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Abstract

A graph G is 2-outerplanar if it has a planar embedding such that the subgraph ob-
tained by removing the vertices of the external face is outerplanar. The oriented chromatic
number of an oriented graph H is defined as the minimum order of an oriented graph H’
such that H has a homomorphism to H'. In this paper, we prove that 2-outerplanar
graphs are 4-degenerate. We also show that oriented 2-outerplanar graphs have a ho-
momorphism to the Paley tournament QRg7, which implies that their (strong) oriented
chromatic number is at most 67.

Keywords: combinatorial problems, oriented coloring, 2-outerplanar graphs.

1 Introduction

Oriented graphs are directed graphs without opposite arcs. In other words an oriented graph
is an orientation of an undirected graph, obtained by assigning to every edge one of the two
possible orientations. If G is a graph, V(G) denotes its vertex set, E(G) denotes its set of
edges. A homomorphism from an oriented graph G to an oriented graph H is a mapping ¢
from V(G) to V(H) which preserves the arcs, that is (z,y) € E(G) = (¢(x), p(y)) € E(H).
We say that H is a target graph of G if there exists a homomorphism from G to H. The
oriented chromatic number x,(G) of an oriented graph G is defined as the minimum order of
a target graph of GG. The oriented chromatic number x,(G) of an undirected graph G is then
defined as the maximum oriented chromatic number of its orientations. NeSetfil and Raspaud
introduced in [4] the strong oriented chromatic number of an oriented graph G (denoted by
Xs(G)), which definition differs from that of x,(G) by requiring that the target graph is an
oriented Cayley graph. Upper bounds on the (strong) oriented chromatic number have been
found for various subclasses of planar graphs. In particular:

1. if G is a planar graph, then x,(G) < 80 [6].

2. if G is an outerplanar graph, then ys(G) < 7 [7].
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A graph G is 2-outerplanar if it has a planar embedding such that the subgraph obtained
by removing the vertices of the external face is outerplanar. The second author proved that
2-outerplanar graphs have an acyclic partition into three independent sets and an outerplanar
graph [5]. By Theorem 1 in [1], the oriented chromatic number of a 2-outerplanar graph is
thus at most 2471 x (1+1+41+47) = 80. The same result follows from the bound of Raspaud
and Sopena [6] holding for planar graphs.

In Section 2, we prove among other results that any 2-outerplanar graph G is 4-degenerate,
i.e. every subgraph H of G has minimum degree at most 4. In Section 3, we use these results to
show that 2-outerplanar graphs have a homomorphism to @) Rg7, which improves the previous
bounds of 80.

2 Structural properties of 2-outerplanar graphs

Definition 1 A 2-outerplanar graph embedded in the plane is said to be a block if its external
face is an induced cycle.

Theorem 1 If G is a 2-outerplanar graph, then it contains a <4-vertez.

Proof. Let G be a 2-outerplanar graph embedded in the plane. We consider the subgraph H
induced by the external face of G. H is an outerplanar graph, so it contains an internal face
F incident to at most one other internal face of H (see Proof of Lemma 2 in [3]). Let B be
the subgraph of G induced by the vertices of F' and the vertices inside F'. By construction,
the graph B obtained is a block. Moreover, B contains only two vertices x and x’ such that
the degree of x and 2’ in G may be higher than their degree in B. By construction, = and «’
are two adjacent vertices belonging to the external face of B (see Figure 1).

Figure 1: The decomposition of a 2-outerplanar graph into blocks.

Let B, be the graph induced by the external face of B, and B, be the graph obtained from
B by removing the vertices of B.. By definition of 2-outerplanar graphs, B, is outerplanar.
So it contains two non-adjacent 2-vertices u and v (see Figure 2).

As mentioned above, vertices of B, have the same degree in B and in G, so dp(u) = dg(u)
and dp(v) = dg(v). Let us find a <4-vertex in B. If B, contains a 4-vertex, it is done.
Else, it means that B, contains only Z5-vertices; in particular u (resp. v) is adjacent to three
vertices uy, ug, ug (resp. vi,ve,vs), where ujusug (resp. vivovs) is an induced Ps of B, (see
Figure 3).

We now use the fact that B contains only two vertices # and 2’ having a degree in G
possibly higher than their degree in B. As zz’ is an edge of B,, this means that us or vy have



Figure 2: The decomposition of B into B, and B,.
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Figure 3: v and v have three neigbors in B..

the same degree in B and in G, i.e. dg(u2) = dp(u2) = 3 or dg(v2) = dg(v2) = 3. Hence B
always contains a vertex with degree at most 4 in G. O

We now prove that outerplanar graphs have properties stronger than 2-degeneration, in
order to find more precise configurations in 2-outerplanar graphs.

