case of Dirichlet/Fourier boundary conditions unsteidy in this section, the error estimate
of Theorem 3.1 can also be proved but we will not give the proof
The main result of this section is the following existencd aniqueness theorem.

THEOREM 3.2 The finite volume scheng&.1) which approximate Probler{iL.1)on a DDFV mesi”
possesses a unique solutiod = (u”, ¢”) € R” x 7.

We first introduce a preliminary result saying that if the s@uterm and the Dirichlet boundary data
are both equal to 0, then we can develop the inner proftlict (4° V2u”), u”] 7 as follows.
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LEMMA 3.1 Forall g” € 7, andU”=(u", ¢”) € R” x &7, such that

?27]"(“7—7 ¢T7 Oa 07gT) = Oa

we have
. A 1
V(AP T = <2 S My —ue Pt Y we Y Moo —gene)
DeDr K*eoMy. DED -*
DN #D
whereM :M

e

Proof. The vectolU” = (u”,¢”) € R” x &7 solves :

—div® (A®V®u”) =0, VkeMm, (3.39)
—div®” (A®V®uT) =0, VkreM", (3.3b)
Me* - m * . %
- m;c* (ADVDU'T)nIC*) - Z TT)],C’C E(p)c*75 - 07 V I E 8%1—*7 (330)
'D(,YU* GQ)C* DED -
DNI#D
My Mex o DT o
Pt + Ve = (ApVPuT 7)), V= |xczc-] €O0Mp, (3.3d)
ue =0, VK€ 0Mp, Uer =0, VK* € 0Mp, (3.3e)
U + U
Pre e + A% = gxez, V|reez] € OUP. (3.3f)

By using the definition (2.1) df, -]z on 2 and successively (3.3a)-(3.3c), then (3.3d), (3.3e) amdlfin
(3.3f) it follows:

. 1 1
S[AVTATVRO) W = =g Y we Y M (VT ) = P )
K*EOME DED jox

DNI#0
_ 1 Mycx cMe* ¢
L LY e ¥ Mo g
Mg
K*eOM. DED o
DN #)
1
= 5 D w3 MoA(e,e(u”) e cu”)
K*Eam} DEDK*
DNI#0
1
-5 Z Up* Z Mo (gex,c — Gr=,z) -
K*EOM DED jox
DNI#)

The claim follows by noting that, sinc@/” C X*, the first term in the right hand side above can be

written ) N . N
5 Z U Z MO-E('LL,C* —’LLE*): 5 Z MO-E(UK* —UL*)Q.

K*€oMT, DED jcx De®Dr
DNI#0

We can now proceed to the proof of the Theorem 3.2.
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Proof of the Theorem 3.2.The wellposedness of this square linear system is equiaeshowing that
it has a trivial kernel. LeU” = (u”,¢”) € R” x &7 which solves

E,F(UT7¢Ta070aO) =0. (34)

By using Lemma 3.1, we have :

—[divT (A®V®uT),u" |7 = —% Z My (s —upe)?.

DeDr
The discrete Stokes formula (2.5) gives:
—[divT (A*V2uT),u" ] = (A°V2u7,V?u")p — (A°V2u” - 7,77 (u”))an
= Z mp(ApVPu” , VPu”) — Z mey" (u”)(ApVPu” i, ).
DeD DeDr

Combining the last two equalities, we get

A
0= Z mp(ApVPu”, VPuT) + 1 Z My (ugs — up+)?
De® DeDr

— Y moy " (W) (AsVPu i), (3.5)

DeDi,r
By using (3.3d), the last term becomes
— Z mey" () (ApVPu 7, )
Dedr
My M My Mp*.
= % o (P e (0 4 (1) ) (P o 4
DDy Mg Mg Mg Mg
2
TNy * e
= Z mg)\ ( 7’):]/ 7£"}/;C*7£(U;T) + 7’2 ’L’}/L*7£(U;T)> 5
DeDp o o

sincep » + Myr,(u”) = 0andy,« . + Ay.- . (u”) = 0. It follows from (3.5) that

A
0 = ZmD(ADVDuT,V%T)+Z > My (ugs — g )?
De® DeDr

2
TNy * e
Y ot (B )+ B 7))

Since all the terms above are non-negative, we deduce that:
0= Z mp(ApVPu”, VPuT).
DeD

Finally, A, being definite positive for anyp € ©, the above equality leads top € ©, VPu” = 0.
Hence there exist two constamtsandc; so that :
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VK€ (MUIM), Ux = co,
VK* € (93?* U 893?*), Ukx = C1,

and sinceu” satisfies (3.4), we dedueg = ¢; = 0 and finallyu” = 0. AS pc+ o + Ay .(u”) =0
andg.- . + My (u”) = 0, we obtain thatp,.- . = 0, andy,« . = 0, thereforeU” = 0. O

4. Non-overlapping Schwarz algorithm

Consider a domair? split into several non-overlapping subdomaids The Schwarz algorithm in-
troduced by Lions (see [7],[8],[13]) for the Laplace prahblevith homogeneous Dirichlet boundary
condition consists, instead of solving the problemfin to solve the Laplace equation successively
on each subdomains with homogeneous Dirichlet boundargliton on9f2; N 92 and with Fourier
boundary condition on the interfack?; N 042; if j # 4.

We only consider here the case whérg (2, are two connected subdomains such tat 2; U
2, U I, I being the interface between the two subdomdins= 2; N 2, and we assume thdkt
is connected and thdf N 02 # (. These assumptions are not mandatory but let us simplify the
presentation a little.

4.1 Compatible meshes. Composite mesh

For each subdomairy;, we consider a m-DDFV mesf; = (9;, 07 U 9M) and the associated
diamond mestD;. We note®; r = {p € ©;, NI # 0}. We will assume that the two meshes are
compatible in the following sense.

DEFINITION 4.1 We say thafZ; and7Z; are compatible, if the following two conditions hold:

1. The two meshes have the same vertice oiX; N I" = X5 N I". Thisimplies in particular that
the two meshes have the same degenerate control voluniégtoat iso9t; = 0Mo 1.

2. The center:. of a degenerate interface control volume= [z, z.+] € 0D, = IMa 1 IS
the intersection ofz,-, z.«) and (xx,, z, ), Wwherex; € M, andk, € M, are the two primal
control volumes such that C 9k, andz C dks.

i * ]
: ___Primal mesh
77177971 -__Dual mesh
|
L] + |
|
|
-—-r--6®---9
|
|
T u

FIG. 4.1. ADDFV mesHhI of the whole domairf2.
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i L g A .
Kyl 1 ‘ —Primal mesh
? T --e__-l__e-_+ ~~-Dualmesh
| |
[ | L t L + I
| |
| |
1%es .\\&—— --—é---9
Rt
Wly: ® ° s =

FIG. 4.2. The compatible mesh@&s, 7zcorresponding to the DDFV mesh of the whole domain? of Figure 4.1.

