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Avoiding Approximate Squares

As is well-known, Axel Thue constructed an infinite word over a 3-letter alphabet that contains no squares, that is, no nonempty subwords of the form xx. In this paper we consider a variation on this problem, where we try to avoid approximate squares, that is, subwords of the form xx where |x| = |x | and x and x are "nearly" identical.

Introduction

A hundred years ago, Norwegian mathematician Axel Thue initiated the study of combinatorics on words [START_REF] Thue | Über unendliche Zeichenreihen[END_REF][START_REF] Thue | Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen[END_REF][START_REF] Berstel | Axel Thue's Papers on Repetitions in Words: a Translation[END_REF]. One of his achievements was the construction of an infinite word over a three-letter alphabet that contains no squares, that is, no nonempty subwords of the form xx.

Many variations on this problem have been considered. For example, Brandenburg [START_REF] Brandenburg | Uniformly growing k-th power-free homomorphisms[END_REF] and Dejean [START_REF] Dejean | Sur un théorème de Thue[END_REF] considered the problem of avoiding fractional powers. A word w is a α-power if it can be written in the form w = x n y, where y is a prefix of x and α = |w|/|x|. A word z contains an α-power if some subword is a β-power, for β ≥ α; otherwise it avoids α-powers. Similarly, a word z contains an α + -power if some subword is a β-power for β > α; otherwise it avoids α + -powers. We say α-powers (resp. α + -powers) are avoidable over a k-letter alphabet if there exists an infinite word over that alphabet avoiding α-powers (resp., α + -powers).

Dejean [START_REF] Dejean | Sur un théorème de Thue[END_REF] improved Thue's result by showing how to avoid (7/4) + -powers over a 3-letter alphabet; this result is optimal, as every ternary word of length ≥ 39 contains a 7/4-power. Pansiot [START_REF] Pansiot | A propos d'une conjecture de F. Dejean sur les répétitions dans les mots[END_REF] showed how to avoid (7/5) + -powers over a 4-letter alphabet. Again, this is optimal, as every quaternary word of length ≥ 122 contains a 7/5-power.

Dejean also proved that for k ≥ 5, one cannot avoid k/(k -1)-powers over a k-letter alphabet. She conjectured that it was possible to avoid (k/(k -1)) +powers over a k-letter alphabet. This conjecture was proved for 5 ≤ k ≤ 11 by Moulin-Ollagnier, for 7 ≤ k ≤ 14 by Mohammad-Noori and Currie [START_REF] Mohammad-Noori | Dejean's conjecture and Sturmian words[END_REF], and for k ≥ 38 by Carpi [START_REF] Carpi | On the repetition threshold for large alphabets[END_REF]. The cases 15 ≤ k ≤ 37 remain open.

Another variation is to avoid not all α-powers, but only sufficiently long ones. Entringer, Jackson, and Schatz [START_REF] Entringer | On nonrepetitive sequences[END_REF] showed how to construct a word over a 2-letter alphabet that avoids squares xx with |x| ≥ 3; here the number 3 is best possible.

In this paper we consider yet another variation, but one that seems natural: we consider avoiding approximate squares, that is, subwords of the form xx where x is "almost the same" as x. The precise definitions are given below. One of our main results is a further strengthening of Dejean's improvement on Thue for 3 letters.

Approximate squares (also known as approximate tandem repeats in the biological literature) have been studied before, but from the algorithmic point of view. Landau and Schmidt [START_REF] Landau | An algorithm for approximate tandem repeats[END_REF] and Kolpakov and Kucherov [START_REF] Kolpakov | Finding approximate repetitions under Hamming distance[END_REF] both gave efficient algorithms for finding approximate squares in a string.

Notation: we use Σ k to denote the alphabet of k letters {0, 1, 2, . . . , k -1}.

Approximate squares

There are at least two natural notions of approximate square. We define them below.