Lemma 1 Let G be an outerplanar graph. G contains either a 1-vertex, two adjacent 2-
vertices, a 2-vertex adjacent to a 3-vertexr as depicted in Figure 4.a, or two 2-vertices adjacent
to a 4-vertexr as depicted in Figure 4.b.

a) b)

Figure 4: Unavoidable configurations in an outerplanar graph without two adjacent 2-vertices.
The star symbol indicates the external face.

Proof. We prove this lemma by induction. Let G be an outerplanar graph, and let v be a
2-vertex of G (v exists, see [3] for details). The graph H = G\v is outerplanar, and smaller
than G. By induction, H contains either two adjacent 2-vertices, or the configurations of
Figure 4. If v is not adjacent to such a configuration of H, then it is a configuration of G,
and the induction is finished. Else v is adjacent to a configuration, and we have to make the
distinction between various cases. Notice that the neighbors of v must be adjacent in H in



order to obtain an outerplanar graph.
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Figure 5: Induction step in the proof of Lemma 1.

e If H contains two adjacent 2-vertices, we obtain the configuration of Figure 4.a.

e If H contains a configuration of Figure 4, we obtain either the configuration of Figure
4.a, or the configuration of Figure 4.b (see Figure 5).

In any case, G contains one of the three configurations described earlier. O

We now use Lemma 1 to prove a key structural theorem on 2-outerplanar graphs admitting
a block embedding in the plane. The following result can be extended to the whole class of
2-outerplanar graphs by using the same kind of proof as in Theorem 1.

Theorem 2 Let G be a 2-outerplanar graph admitting a block embedding in the plane. G
contains either a <3-vertez, two adjacent J-vertices, or the configuration depicted in Figure 6.

Figure 6: Unavoidable configuration in a 2-outerplanar block containing neither a <3-vertex
nor two adjacent 4-vertices.

Proof. We consider a block embedding of GG in the plane. Then the subgraph induced by
the external face is a cycle. Let G, be this cycle and let G, be the graph obtained from G
by removing the vertices of G.. By definition of G and G,, the graph G, is outerplanar. We
then know by Lemma 1 that G, contains either two adjacent 2-vertices, a 2-vertex having a
neighbor of degree 3 as depicted in Figure 4.a, or two 2-vertices having a common neighbor
of degree 4 as depicted in Figure 4.b.



e If G, contains a 1-vertex or two adjacent 2-vertices, we easily find a <3-vertex or two
adjacent 4-vertices in G.

e If G, contains a 2-vertex v adjacent to a 3-vertex u, we can prove that either dg(v) =4
or there is a vertex of degree 3 in G (which is a neighbor of v belonging to the external
face). This is done by applying the same method as in the previous proof. Thus G must
contain the configuration depicted in Figure 7. Notice that u and w are neigbors, else
one of them would have degree at most 3. For reasons of planarity, if v is adjacent to
another vertex of G, w cannot be adjacent to another vertex of G,. Conversely, if w is
adjacent to another vertex of G,, u cannot be adjacent to a vertex of G.. This proves
that either v or w has degree 4 in G, say u. If there is no 3-vertex in G, we found two
adjacent 4-vertices: u and v.

Figure 7: G, contains a 2-vertex v adjacent to a 3-vertex w.

e If G, contains two 2-vertices v and v’ both adjacent to a 4-vertex u as depicted in Figure
4.b, we first prove that either v and v’ have degree 4 in G, or G contains a 3-vertex (in
which case the proof is finished). Let v; and vy (resp. v] and v}) be the neigbors of v
(resp. v') belonging to the external face. As depicted in Figure 8, we have to make a
distinction between two cases : {v1,v2} and {v],v}} are disjoint (case 1), or they have
a vertex in common, say ve = v} (case 2).

Figure 8: G, contains two 2-vertices v and v’ adjacent to a common 4-vertex u.

case 1 (see Figure 8.a) If vo and v| have degree at least 4 in G, they both have to be
adjacent to w, in which case dg(v2) = dg(v]) = 4, and we found two adjacent
4-vertices in G.

case 2 (see Figure 8.b) If u is adjacent to vy = v, we obtain exactly the configuration
depicted in Figure 6. Otherwise, we simply have two adjacent 4-vertices (v and vs).



3 Strong oriented coloring of 2-outerplanar graphs
Theorem 3 If G is a 2-outerplanar graph, then xs(G) < 67.

For a prime power ¢ = 3 (mod 4), the vertices of the Paley tournament QR, are the
elements of F, and (i, ) is an arc in QR if and only if j — i is a non-zero quadratic residue
of F,. An orientation vector of size k is a sequence o = {a1,qa2,..., a4} in {0,1}F. Let G
be an oriented graph and X = (z1,29,...,z) be a sequence of pairwise distinct vertices of
G. A vertex y of G is said to be an a-successor of X if for every i, 1 < i < k, we have
a; =1= (z4,y) € E(G) and o; = 0 = (y,z;) € E(G). The graph G satisfies property Sk,
if for every sequence X = (s1,$2,...,Sk) of k pairwise distinct vertices of G, and for every
orientation vector « of size k, there exist at least n vertices in V(G) which are a-successors
of X.