REMARK 4.1 In practice, the two compatibility conditions do not reggasimportant constraints on
the meshes under consideration. Indeed, we will usuallpemer two opposite situations:

1. We are given a DDFV mesh of the whole domairf? (see Figure 4.1) such that any primal
control volumec € 91 is such that eithex C (2, or £ C (2. In that case, the construction of
the two compatible mesh&sonly amounts to split into pieces the dual control volumessing
the interfacel” (see Figure 4.2).

. We are givera prioriindependent DDFV meshé&s for both subdomains?; (see Figure 4.3).
In that case, we only have to add some vertices/prensuring thatodt, » = 09, r and
then to split the interface dual control volumesdit; r into pieces in order to take these new
vertices into account. The centers of the degenerate interface control volumes are then defined
following the second item in Definition 4.1 (see Figure 4Mjtice that this modification of the
meshes do not increase significantly the number of degrde=eafom in the problem.

T T T T T

| | | | | H

| . U PO Primal mesh
A S R | w | - - -Dual mesh

| | | |

| | | | |

| | | | |

| 1 At Batill ek Sl alis Sl

| | | | |

| | 1 1 1
- — - — — - — —— — — I [ I

| [ R IR W R S

| | | | |

| | | | |

FiG. 4.3. Two independent DDFV mesh&s, 73 for both subdomains?;.

For two given compatible mesh&s and7;, we denote byV + 1 the number of vertices in the two

meshes belonging to the interfafethese are the same for the two meshes thanks to the contipatibi
conditions).
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* * X yc* g * ¢

| | | | | .

| _ | I, ,9052*__ IS Primal mesh
O Bl S U | w ! - - -Dual mesh

1 [N €T | I |

| | S L | | |

| | N I |

T T P ol Bl Bl il e

| I L7 | I

| .- . ‘ ,
e e | __ & | I |

| ! T b\~¢-—-—-$————5——1

| | I | |

| | | | |

FIG. 4.4. The compatible meshes corresponding to two indepeieFV meshe¥;, 7> of Figure 4.3 .

For the sake of clarity of some computations below we needrcasid number thes® + 1 vertices
Tir, o, Tk, IN SUch away tha[tr,cz,xqﬂ] € OM; r = 09, r and such tha{x,c»{,x%ﬂ} =
I' N 912 (see Figure 4.5). We do the same with tNecentersz, € I" which are then sorted and

numbered as followsz,,, - ,x., With 2, = [xn;;,x)c;;H]-

r

Thiv i1

Ty

.’1;;(;;

Ty

.’1;;(;;

FIG. 4.5. Notations.

Given two compatible meshé&s, 75 in the sense of Definition 4.1, a composite DDFV mé&sh-
(9T, M* U 9M*) can be built on the whole domai2. Notice that in the case 1 of Remark 4.1, this
composite mesi is already available by construction (see Figure 4.1). heotases, the composite
primal mesh is simply given bt = 9t; U 91,. Then, we need to join corresponding interface dual
control volumes in the two meshes. To this end, we introdbeeset

o
—_—TT

Mp = {x* =] UK3, K] € OM] r, K5 € OM; 1, suchthatre: = xc; |,

so that the composite interior dual me®h* is then defined by)t* = 97 U M5 U M. Finally,
the boundary dual cells are the onesdin™ = 9M; ,, U 9IM; ;, (see Figure 4.6). Notice that the
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degenerate interface control volumes 09, r = 09, r are no more present in the composite mesh.
In particular, the corresponding unknowns in the followsghemes have no natural corresponding
unknown for the m-DDFV scheme on the méBh

I

’ » * * *

| | [ \ I .

, | -+-4-+--L-«-+4 —Primal mesh
e : | : - --Dual mesh

| N I ! I

| | NN [ !

i T D ol Ml Sl il Sl

| | . I |

| L7 ' ‘ f
S e [ \ [

| ! ““#—-—-&————‘——1

| | ! [ |

| | | \ [

FIG. 4.6. The composite mesh corresponding to the 2 compatibles meshes of Figure 4.4.

4.2 Presentation of the iterative domain decomposition solver
The idea of the domain decomposition method is to use thexseli@.1) on each of the two subdomains
in order to build an iterative Schwarz method which will cenye to the solution of the standard m-
DDFV scheme on the whole domain for the meshZ. More precisely, we propose the following
algorithm

e Forany; € {1,2}, choose any;‘ € &7'.

e Foranyn > 0, and anyi, j € {1,2},j #

— CalculateU, | = (u;’ 1, ¢,% ) € R™i x &7 solution to

T; Ti T i i A
ﬁm,r(“nﬂa i TR gr7) = 0. (4.1)
— Calculatey, * , by
n+1 n+1

V[zexe] €0Ur, g, =—olt  + A (4.2)

2
Using Theorem 3.2, we have the following well-posednessltres

PrROPOSITION4.1 The initial datag;* being given, Algorithn{4.1)(4.2) defines a unique sequence
(UZ), inRT: x 77, fori =1, 2.

We want now to show that this sequence converges towardshhtos of the scheme on the com-
plete domain2, for the composite mesh.
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4.3 Preliminary construction

The first step in the analysis is to show that the solution efthDDFV scheme on the whole domain
£2 with homogeneous Dirichlet condition can be written as asfis limit of the sequenc&J.”+),,,
i € {1,2} obtained by the Schwarz algorithm. The precise result i$dati@wing:

THEOREM4.1 (LINK WITH THE M-DDFV SCHEME) Letwu” be the solution of the m-DDFV scheme
with homogeneous Dirichlet condition (that is systg@ii)with I" = ()) on the whole domait? asso-
ciated the composite me§hbuilt upon7; and 7. For eachi € {1,2}, there exist§u”*, ¢7*,g”¢) €
R7* x $77 x @7 such that

LG (T, ¢, [T, b7, g7 =0, (4.3)

fori =1, 2, we have

Uj e = Uk, fOI’/CEf)ﬁiuaf)ﬁi’D, (4 4)
Ui ger = Ugex, fOr K € M UM, '
and
N
> (Spi,)cz,ak —~ QPi,)c;+1,£k) =0 fori=1,2. (4.5)
k=1
Proof.