For words x, x of the same length, define the Hamming distance d(x, x ) as the number of positions in which x and x differ. For example, d(01203, 11002) = 2. We say that a word

xx with |x| = |x | is a c-approximate square if d(x, x ) ≤ c.
Using this terminology, for example, a 0-approximate square is a square, and a 1-approximate square is either a square or differs from a square in exactly one position.

To avoid c-approximate squares, we would like to enforce the condition d(x, x ) > c for all x, x of the same length, but clearly this is impossible if |x| ≤ c. To avoid this technicality, we say a word z avoids c-approximate squares if for all its subwords xx where |x| = |x | we have d(x, x ) ≥ min(c + 1, |x|).

This definition is an "additive" version; there is also a "multiplicative" version. Given two words x, x of the same length, we define their similarity s(x, x ) as the fraction of the number of positions in which x and x agree. Formally,

s(x, x ) := |x| -d(x, x ) |x| .
Thus for example, s(123456, 101406) = 1/2. The similarity of a finite word z is defined to be α = max x,x subwords of z |x|=|x | s(x, x ); we say such a word is α-similar.

Thus, a 1-similar finite word contains a square. For infinite words, the situation is slightly more subtle. We say an infinite word z is α-similar if α = sup s(x, x ), but α is not attained by any subword xx of z, then we say z is α --similar.

As an example, consider the infinite word over Σ 3 , c = 210201210120210201202 • • • defined to be the length of contiguous blocks of 1's between consecutive 0's in the Thue-Morse sequence t. As is well-known, c is square-free, so it cannot be 1-similar. However, since t contains arbitrarily large squares, it follows that c must contain arbitrarily large 1-approximate squares, and so c is 1 --similar.

Words of low similarity

The main problem of interest is, Given an alphabet Σ of size k, what is the smallest similarity possible over all infinite words over Σ? We call this the similarity coefficient of k.

Answering this question has two aspects. We can explicitly construct an infinite word that is α-similar (or α --similar). To show that α is best possible, we can construct a tree of all finite words that are β-similar for β < α. The root of this tree is labeled 0 (which suffices by symmetry), and if a node is labeled w, its children are labeled wa for all a ∈ Σ. If a node is β-similar for some β ≥ α, it becomes a leaf and no children are added. We can then use depth-first or breadth-first search to explore this tree. The number of leaves of this tree represents the (finite) number of words beginning with 0 that are β-similar for β < α, and the height h of the tree is the length of the longest words with this property. The number of leaves at depth h represent the number of maximal words beginning with 0 that are β similar for some β < α.

We performed this computation for various alphabet sizes k, and the results are reported below in Table 1. For k = 8, our method took advantage of some symmetries to speed up the computation, and as a result, we did not compute the number of leaves or maximal strings. For the reported values, these computations represent a proof that the similarity coefficient is at least as large as the α reported. For alphabet size k = 2, every infinite word is 1-similar. We now report on larger alphabet sizes. Theorem 1. There exists an infinite 3/4-similar word w over {0, 1, 2}.

Proof. Let h be the 24-uniform morphism defined by

0 → 012021201021012102120210 1 → 120102012102120210201021 2 → 201210120210201021012102.
The following lemma may be verified computationally.

Lemma 1. Let a, b, c ∈ {0, 1, 2}, a = b. Let w be any subword of length 24 of h(ab). If w is neither a prefix nor a suffix of h(ab), then h(c) and w mismatch in at least 9 positions.

Let w = h ω (0). We shall show that w has the desired property. We argue by contradiction. Suppose that w contains a subword yy with |y| = |y | such that y and y match in more than 3/4 • |y| positions. Let us suppose further that |y| is minimal.

We may verify computationally that w contains no such subword yy where |y| ≤ 72. We therefore assume from now on that |y| > 72.

Let w = a 1 a 2 • • • a n be a word of minimal length such that h(w) = xyy z for some x, z ∈ {0, 1, 2} * . By the minimality of w, we have 0 ≤ |x|, |z| < 24.