A computer check proves the following lemma;:
Lemma 2 The tournament QQRg7 satisfies properties Sz and Sy 1.

We use the method of reducible configurations to show that every 2-outerplanar graph is
(QQRg7-colorable. We define the partial order < for the set of all graphs. Let n3(G) be the
number of Z3-vertices in G. For any two graphs G and G, we have G; < G5 if and only if
at least one of the following conditions hold:

e (71 is a proper subgraph of Gbs.
[ ng(Gl) < ng(Gg).

Note that this partial order is well-defined, since if (G; is a proper subgraph of G, then
n3(G1) < n3(G2). So < is a partial linear extension of the subgraph poset.

Let G be a 2-outerplanar graph having no homomorphism to ) Rg7, which is minimal with
this property according to <.

Lemma 3 G is 2-connected and does not contain a cut consisting in two adjacent vertices.

Proof. If Gis not 2-connected, then we can obtain a () Rgr-coloring of GG from the coloring of
its 2-connected components, since () Rg7 is a circular tournament. Moreover GG cannot contain
a cut set consisting of two adjacent vertices, since () Rg7 is an arc-transitive tournament. O

Notice that Lemma 3 implies that every 2-outerplanar embedding of G is a block.
Lemma 4

1. The graph G does not contain any <3-vertez.

2. The graph G does not contain two adjacent j-vertices.

3. The graph G does not contain the configuration depicted in Figure 6.
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Figure 9: Forbidden configurations for Lemma 4.
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Figure 10: Construction of G’ in the proof of Lemma 4.

Proof.

1. Consider configuration (i) in Figure 9. Let f be any Q) Rgr-coloring of G \ {y}. By
property S36, we can choose f such that f(z) # f(v) and extend this coloring to G.
Consider now configuration (ii) in Figure 9. Notice that uy, uz, and u3 are = 3-vertices,
since configuration (i) with n = 2 is forbidden. Since QQRg7 is self-reverse, we assume
w.l.o.g. that d~(x) < d*(x) by considering either G or G. We have d~(z) # 0, since
otherwise we could extend any Q) Rgr-coloring of G\ {z} to G. Suppose now d~(x) = 1,
which is the only remaining case. Let us set N~ (z) = {u1}, NT(x) = {ug,uz}. We
now consider the graph G’ obtained from G \ {z} by adding directed 2-paths joining
respectively u; and us, and u; and uz. Notice that if G is a block, then G’ is a block.
Moreover G' < G since n3(G') = n3(G) — 1. Any QRgr-coloring f of G’ induces a
coloring of G \ {x} such that f(u1) # f(u2) and f(u1) # f(us), which can be extended
to G.

2. Consider configuration (iii) in Figure 9. Let f be any QRgr-coloring of G \ {uv} (that
is we delete the edge uv). By property S36, we can choose f such that

f(u) & {f(v1), f(v2), f(vs)}. Now by property Sy 1, we can choose f such that f(v) ¢
{f(w), f(u1), f(u2), f(us)} and extend this coloring to G.

3. Consider the configuration depicted in Figure 6. Let G’ be the graph obtained from
G\ {w1,ws, 2} by adding the arcs u;y and yus, and the arc uyv; (resp. uzvs) if uy and
vy (resp. ug and vy) are not adjacent in GG. This construction is depicted in Figure 10.
Notice that if G is a block, then G’ is a block. Moreover G’ < G, since n3(G’) = n3(G)—3.
Thus G’ admits a @ Rg7-coloring which induces a Q Rgr-coloring f of G\ {w1, we, 2} such
that f(ul)a f(vl)a f(y) (resp. f(u2)7 f(Ug), f(y)a resp. f(ul)a f(u2)7 f(y)) are pairwise
distinct. By Property Sz, we can assign x a color f(x) & {f(u1), f(u2), f(y)}. By
Property Sy 1, we can assign wy a color f(wi) & {f(u1), f(v1), f(y), f(x)} and assign ws
a color f(wa) & {f(u2), f(v2), f(y), f(z)}. We thus obtain a @ Rgr-coloring of G, which
is a contradiction.



a

By Lemma 3 G is a block. Using Theorem 2, G must contain one of the configurations
that are forbidden by Lemma 4. This contradiction completes the proof of Theorem 3.
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