I
.Ql QQ
U, *
PiL,c*D -~ - \/\
ul,c@ < N ¥Y2,.*,D

AN
P1,K* D \ \,Bulﬂ
U PR Y2,k*,D
N W

FiG. 4.7. Notations in a diamond cell intersecting the intesfac

Equations (4.4) define all the valueswf:, except the values on the degenerate primal control volumes
inside", on both sides of the interface, therefore it remains to edfie values ofi; », andy; . » On
the interfacel".
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STEP 1 - COMPUTATION OF THE INTERFACE VALUES Let us considem € ® which intersects
I". Such a diamond cell writes = D' U p* wherep' € D4, p* € D5. We denote byc € My,

£ € My, the primal control volumes such that C x andp® C ¢ respectively. We first require the
equalityu; » = us,». Then the common value, of u; » = us » is determined by requiring the local
conservativity of normal fluxes:

(A,CV’DluTl,ﬁ(,,c) - (ALVD 72 1&). (4.6)

Using the discrete gradient definition (2.3), this reads

1 R

<2mD [(UD - 'Ufl,;c)maA;cno;c + (Ul,z;* - ul,lc*)m(f;c T o IC* )
K

M,

)

= 9 [_(UD - UQ,L)maAcﬁa;c + (U'Q,L* — U2,k )mULALnU ic*]
mp,

= 5 [_(UD - UQ,L)mUALﬁu)c + (ua* — U+ )mO'LALﬁa*)C*] 7ﬁu)c) .
mp,

As we hav@myp, = sinapmyme, and2mp, = sinapm,m, ., We obtain

A A Ao, T, ALTlie, T,
" <( K + c )ﬁalC7ﬁalC) _ Ul,;c( KMo, TV IC) +u27£( Mo, M IC)
mo’;g mog oK mUL
Upr — U . R
(A — A) Toeicn s o)
me
and we finally find the following value fai:
Uy = Mo Mo, _ _ . (A)Cﬁa)C7ﬁU)C) F s, (ALﬁU)C7ﬁu)C)
((A)Cmo'g + Aﬁmo')c) Noxcs nu)C) Moy Moy (4 7)
Ups — U . .
- my B ((AL _Aic) nd*lc*7nalc):|

STEP2 - CONSEQUENCES ON THE THE NUMERICAL FLUXES The value ofi,, givenin (4.7) implies,
with our particular choice ofi® in (3.2a)-(3.2c), that the following equalities hold:

(ApVPuT, i) = ( i vy i,,c) - (ADQVD Z,c) , (4.8)

M- (ApVPUT fiyes) = Mgy (A,CVDIuTl , ﬁK) g, (Aﬁvvzu”,ﬁm*) . (4.9
Equality (4.8) comes from the definition (2.3) of the disergtadient, the definition (3.2a) and (3.2c) of
A® and the value ofi,, obtained in (4.7).

Let us now give a detailed proof for (4.9). By using the deiimit(2.3) of the discrete gradient, we
get

1 2
Mo+ (ApVPUT, i pucr ) — Moy (A;CVD uT%na*K*) — Mg, (ALVD UTQJ%*K*)

= 22— M Mo+ Mo (ApTox, Mo icr) + i U;c*_) Mo Mo (ApTlon e, Toer)
2mop 2mp
Up — UL L. Upr — U . .
- ZTD’CJCWG;CWG(AK”U)C;” IC*) - (LQTDK’C)mU’CmGK (A)Cno*ic*)no*lc*)
Up — U2 u — U N _
2mD£ £ Mo, Me (Az:nam n IC*) - %mnc Mo, (Az;no*)c* s Moo pc* )
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By using formula (4.7), we can reorganize all the terms ds\id

- 1 N 2 N
M= (ADVDUT,na*K*) — Mgy (A,CVD uﬂ’na*m) — Mg, (ALVD uTZ,TLa*K*)

(4.10)
= u1 T +u2, Tp + (s —ue )T,
where
T ]. (A — — ) (A — — )
= — P e Noky No*c*
K sin aD K< K K< D K K
L (AxTox, Tox)
+ ((Ap — A)Toxe, e e )M — ,
(( c )c) K K ) or ((A)Cm(TL + Acma,c) Mo, naic)
T ]. (A — — ) (A — — )
= — NocyNg*ic* ) — Noicy Mo
L sin aD D K< K L K K
(ALTlx, Tox)
+ (A, — A7, y Noxiex )Mo = = ?
(( c IC) K K ) K ((A)cmag + Aamg;c)ng)cana)c)
and
1 M+ Mgy
T* = - A ﬁa* *7ﬁa* * | K A ﬁa* *7ﬁa* *
Slnozplma( v * K) ma( * " K)
Mo, - ~ Moy Moy ((AL - AK) Mow s ﬁafc)2
_ (Aﬂnu*,c*,ng*,c*) = o .
Mgy me ((A;cma,; + Acma;c) Noxcs no)c)

By using the definition (3.2c) dfA, 7, «, 7.« xc+ ), T« becomes

— — —

T = [m” (AxTlore, Tow i ) (AxTlores Tlox) + Moy (AxcTlor, Mo i ) (AT, ok
= Mo (AxTlore, o )(ALTlow, Towicr) = Moy (AxTlor, Tiom o )(ALTlow, Tox)
+mo. ((Ar — AT oy ﬁU*K*)(AKﬁUmﬁU&)} / [sin ap ((Axme, + Azmeg,) ﬁumﬁm)} ,
which givesT. = 0. Similarly, by using the definition (3.2¢) ¢{A, 7, «, 77, -+ ), we get thafl, is also
equal to zero. By using the definition (3.2b)(0f 577, i+, T, x+ ), T becomes

1 . . = —
" = sosineo lm (Aefiyerce s Farr) + Mo (Axars, Fncr)
g

(Ax — ATk, Ty xce )
((Aicma,; + Az;ma;c) ﬁam 7 IC)

—Meg Mo,

—

o
_md;c (A)Cﬁa*lc* ) na*)c*) - m{TL (Algﬁﬂ*;c* 5 T_i(,*;c*)

((AK - Aa)ﬁa)c; T_iﬂ*lC*)Q
((A)Cmo'g + Acma;c) Mok, ﬁa)C)

+ Mo Mo, ,

and we see thal* = 0. Hence (4.10) leads to (4.9).
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STEP 3 - COMPUTATION OF THE FLUX UNKNOWNS In the sequel, all mathematical objects associ-
ated to a subdomaif2; will be marked with the index as follows

e Diis thek'" diamond belonging t®; r with respect to the numerotation introduced in Figure
4.5. In particularp?, C ;.

® Kjlis thek!" dual cell onI” belonging toOM; ., and thenc; , C 2;.