For i = 1, 2, . . . , n, define A i = h(a i ). Then if h(w) = xyy z, we can write

h(w) = A 1 A 2 • • • A n = A 1 A 1 A 2 • • • A j-1 A j A j A j+1 • • • A n-1 A n A n
where

A 1 = A 1 A 1 A j = A j A j A n = A n A n x = A 1 y = A 1 A 2 • • • A j-1 A j y = A j A j+1 • • • A n-1 A n z = A n ,
and

|A 1 |, |A j | > 0. See Figure 1. If |A 1 | > |A j |
, then, writing y and y atop one another, as illustrated in Figure 2, one observes that for t = j + 1, j + 2, . . . , n -1, each A t "lines up" with a subword, say B t , of A t-j A t-j+1 . We now apply Lemma 1 to conclude that each A t mismatches with B t in at least 9 of 24 positions. Consequently, y and y mismatch in at least 9(j -2) positions. Since j ≥ |y|/24 + 1, we have that 

A 1 A 2 A j-1 A j+1 A n-1 A 1 A 1 A j A j A n A n • • • • • • y y A j A n z x
• • • • • • A n A j A n-1 A j+2 A j+1 A j A 2 A 1 y = y = A j-1 Fig. 2. The case |A 1 | > |A j |
9(j -2) ≥ 9(|y|/24 -1). However, 9(|y|/24 -1) > |y|/4 for |y| > 72, so that y and y mismatch in more than 1/4 • |y| positions, contrary to our assumption.

If |A 1 | < |A j |, as illustrated in Figure 3, then a similar argument shows that y and y mismatch in more than 1/4 • |y| positions, contrary to our assumption.

• • • A n-1 A j+1 A j A j-1 A 2 A 1 A n A j A 3 • • • y = y = Fig. 3. The case |A 1 | < |A j | Therefore |A 1 | = |A j |.
We first observe that any pair of words taken from {h(0), h(1), h(2)} mismatch at every position. We now consider several cases.

Case 1:

A 1 = A j = A n . Then letting u = A 1 A 2 • • • A j-1 and u = A j A j+1 • • • A n-1
, we see that u and u match in exactly the same number of positions as y and y .

Case 2:

A 1 = A j = A n . Then letting u = A 1 A 2 • • • A j-1 and u = A j A j+1 • • • A n-1
, we see that u and u match in at least as many positions as y and y .

Case 3:

A 1 = A j = A n . Then letting u = A 2 A 3 • • • A j and u = A j+1 A j+2 • • • A n ,
we see that u and u match in at least as many positions as y and y .

Case 4:

A 1 = A n = A j . Then letting u = A 1 A 2 • • • A j-1 and u = A j A j+1 • • • A n-1
, we see that u and u match in exactly the same number of positions as y and y .

Case 5: A 1 , A j , and A n are all distinct. Then letting

u = A 1 A 2 • • • A j-1 and u = A j A j+1 • • • A n-1
, we see that u and u match in exactly the same number of positions as y and y .

We finish the argument by considering the word uu . First observe that either

uu = h(a 1 a 2 • • • a j-1 )h(a j a j+1 • • • a n-1 ) or uu = h(a 2 a 3 • • • a j )h(a j+1 a j+2 • • • a n ).
Without loss of generality, let us assume that the first case holds.

Recall our previous observation that the words h(0), h(1), and h(2) have distinct letters at every position. Suppose then that there is a mismatch between u and u occurring within blocks A t and A t+j for some t, 1 ≤ t ≤ j. Then A t and A t+j mismatch at every position. Moreover, we have a j = a j+t . Conversely, if A t and A t+j match at any single position, then they match at every position, and we have

a t = a t+j . Let v = a 1 a 2 • • • a j-1 and v = a j a j+1 • • • a n-1 .
Let m be the number of matches between u and u . From our previous observations we deduce that the number of matches m between v and v is m/24, but since |v| = |u|/24, m /|v| = m/|u|. Thus, if m/|u| > 3/4, as we have assumed, then m /|v| > 3/4. But the set {h(0), h(1), h(2)} is a code, so that vv is the unique pre-image of uu . The word vv is thus a subword of w, contradicting the assumed minimality of yy . We conclude that no such yy occurs in w, and this completes the argument that w is 3/4-similar.