We have2N unknownsy; - . and only2N — 1 equations, that is the reason why we impose
the normalisation condition (4.5) in order to uniquely defthe flux unknowns; .- .. Let us study
separately what takes place on each sub-domain. We havévéotke following linear system for the
sub-domain;

Dl T =
Mey (14’D%v tu 17nU,L1)

di  dsy P1,x%,21 D T =
o —mics  frr, = > Mo (ApVPU" iige i)
d2 d3 <‘017’C.27£1 1,2 1,2 'De@’q2 2
don—1 don || Piry.en .
1 -1 --. 1 -1 (plx’C?VJruLN Moy (AD}VVDNuTl,ﬁmLN)
-B —5, 0
(4.11)
using the notationdsy,—1 = my: -, anddzy, = Mics e foranyk =1,--- , N. We easily see thaB
is invertible, so that there exists a unique ve@egrsolving (4.11).
Let us now look at the sub-domai,. We just definep, = —@; and we have to prove that,
satisfies the following system ai:
Mg, (Apfvbfu”,fim“)
_m’cg,zf’cg,z - Z Mo (ADvDuszﬁa*,)c;)
'DE@)CE 5
Bdy = s , (4.12)
Moy (AD?V VD?Vu“,ﬁU,LN)
0
with the convention thad, ., is the outward unit normal t62; ono, forallk = 1,--- , N. By using

the fact thatb, = —®; and equation (4.11), we have for&l=1,--- | N
Mucy ek P2.5,c6 T Mcs kP25, e = s, Pk 21— TG ek PLEE, ok
= —mg, (ADiVDiuTl,ﬁmck) )
By using the local conservativity equation (4.6), we obfainall k = 1,--- | N
Mict cn 2,50 T MG e P25 0,00 = Moy (ADiVDiUTZ,ﬁa,Lk) .
Letk € {2,---, N}. Onthe one hand, by definition ¢f .- . we have:

D, T1 = —
- E Mg~ (ADV U ,na*,)c;;) — My e Pl ce = My, e 1 PLES L1 = m’q,k,f’q,k'
'DE@KI .
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On the other hand, there exists a uniquec 9", and we haver; = k7 , UK3 ., with k5, € 05, see
Figure 4.8.
Since,u” solves the m-DDFV scheme on the mé&hwe have in particular the following equation

- Z Meo= (ADvDuTaﬁa*,)c;) = m)c*,;f)c;~

'DE@KZ
r /F\
/? 2 2 E 4
- _- 1
P | - |
- | _ xﬁk |
_ - .xlc;; | /// x)c* :
- K | -7 K} Kok !
o _ Tk | ®__ "Lk o
— — — _ -~ - x -
-e® Chot s )

FiG. 4.8. Decomposition ot} into the two dual cells of the subdomains.

By using equality (4.9) and the fact thdt = —&,, it follows that

D,, T2 =
- E Mo (ADV u vna*,)c;;) = My e P2, = My ek P25, L1—1

'DE@)Cgk
D, T = D,,T =
= = > e (ApVPU iige i)+ Y Mg (ApVPUT T i)
DeDy DeDyr ,

+m’C;;:Lk P15, Lk + My cn_1PLE} L1

= mgpfep —mx;, frr, = /}C f(x)de — /}C ,‘ f(z)dz

(l) dr = m)c;,kf)c;,k’
K3k

which exactly gives (4.12).

STEP4 - CONCLUDING THE PROOF It remains to defing”¢, fori = 1, 2, as follows:

Ui o+ + Ui o

. (4.13)

Gix*, e = —Pix*ct A
Collecting all the previous results, we see that we get aisltio
‘Cgi,F(uTi7 ¢Tia fTia hTiv gTj) =0

fori = 1,2, j # i and satisfying furthermore the condition (4.5).
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4.4 Convergence analysis of the iterative method

Let us state the discrete version of the Poincaré inequaliigh is proved in [2, Lemma 3.3].

LEMMA 4.1 (DISCRETEPOINCARE INEQUALITY) Let T be a DDFV mesh a?. There exists’ > 0,
depending only on the diameter@fand onreg(7") such that for any.” € R” and anyg € Hz (092),
we have )

a7l < [[a™ o + ™ ll2 < € (1920712 + llgll 13,5 ) -

The numberC' > 0 in this result depend on the numheg (7 ) which is a measure of the regularity
of the mesh. Since we are working in this paper with a fixed n¥esits precise definition is not needed
and we refer to [2] for the details. Let us only point out that(7") essentially measures how flat the
diamond cells are and how large is the ratio between the dexroéa primal cell (resp. dual cell) and
the diameter of a diamond cell as soon as they intersect.

It is now possible, as in [4] for the classical five point fini@dume scheme, to prove the main result
of this paper, that is the convergence of the Schwarz itexatiethod to the solution of the m-DDFV
scheme.

THEOREM4.2 (CONVERGENCE OF THESCHWARZ ALGORITHM) Foranyg,’ € &7, i € {1,2}, the
solution (u)),=1,2 of the algorithm(4.1)}(4.2) converges to the solution” of the m-DDFV scheme
with homogeneous Dirichlet condition (that is syst@m)with I" = ()) whenn — oco.

Moreover, if we assume thad’ is chosen in such a way that

N
A .
Z (gz Ki Lk g?,)c*,;+1,ak,) = By (h;q - h’qu) , L= {17 2}, (4.14)

k=1

then, the flux unknow i};r}’L given by algorithn(4.1)(4.2)also converge to the flux approximations
@i o+ . Of the schemg4.3) whenn — oo that is to say that the solutiotr™*! of the algorithm
(4 1)-(4.2) converge to the solutiofl ™ of the schem&.3)whenn — .

Note that the values af’* andu; > corresponding to the same points on the interfBomay not
coincide, in general, but they both converge to the sameswahenn goes to infinity.
Proof.

Fori € {1, 2}, we define the errors on each sub-domain at iteration numbserfollows
= u;r - u?v f)c o — Pk — @Z)c*,u gzn,l)c*,c = Gix*,c — gzn,l)c*,a'

These error terms satisfy the following system :fet 1, 2 andj # i.

n
€;

—div® (A°V®el!th) =0, Vi em,, (4.15a)
—div®" (A°V®el ) =0, Ve M, (4.15b)
_ Z Mo (ADVDe?_'_l’ﬁU*,)Cz) — mK:’Lka;Zl’Lk
'DE’}DK;;
— Mg en Vint o, =0, VEE{2,--- N}, (4.15¢)
My cp

w“ %wt} — (ApVPert i, ) =0, Vke{1,--- N}, (4.15d)

lle L - l,llk_*_l,llk
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=0, YkedMp, el =0, Vi €omy, (4.15¢)
D e F M (6871) = Gfr e, YR E{L-- N, (4.15f)
¢Z:’,§1+1,£k + /\’YIC’,;+1,£1¢ (6?+1) - g;n’cm_ Lk vk € {17 e aN}7 (4159)
with
g;;’C*,L = _w?)c* P /\'YK*,L (e?) V[x;c*ﬂf,;] c o0Ar. (4_16)

STEP1. Letusdefind]™! = —[div7 (A°V®e), et 7. By using Lemma 3.1, we have :

N
A 2
n+1 n+1 n+1
Ii ——Z E M(Tk (€i7}c2 — €i7}c;+1)

k=1
N N

1 1

- -n - n+1 -n _=n

2 Z € (gJ Khg1:Lk gj,;c;;,z:k) 2 Z €i )ckMUA 1 (9]'7&;’;_17%71 gj7’c27£k—1) )
k=2 k=2

where we recall thad/,, = W Equation (4.16) for the Fourier data error term and the
Tk

definition (2.2) ofy,« . lead to

2
My, (e’“} —ent! )

LR LR 41

=~ >
M=

n+1 _
I; = -

b
Il
—

n+1 _ n .
ei,)c;;MUk( ( JK 1oL j,ic;;,ak))

|
N | =

= M M-

+1 n n
e Mnk 1( ( K 1r k1 —¢j,;cz,ck_l))

N =

A N
n+1 n A n+1 n _n
eI, (64 ) m) Y M, ( s em).

RS
k=2

|
=~ >
>~
I|
N

As a consequence, by gathering all the similar terms, we get
n+1 n+1 n+1 2
Iz‘ ZM‘Tk( 1)Ck zic’,g_H)
n n n+1 n+1
Mo, (— ( oKtk j,nz,ck)) (%m; - ewczﬂ) (4.17)

n _n n+1 _ n+l
Mg, (ejﬂcz+1 esz) (ewCerl ez’,;c;;)-

N =

M« TM= 1

+
e

2

~
||
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STEP2 . We can now compute’*! in a different way, by using the discrete Stokes formula)2r5

the sub-domaif2;:
In+1 (ADvi) n+1 v@ n—!—l)D _( Qi(ADV@ n+1 . 7_7:)7’77(6?4_1))89,;

= 3 mp(ApVPeT VP - N ey P (A VRt ). (418)
DeD; DeED;,r

i

By comparing (4.17) and (4.18), we obtain
0= mp(ApV7e/ T, vPepth)

DeD;
N N
A 2\
- n+1 n+1 4 _n n+1 _n+l1
+7 ZMM (ei,)c;; z)ck+1) 1 ZMo'k ( €jch s e],n;) (ei,)c*,;+1 ez‘,;c;;)
k=1 k=2
N
1
n n n+1 n+1
5> My, (— (wj,,%l,ﬂk — " KM)) (em2 - emzﬂ) (4.19)
k=1
=B
— Z Moy (el T (ApVPel T i, L) .
DeED;,r

=B>
Equation (4.15d) and Definition (2.2) of the trace opergtoimply that the termB;, writes
N

MK Ly n+1 MG Lk n+1
By = Zm‘n’ ( m};k Vi er (6 ) + Mo, 7K2+11Lk (ei )

k=1
» My, cp 'g/}n-"_l n m)c;+17£kwnl+1
4K}, Lk LG Lk )
Mo, Mo,

We now use (4.15f)-(4.15g) and (4.16) to find that

A A
n n _ - n+l _ n+l - n _n n+1 _ yn+l
Viks oee ~ Vikgocn = 5 (ei,ic;; ei,)c’,é_H) + 5 (ej,;c;+1 eg,;c;) T Vixr e ¢i,;c;+1,£k7
in the termBy, it follows that B = B1 — By writes:
N
- A . 2
o 141 n+1
B = 1 ZMUIC (ei,)c;; - ei,)c:_H)

k=1
A N
- n _on n+l _ n+l
+4 § Mak (eg,)c;; eg,)czﬂ) (ei,)cz ei,)c*,;+1)
k=1

1 N
n+1 n+1 n+1 n+1
"9 ZM”k ( (S Vi, ic;+1,z;k) (ei,)c;; B ez’,;c;+1)
k=1

N ~
Micr,cp, n+1 ek 412k n+1 =B
- — xi.ck (el + I (S (ei™)

m m
k=1 Tk Tk

n+1 n+1
X (mfc;;,akl/}i,;c;;,ck + m’CZ+17£kwi,)€z+l,£k) ’
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and by gathering the two sums iy, we easily get

N

— +1 +1 +1

- Z (ka,Lkwq )ck7£kflek L (en ) + m)C;;+1,£kw7n;ck+l7£kfy’Ck+l7 (e;n )) :
k=1

Hence, (4.19) becomes

0 = 2 : mD(ADVDezH_l,VD@;H—l)
De®;
Ao i ) Ay +1 +1
n n n n n n
+4 kZlMak (ei,)cz ei,)c*,;+1) 1 kZ2MUk (6j47,c;;+1 ejx:) (ei’,c;;+1 ei’,cz)
Ay o VLAY Mt
n n n n n n
1 E M, (ei,;c; ei,)c*,;+1) + 1 § Mo, (ej,)c; ej,zc;;ﬂ) (ei,)c;; ei,ic*,;+1)

k=
N
n+1 n+1 n+1 n+1
a Z [m’civﬂsz K ycn TR Lk (™) + m’ciﬂvﬁkwv Kok TR Ck o (€ )} ’

and we see that the sum of the second, third, fourth and fifthgeancels, so that it finally remains

0 = Y mp(ApV7elT, Vet
De®D;

_Z |:ka,£1‘11[}7, )Ckygk’lek,Ck(e 1) +mK:+1,£kwfzs+1’Lk7Kk+l, (€?+1):|.
We can do exactly the same computation on the sub-dofaiddding the two results, we obtain

0= mp(Ap Vel VPPt ) 4 3 mp (A, Vel VPl

DeD; DeD,
1+ 1 +1 +1 +1
- Z |:ka 7£kwf;c z:k%ckﬂlk (en ) + mlc,’;+17£k¢?;ck+l z:k%ck_H Lk (en ):| (4.20)
N

n+1 n+1 n+1
{prEA w] )Ck,Lk’kavﬁk(ej ) +m?€:.,+17£kw3 )ckﬂ,ck%ck_,_l, (ej )}
k=1

Step 3. Using the formula

1 2 2
—ab= 2 ((a = 20)? = (a+A0)?)

and equations (4.15f)-(4.15g) and (4.16), we get that fgriaa 1,..., N:
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1 1 1 1
¢7n;Jcrk,£k%ck Lk( o ) — wﬁk Lk'}/)ck,ak(egwr )

2 2
B H (_wf;g’ak - )\%C“Lk( ”‘H)) B (w:;’flwk + /\'Y)ck Ck( n+1))

:*d);,cz’ak JF)\'Y)C;;,Lk (e})

2 2
tax [t e+ e (€)= (5 + M (7))

:—wzqﬁkﬂvq £, (ef)

= ﬁ [(—sz,ak + )\’V}C ck( n+1))2 - (_wﬁ,c27£k + )q,c Ek( ))2:|

1 2 2
+ﬁ (_w?jc_;fl,ak + A’YICZMZ}Q (6?4'1)) - ( wj KL,k + /\’y,cwﬂk ] .