Next, we consider the case k = 4. Theorem 2. There exists an infinite 1/2-similar word x over {0, 1, 2, 3}.

Proof. Let g be the 36-uniform morphism defined by

0 → 012132303202321020123021203020121310 1 → 123203010313032131230132310131232021 2 → 230310121020103202301203021202303132 3 → 301021232131210313012310132313010203.
Then x = g ω (0) has the desired property. The proof is entirely analogous to that of Theorem 1 and is omitted.

In our last result of this section, we show that we can obtain infinite words of arbitrarily low similarity, provided the alphabet size is sufficiently large. The main tool is the following [1, Lemma 5.1.1]: Lemma 2 (Lovász Local Lemma; asymmetric version). Let I be a finite set, and let {A i } i∈I be events in a probability space. Let E be a set of pairs (i, j) ∈ I × I such that A i is mutually independent of all the events {A j : (i, j) ∈ E}. Suppose there exist real numbers {x i } i∈I , 0 ≤ x i < 1, such that for all i ∈ I,

Prob(A i ) ≤ x i (i,j)∈E (1 -x j ). Then Prob i∈I A i ≥ i∈I (1 -x i ) > 0.
We now state our result. Theorem 3. Let c > 1 be an integer. There exists an infinite 1/c-similar word.

Proof. Let k and N be positive integers, and let w = w 1 w 2 • • • w N be a random word of length N over a k-letter alphabet Σ. Here each letter of w is chosen uniformly and independently at random from Σ.

Let

I = {(t, r) : 0 ≤ t < N, 1 ≤ r ≤ (N -t)/2 }. For i = (t, r) ∈ I, write y = w t • • • w t+r-1 and y = w t+r • • • w t+2r-1 . Let A i denote the event s(y, y ) > 1/c. A crude overestimate of Prob(A i ) is Prob(A i ) ≤ r r/c +1 k r/c +1 k 2r-2( r/c +1) k 2r ≤ r r/2 k -r/c ≤ 2 r k -r/c ,
where the last inequality comes from Stirling's approximation. For all positive integers r, define ξ r = 2 -2r . For any real number α ≤ 1/2, we have (1 -α) ≥ e -2α . Hence, (1 -ξ r ) ≥ e -2ξr . For i = (t, r) ∈ I, define x i = ξ r . Let E be as in the local lemma. Note that a subword of length 2r of w overlaps with at most 2r + 2s -1 subwords of length 2s. Thus, for all i = (t, r) ∈ I, we have

x i (i,j)∈E (1 -x j ) ≥ ξ r N/2 s=1 (1 -ξ s ) 2r+2s-1 ≥ ξ r ∞ s=1 (1 -ξ s ) 2r+2s-1 ≥ ξ r ∞ s=1 e -2ξs(2r+2s-1) ≥ 2 -2r ∞ s=1 e -2(2 -2s )(2r+2s-1) ≥ 2 -2r exp -2 2r ∞ s=1 1 2 2s + ∞ s=1 2s -1 2 2s ≥ 2 -2r exp -2 2r 1 3 + 5 9 ≥ 2 -2r exp - 4 3 r - 10 9 . 
The hypotheses of the local lemma are met if 2 r k -r/c ≤ 2 -2r exp -4 3 r -10 9 . Taking logarithms, we require r log 2-r c log k ≤ -2r log 2-4 3 r -10 9 . Rearranging terms, we require c 3 log 2 + 4 3 + 10 9r ≤ log k. The left side of this inequality is largest when r = 1, so we define d 1 = 3 log 2+ 4 3 + 10 9 , and insist that c•d 1 ≤ log k. Hence, for k ≥ e c•d1 , we may apply the local lemma to conclude that with positive probability, w is 1/c-similar. Since N = |w| is arbitrary, we conclude that there are arbitrarily large such w. By König's Infinity Lemma, there exists an infinite 1/c-similar word, as required.