We can do the s;ameforcomputlﬁgpf;k1 e Ve (6?'“)_7”;2;1,%%“17 . (e/*1). Thus, we
find that (4.20) becomes:

0= mp(ApVZer L, VPt 4 N7 mp (A, VPel !, VP
DeD; DeD;

Y e (w2 X (€)= (=7ce e + Mec(€0)] (4.21)

[z)ex xc]e€0Ar

+ Z m:f;\,z: [(_w;t}’ﬁ + A’Y}C* C( n+1)) _ (_w;t)c*7£ T )\f)/;c*7£(€?))2:| )

[z)ex xc]e0Ar

STEP 4. LetM € N*, we sum the equality (4.21) fot vaying from 1 toM, and we remark that
simplifications occur in the interface terms from iteratioandn + 1. It follows that

M M
DD mo(ApVPet VPt £ T Y T mp(Ap Ve VPl
n=1DeD; n=1DeD;

My ) My, )
Y P (L 4 de (@) 4D TR (oL + M (6] )
[z)cx,zc]E0AP [z)ex xc]€0Ar

>0

M * 2 M= 2
=Y T D) Y T (g e )
[z)cx,zc]€E0AP [zex,xc]€0AP

which gives that there exists > 0, independent ofi, such that

M M
SN mo(Ap VP V) 3T ST mp (A, Ve vRer ) < G

n=1DeD; n=1DeD;
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Using the coercivity of the matrix-valued maj we obtain
M M
DNV, + Y VeI, < CaC.

We deduce that the two serids_ [|[V2ief*!||3,, and > _ [[V®7elH||3, converge and as a result we
n=1 n=1
have that for = 1,2
[V®iep

— 0.
— 400

According to the discrete Poincaré inequality Lemma 4.1deguce the convergencedf'! to 0, for
1 = 1,2, whenn goes tox.

STEP5. It remains to prove that the fluxe§ . also converge to O provided that (4.14) holds. By
using equations (4.15c)-(4.15d), we already have\tHaE {1,---,N}:

My ,cr  pt1 m’cz+17£k n+1 D _n+l =
My wiﬂC:Jlk + My wi7icz+17£k - (ADV € 7””:%) N 00 0,
andvke {2, ---,N}
n+1 n+1 _ D n+l =
m’c;;;ﬂkwi,lc;;,ﬁk + m,c;;’ﬂk_lwi’)cz’ﬁk_l = — Z nrs (ADV €, 7no'*’)c;;) n:oo 0.
DED e
k
We first prove by induction that for any > 0, we have
N
=T =N
Z (gi,)c;;,ck - gi,)c*,;+1,ck,) =0. (4.22)
k=1

For the initialisation, we use the definition gff ... , to obtain

N N N
-0 _ . o o 0 .0
gz KL gi,)czﬂ,ck = ik, cn g%K;;Jrl,Lk gi,)cz,ak gi,)c*,;+1,ck, :

k=1 k=1 k=1
By using (4.13), we have

N

§ (gi,icz,z:k _gi,)czﬂ,z:k) =

k=1

| >

N
E (Uvz,;cz - uz’,;c;;ﬂ)

k=1

(h’cf - h’C?\H—l) ’

(4;01 Ki,Lr S«Qi,)c*,;+1,ak) +

MZEMZ

| >

(‘Pz KLy = Spi,/c2+1,z;k) +

E
Il
—

and then, by using (4.5), we finally have

N
§ (gz KiLw ;+1,Lk)

k=1

l\DI>/

(i = By, ) -
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This implies by using (4.14) that

N
Z (g?,)cz,ck - g?,)czﬂ,ck) =0. (4.23)

k=1

We assume that the equality (4.22) is true for samie 0. By using the definition (4.16) q‘;‘fglﬂ and
successively equations (4.15f)-(4.15g) then (4.15eg]libdvs that

N N

N
n+1 —n—+1 _ n+1 n+1 )‘ n+1 n+1
Z (gz ki Jiki, ek ) = Z (d’z‘,m;;ﬂ,ck - ‘/’i,mz,ck) + by Z (emcz - ez‘,nzﬂ)
k=1

k=1 = 1
N N
_ —n _=n n+l _ n+1
= > (gg‘,}czﬂ,ck gj,nz,ck) A (emz ez‘,nzﬂ)
k=1
=0 by induction

— AZ( n+1 n+*1 )
17Ck+1

)\en-‘rl )\ n+1

1,K7 LN 41
= 0.
Furthermore, we also have
N N A N
n+1 n+1 _ n+1 —n+1 n+1 n+1 _
Z (wi,fc;;ﬂ,ck - wi,fcz,ck) - Z (gz kpck — Jikp L ) D) Z ( ip G Kzﬂ) =0.
k=1 k=1 k=1
To sum up, we proved that:
n+1 n+1
Vke {]-a ce 7N}a m)C;;,Lk;wi’)C;;’Lk + mn;wak%,q“,% n—>+)oo 0,
+1 1+ 1
Vike {2, e vN}’ mK*g,Eka)cz,ck + mKZvﬁk—le)Cz,Lk_l N too 0,
N
n+1 n+1 _

Z (¢m2+1,£k o ¢i7!<27£k) - 0,

k=1
that is to say, in a more compact form, that:

BW”+1 N 07
n—-+oo
with B is the matrix being defined in (4.11). Since this maiBixs invertible, we deduce
Lpn-‘rl N O
n—-+oo

and the claim is proved.

5. Numerical results

We illustrate in this section the convergence propertiethefSchwarz algorithm presented above on
various test cases. We also illustrate how this convergéepend or\. Finally, the performance of the
method as a preconditioner is also investigated.

For each test case we give the formulas for the diffusionadedsand the exact solution, from
which we deduce the source teffin= —div(AVu.) to be used in the numerical computations.
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5.1 Initialization
In all the following numerical simulations, we choose thigidih guess foru, to be
ud =0, vie {1,2},

and we take the initial Fourier datg* in such a way that

al A
Z (gqo)c:,zgk _92K2+17£k) = 5 (h;@’{ - h)c*N+1) P Vie {1,2}
k=1

Following Theorem 4.2, this choice will imply the convergerof the flux unknowng?', .. ..

5.2 The domains and the meshes

N
In the sequel{? will be a domain decomposed into rectangular subdomﬁiﬁskL_Jle, with V equal

to 2,3 or4.

Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the coarsest mé\&thﬂé’ of the family of refined meshes
(Mesh” ),,, that we use in the sequel. More preciséligsh”, is obtained fromMesh”, | by dividing
into two equal parts all the edges in the mesh, which imphes ¢ach control volume is divided into
four parts.

r r

( 21 _(22 ) {25

0,0 (0,0)
FiG. 5.1. The domair2 = [—1,1] x [0, 1] is divided in 2 subdomains. (Lefylesh}. (Right) Mesh?.

Fl Fl
2 ({2 ({7 (2o
Fg F3 F2 F3
A ) 05 |0
(0,0) Iy (0,0 Iy

FiG. 5.2. The domain2 = [0, 1]2 is divided in 4 subdomains. (LefYlesh?. (Right) Mesh}.
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(=
©
=

I (0,0)

Y
N

[
o
[

I

FiG. 5.3. The L-shaped domai? = [—0.5, 0.5]2\[0, 0.5]2 is divided in 3 subdomaingviesh?.

r Iy I

{l 21 2 Jng

4

1,0) (1,0)

FiG. 5.4. The domaim? = [—1,2] x [0, 1]. (Left) £2 is divided in 2 subdomainlesh{. (Right) 2 is divided in 3 subdomains
Mesh?.