Words avoiding c-approximate squares

In this section we consider the "additive" version of the problem. Table 2 reflects our results using a backtracking algorithm: there is no infinite word over a kletter alphabet that avoids c-approximate squares, for the k and c given below. 2. Lower bounds on avoiding c-approximate squares Theorem 4. There is an infinite word over a 3-letter alphabet that avoids 0approximate squares, and the 0 is best possible.

Proof. Any ternary word avoiding squares, such as the fixed point, starting with 2, of 2 → 210, 1 → 20, 0 → 1, satisfies the conditions of the theorem. The result is best possible, from Table 2

.

Theorem 5. There is an infinite word over a 4-letter alphabet that avoids 1approximate squares, and the 1 is best possible.

Proof. Let c be any squarefree word over {0, 1, 2}, and consider the image under the 48-uniform morphism γ defined by

0 → 012031023120321031201321032013021320123013203123 1 → 012031023120321023103213021032013210312013203123 2 → 012031023012310213023103210231203210312013203123
The resulting word d = γ(c) avoids 1-approximate squares. The result is best possible, from Table 2.

The proof is similar to that of Theorem 1. Suppose to the contrary that d contains a 1-approximate square yy , |y| = |y |. We may verify computationally that d contains no such subword yy where |y| ≤ 96. We therefore assume from now on that |y| > 96.

Let w = a 1 a 2 • • • a n be a word of minimal length such that γ(w) = xyy z for some x, z ∈ {0, 1, 2, 3} * . By the minimality of w, we have 0 ≤ |x|, |z| < 48.

In each case, the proof is similar to the ones given previously, and is omitted. Theorem 8. For all integers n ≥ 3, there is an infinite word over an alphabet of 2n letters that avoids (n -1)-approximate squares.

Proof. Consider the 2n-uniform morphism h : Σ * 3 → Σ * 2n defined as follows:

0 → 012 • • • (n -1)n • • • (2n -1) 1 → 012 • • • (n -1)(n + 1)(n + 2) • • • (2n -1)n 2 → 012 • • • (n -1)(n + 2)(n + 3) • • • (2n -1)n(n + 1)
We claim that if w is any squarefree word over Σ 3 , then h(w) has the desired properties. The proof is a simple generalization of Theorem 6.

Another variation

Yet another variation we can study is trying to avoid xx where x is very similar to x , but only for sufficiently large x. Let us say that a finite word is (n, α)similar if α = sup x,x subwords of z |x|=|x |≥n s(x, x ), and analogous definitions for infinite z.

Exercise 5.8.1 of Alon and Spencer [START_REF] Alon | The Probabilistic Method[END_REF] asks the reader to show, using the Lovász local lemma that, (in our language) for every > 0, there exists an infinite binary word z and an integer c such that z is (c, α)-similar for some α ≤ 1 2 + . Theorem 9. 1 2 is best possible in the previous result. Proof. Suppose 2 and s(x , y) < 1 2 ; hence, since z is defined over a binary alphabet, necessarily s(x, y) > 1 2 . Similarly, we must have s(x , y ) > 

Edit distance

There are many definitions of edit distance, but for our purposes, we say the edit distance e(x, y) = c if x can be transformed into y by a sequence of c insertions, deletions, or replacements, and no sequence of c -1 insertions, deletions, or replacements suffices. We can expand our notion of approximate square to avoid all words that are within edit distance c of all squares.

For example, consider the case c = 1. Then every word of length 1, say a, is within edit distance 1 of a square, as we can simply insert a to get aa. Similarly, every word of length 2, say ab, is within edit distance 1 of a square, as we can simply replace the b by a to get aa. Thus we need to restrict our attention to avoiding words that are within edit distance c of all sufficiently large squares.

Theorem 10. There is an infinite word over 5 letters such that all subwords x with |x| ≥ 3 are neither squares, nor within edit distance 1 of any square. There is no such word over 4 letters.

Proof. The usual tree traversal technique shows there is no such word over 4 letters Over 5 letters we can use the 5-uniform morphism h defined by 0 → 01234; 1 → 02142; 2 → 03143.

We claim the image of every square-free word under h has the desired property. Details will appear in the final paper.

  x,x subwords of z |x|=|x | s(x, x ) and there exists at least one subword xx with |x| = |x | and s(x, x ) = α. Otherwise, if α = sup x,x subwords of z |x|=|x |

Fig. 1 .

 1 Fig. 1. The string xyy z within h(w)

1 2

 1 is not best possible. Then there exists an infinite binary word z and a positive integer c, such that any subword xx of z with |x| = |x | ≥ c satisfies s(x, x ) < 1 2 . Consider a subword of z of the form xx yy , with |x| = |x | = |y| = |y | = c. By our assumption, s(x, x ) < 1

1 2 .

 2 But then by definition of s,2c • s(xx , yy ) = c • s(x, y) + c • s(x , y )and so s(xx , yy ) > 1 2 , a contradiction to our assumption.

Table 1 .

 1 Similarity bounds

		Similarity Height Number Number of Lexicographically
	Alphabet Coefficient	of	of Maximal
	Size k	α	Tree Leaves	Words First Maximal Words
	2	1	3	4	1 010
	3	3/4	41	2475	36 01020120210120102120121020120210120102101
	4	1/2	9	382	6 012310213
	5	2/5	75 3902869	48 012304310342041340120314210412342012403410230420312340321024320410342140243
	6	1/3	17 342356	480 01234150325143012
	7	?	?	?	? ?
	8	1/4	71	-	-01234056731460251647301275634076213574102364075120435674103271564073142

For i = 1, 2, . . . , n, define A i = γ(a i ). Just as in the proof of Theorem 1, we write

so that the situation illustrated in Figure 1 applies to xyy z within γ(w). We now make the following observations regarding the morphism γ: -each of u and u is a suffix of a word in {γ(0), γ(1), γ(2)}; and -each of v and v is a prefix of a word in {γ(0), γ(1), γ(2)}. Then either uv = u v or uv and u v mismatch in at least 18 positions. 4. Let a ∈ {0, 1, 2}. Then γ(a) is uniquely determined by either its prefix of length 17 or its suffix of length 17.

From the first observation, we deduce, as in the proof of Theorem 1, that the cases illustrated by Figures 2 and 3 cannot occur. In particular, we have that

From the second observation, we deduce that for i = 2, 3, . . . , j -1, A i = A i+j-1 , and consequently, a i = a i+j-1 .

From the third observation, we deduce that A 1 = A j and A j = A n .

From the fourth observation, we deduce that either

a square in c, contrary to our assumption. In the second case, a 2 a 3 • • • a j a j+1 a j+2 • • • a n is a square in c, contrary to our assumption.

We conclude that d contains no 1-approximate square yy , as required.

Theorem 6. There is an infinite word over a 6-letter alphabet that avoids 2approximate squares, and the 2 is best possible.

Proof. Let c be any squarefree word over {0, 1, 2}, and consider the image under the 6-uniform morphism β defined by

The resulting word avoids 2-approximate squares. The result is best possible, from Table 2. The proof is similar to that of Theorem 5, so we only note the properties of the morphism β needed to derive the result: Further results on additive similarity are summarized in the next theorem.

Theorem 7. For each k, n, d given below, there is an infinite word over a kletter alphabet that avoids n-approximate squares, and in each case such an infinite word can be generated by applying the given d-uniform morphism to any infinite squarefree word over {0, 1, 2}. (Note that we have used the coding A = 10, B = 11, etc. )