5.3 Convergence of the Schwarz algorithm used as a solver
Let us first illustrate the convergence of the Schwarz atgorion some simple cases.

e Case 1: Homogeneous Dirichlet Boundary Conditions:
ue(x,y) = sin(rz) sin(my) sin(w(z + y)),

and

A(z,y) = ((1)2 (1)?) forz <0, andA(x,y)= (ég Of)) for z > 0.

e Case 2 : Non Homogeneous Dirichlet Boundary Conditions:

ue(x,y) = cos(2.5mx) cos(2.57y),

I n Iy Iy

(03 2 h |82 4% |f4

(0,0) (0,0)

FiG. 5.5. The domaim? = [—1, 1] x [0, 1]. (Left) £2 is divided in 2 subdomainlesh?. (Right) 2 is divided in 4 subdomains
Mesh?.
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and
1.5 0.5

A(z,y) = <O.5 1.5) forz <0, andA(x,y)= <O.5 1

F. BOYER, F. HUBERT, S. KRELL

1.5 0'5) forz > 0.

In order to illustrate the convergence of the Schwarz athorj we decide to stop the algorithm

when

g —

[T

2

2

<1077,

We observe for Case 1 (resp. Case 2) on mesltkeslé andMeshg, (see Figure 5.6), that almosb?
iterations are necessary to achieve convergence.

Case 1Mesh;
A =160

o T 2 3

10
The numbers of iterations

Case 1Mesh?
A =160

R 0006000 00 6Cc0mHEED

10" L 10
The numbers of iterations

llun’ — uTil|2

FIG. 5.6. Evolution ofE; =
(Right) Case 2.

andEs =
[luTill2

Sinceu;’ converges ta.”* whenn goes toxo, fori = 1, 2, we expect the err

llun' — uell2

Case 2Mesh;
A =200

o 1 2 3

10
The numbers of iterations

Case 2Mesh?
A =200

10" L 10
The numbers of iterations

as a function of the number of iterations. (Left) Case 1.

|luell2

Jun' — uell2

to be
|[uell2

Ti _
of the same order thaM, for large enough values of. Thus, a natural stopping criterion

[luell2
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could be the following
g —u

2 [uT = uels
ue||2
for somen < 1. Unfortunately, in practical cases is obviouslya priori unknown, but we know that

the error for the m-DDFV scheme behaves likewherea = 1 in general andv = 2 for rectangular
meshes. Hence, we can use, in practice, the following stgpgiterion

: (5.1)

[lue]]2 |

Ti _ g 7Ti
e =™l e, (5.2)
[uT#]2

with n = 0.1.

Let us investigate the number of iterations required to@ahcondition (5.1) in the following cases
proposed in th&enchmark on Discretization Schemes for Anisotropic Biffia Problems on General
Grids elaborated for the FVCA5 conference [11].

e Case 3: Mild anisotropy diffusion:
DN (1 - CN3(1 N2 (15 05
wleg) =sin(1 =)= 9) + (-2 -0% A= (7 12).

e Case 4 : Heterogeneous rotating anisotropy diffusion:

—3,2 | 2 -3 _
Alz,y) = 1 <10 z>+y> (10 1)xy)

ue(x,y) = sin(nzx) sin(my), T g2 (1073 — Day o + 10732

Table 1 gives the iteration numbebit needed to fulfill (5.1).

Case 3 Mesh; - A = 160 | nbit = 99
Case 4 Mesh; - A\ = 205 | nbit = 134

Table 1. Iteration numbaetbit needed to fulfill (5.1) for Case 3 and 4.

Case 5 illustrates the behaviour of the Schwarz algorithrerwh ¢ H?((2). The first order error
estimate for m-DDFV given in Theorem 3.1 is no more valid. Bigheless, the scheme is known to be
convergent (see [2]).

e Case 5 : Isotropic constant diffusion on an L-shaped domaik, H?(2):

ue(x,y):ue(rﬁ):r%sin<§ (9+g)> A=<(1) ?)

Table 2 gives the iteration numbebit needed to fulfill (5.1).

| Case 5 Mesh; - A = 800 | nbit = 139 |

Table 2. Iteration numbaetibit needed to fulfill (5.1) for Case 5.
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5.4 Influence of the shape of the domain decomposition

We compare the algorithm for different decompositions &f $ame domait? = [—1,2] x [0, 1] (see
Figure 5.4) and for the same test case corresponding to alphicalized source term.

e Case 6 : Anisotropic diffusion. The source term is given by

Fong) - | 7 1000sm(25n(r —13)) for13<a <17,
A otherwise,

and the diffusion tensor by

A(z,y) = (ég (1)?) forz <Oorz>1, andA(x,y)= ((1)2 Oi5> otherwise

The exact solution is given by

v for —1 <z < 1.3,
1000 [z —1.3 1
B in (2. -1 for 1. 1.
ue(z,y) = x + 15 < 25 (2.5m)2 sin(2.57(x 3))> 3<a<1.7,
1000 /1 1
B i for 1. 2.
T <57T (2.57)2 Sm(57f)) T<z<

Mesh - primal mesh 4|u? — u”||o = 0.311  Mesh{ - primal mesh {|uZ — u7||o, = 0.798

‘ !

Mesh? - dual mesh {[uZ — u”||» = 0.118 Mesh - dual mesh }|u? — u”||o = 0.62

\

FIG. 5.7. Plot ofju? — u7|. Case 6\ = 250, iterationn = 11.  (Left) two domains decompositiof® = 21 U §25.
(Right) three domains decompositioh = (2; U 22 U (23.

Figure 5.7 is representing the errar’, — «”| for different iterations: on the primal mesh (resp.
dual mesh) with\ = 250.

The supremum noru? — u” || for the decomposition into 2 subdomainddsh®) on the primal
(resp. dual) mesh decreases fram7 (resp. 0.4) to 0.31 (resp. 0.12) after 10 iterations. For the
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decomposition into 3 subdomainsi¢sh?) ||uZ — u” |- on the primal (resp. dual) mesh decreases
from 1.1 (resp. 1.08) to 0.8 (resp. 0.62) after 10 iterations. Notice that the composite mé&skis

the same for the two decompositions under study. It seents fthrathis localized source term, the
decomposition into 2 subdomains is more accurate.

5.5 Influence of the Fourier parameter

Until now, the value ofA > 0 was arbitrarily fixed, but it is known that the choice »dfgenerally
influences the number of necessary iterations needed tewecbonvergence of the algorithm (see [1]).
We illustrate this behavior in our framework in Figure 5.&é€loptimal choice foA, as shown in Figure
5.8, seems to increase with the number of degrees of freedom.

Mesh] Mesh?

—+—Mesh2_3|
—&— Mesh2_4|
—a— Mesh2_5|

8
8

| Y —+—Mesh1_3|
—&—Mesh1_4|

8

| —s—Meshl 5

400

300

200

The numbers of iterations

8

0 100 200 300 400 500 600 700
Lambda

FiG. 5.8. The number of necessary iterations as a function ok thedue for Case 2.

More precisely, we give in Table 3 the optimal value\ads a function of the mesh size for the Case
2. Since the mesh siZeis divided by2 at each level of refinement, we observe that, in that cage,
seems to behave Iik}g as described in [7], [8].

Mesh3 | Mesh] | Mesh?
Aopt 94 164 333

Table 3. The optimal value of as a function of the size of the meaHor the Case 2

Let us consider again the case 6 with 2 different decompuosif (2 with the stopping criterion
parametef; = 0.01. For our particular source term, we see in Figure 5.9 thattferdecomposition into
2 subdomains we need less than 20 iterations to achievef@.ahy A, 0.1 < A < 400, whereas for
the decomposition into 3 subdomains we need at least 6Qidrsaachieved aroundl ~ 225). Table
4 sums up the iteration numbebit needed to achieve (5.1) with= 0.01 for the optimal value of.
Hence, in that case the decomposition into 2 subdomainsiie afficient than the decomposition into
3 subdomains, which is quite natural.

In fact, this behavior is not always observed, and we will rgive an example where increasing the
number of subdomains in the decompositiorbéctually improves the performance of the solver. Let
us consider again the test case 1 with 2 different decompnsiof(2 into 2 or 4 subdomains that is with
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5 —+— Mesh6_5|
180| i - &~ Mesh7_5
& 160] %
20 8
g Q
= 120 %
S S,
@ 10 Q
3 s
£ 80l Q%O
5 e
2
© 60 SOs000000008000°
E
a0
® M

Fic. 5.9. Case 6 - The number of necessary iterations as a fanaftid for the two meshesmesh§ andmesh?

2 subdomaing,,: = 20 nbit = 2
3 subdomaing,,; = 250 | nbit = 59

Table 4. Iteration numbetbit needed to fulfill (5.1) for Case 6.

the mesheMesh§ andMesh? (see Figure 5.5) for different levels of refinemeptf 3 or j = 5). For

the coarsest mesheg+ 3), left-hand side part of Figure 5.10 shows that the perferceaof the solver

for the two decompositions are equivalent. Neverthelesdjdier meshesj(= 5), the right-hand part

of the same figure shows that for the decomposition into 4 soiains we need less than 36 iterations
to achieve (5.1) for any0 < A < 300, whereas for the decomposition into 2 subdomains we need at
least 135 iterations (achieved arouknd- 150).

As a conclusion, for this test case larger is the number oflsatains better seems to be the perfor-
mance of the solver.

) —e— 4 subdomains| —&— 4 subdomains|

The numbers of iterations

0 50 100

200 250 300 0 50 100 200 250 300

150 150
Lambda Lambda

FiG. 5.10. Case 1 - The number of necessary iterations as adanati\ for the two mesh familiemesh? andmesh?. (Left)
Forj = 3. (Right) Forj = 5.

5.6 Application to the preconditioning of the conjugate gradisolver

The non-overlapping Schwarz method we study in this paperiimarily an iterative solver for our
finite volume scheme. Nevertheless, as usual, its perforasare not good enough to be used as it. In
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practice, one uses some iterations of the domain decongosigorithm as a preconditioner for the
conjugate gradient method (or any other efficient iteratiethod adapted to the problem).

We propose in this section some illustrations by evaluatimgnumber of iterations necessary to
achieve convergence of the conjugate gradient method. Mdy & particular how it depends on the
numbern of Schwarz subiterations we used as a preconditioner at mad iteration of the CG. A
number of subiterations = 0 means that no preconditioning was used. The test case weisised
described below and the results are given in Figure 5.11.

e Case 7 : Constant anisotropic diffusion:

ue(z,y) = 16y(1 — y)(1 — 22), andA(z,y) = Id.

We observe that for reasonable values ¢ayn = 3), the number of necessary CG iterations increases
very slowly with respect to the size of the linear system we swlving. Hence, our Schwarz method
seems to be a satisfactory preconditioner for solving theD#V numerical scheme.

Case 7Mesh}, A\ = 205

—+—grad

[1—e—grad prec n=1|

—=—grad prec n=2|
[| —— grad prec n=3
3001| —+— grad prec n=4|
—+—grad prec n=5|

250(-| —=— grad prec n=6|

The numbers of iterations

FIG. 5.11. The number of iterations as a function of the numbemn&howns.

As shown in Section 5.5, the value of the Fourier paramgteais an influence on the performance
of the Schwarz algorithm and it seems that there exists amapthoice for this value. We want to
see now if there exists also an optimal choice of the valug when the Schwarz method is used as
preconditionner. To this end, we consider the results abthifor the test case 7. The optimal value
of \ for the Schwarz algorithm, used as an iterative solver,asilad 115 (see Figure 5.12) to achieve
an error ofl0~8. Figure 5.12 is also showing the number of iterations of ijwgate gradient solver
preconditioned by 2 subiterations of the Schwarz algoritteoessary to achieve the same precision as
a function of\. We observe that the influence dfis not so clear than for the Schwarz algorithm as a
solver but it seems that the optimal value)ois around 3 (see the zoom in the right-hand side part of
Figure 5.12).

6. Conclusions

In this paper we propose a m-DDFV finite volume scheme withedi®irichlet/Fourier boundary con-
ditions for anisotropic elliptic problems. As a result, weywide a non-overlapping Schwarz algorithm
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Schwarz algorithm Conjugate gradient n=2

Schwar algorithm using as solver Conjugate gradient

—+—Meshl_4

s
3

@
&

The numbers of iterations
il

The numbers of iterations
@
8

N
S

&

20 40 60 80 100 120 140 160 180 200 ] 20 40 60 80 100 120 140 160 180 200
Lambda Lambda

Zoom n=2

Conjugate gradient
26 T T T T T

25 —+—Meshl_4

24

23

22

21

20

19

The numbers of iterations

18

17

16
0 4 5 6
Lambda

FiG. 5.12. The number of iterations to achieve an errot@f® as a function of\. Case 7. (Left) For the Schwarz algorithm as a
solver. (Middle and Right) For the conjugate gradient mdtivith the Schwarz algorithm as a preconditioner.

associated to a subdomain decompositioi2dr solving the m-DDFV scheme. The Schwarz algo-
rithm we obtained is proved to converge to the solution ofth®DFV scheme on the whole domain.
The properties of this algorithm are illustrated by numalriesults on anisotropic elliptic equations.
We illustrate in particular the existence of a unique valtithe Fourier parameter for which the con-
vergence is the fastest. Nevertheless, we also observathasual, the performances of such a method
as a solver are not very good whereas it is of real practidet@st to use a few subiterations of this
algorithm as a preconditioner for the conjugate gradieiveso

In further works, such a Fourier/Robin transmission cdondishould be compared to second order
optimized condition or to two-sided Robin condition in tR®FV framework as it is done in [10] for
the classical two point flux approximation finite volume agpguzh.
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