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Abstract

We consider the set S of triples (x, y, z) corresponding to the frequency
of each alphabet letter in some infinite ternary square-free word (so x +
y + z = 1). We conjecture that this set is convex. We obtain bounds on S

by with a generalization of our method to bound the extremal frequency
of one letter. This method uses weights on the alphabet letters. Finally,
we obtain positive results, that is, explicit triples in S lying close to its
boundary.

1 Introduction and preliminary results

A square is a repetition of the form xx, where x is a nonempty word; an example
in English is hotshots.
Let Σk denote the k-letter alphabet {0, 1, . . . , k − 1}. It is easy to see that
every word of length ≥ 4 over Σ2 must contain a square, so squares cannot be
avoided in infinite binary words. However, Thue showed [1, 9, 10] that there
exist infinite words over Σ3 that avoid squares.

Let |w|i denote the number of occurrences of the letter i in the finite word

w. The frequency of the letter i in the finite word w is thus |w|i
|w| . In the case of

infinite words, we say that the letter i has frequency q in the infinite word w if
for every ǫ > 0, there exists an integer nǫ such that for every factor v of length

at least nǫ,
∣

∣

∣

|v|i
|v| − q

∣

∣

∣
< ǫ.

Various authors have considered letter frequencies [2, 4, 5, 6, 7, 8] in infinite
words avoiding some repetition. Most results concern the minimal or maximal
frequency of one letter. The aim of this paper is to present an extension of our
methods [6] to the general case, that is, when the frequency of every letter in
Σk is considered. Of course, the case of the binary alphabet is irrevelant in this
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context since minimizing the frequency of one letter is the same as maximizing
the frequency of the other. We chose to study ternary square-free words.

Let S denote the set of triples (x, y, z) corresponding to the frequency of
each alphabet letter in some infinite ternary square-free word. We thus have
x + y + z = 1. We conjecture that S is convex, that is, if (x, y, z) and (x′, y′, z′)
both belong to S then (x + t(z′ − z), y + t(z′ − z), z + t(z′ − z)) belongs to S for
every t ∈ [0, 1].

Using symmetries between the alphabet letters, we focus on the triples of S

of the form (x, y, 1−x− y) such that x ≤ y ≤ 1−x− y or on the corresponding
set S′ of points (x, y) satisfying

x ≤ y (1)

and
x + 2y ≤ 1. (2)

In the following, x and y denote coordinates of points in S′. The first results
on S′ are obtained from the known bounds on the minimal frequency fmin and
the maximal frequency fmax of a letter in an infinite ternary square-free word.

Theorem 1.

• [4] fmin = 883
3215 .

• [6] fmax = 255
653 .

From the proofs of Theorem 1 we deduce, in our notations, that

Corollary 2.

•

x ≥
883

3215
(3)

•

x + y ≥ 1 −
255

653
=

398

653
(4)

• S′ contains the point P1 =
(

883
3215 , 1166

3215

)

.

• S′ contains the point P2 =
(

199
653 , 199

653

)

.

The square-free morphism 0 7→ 012, 1 7→ 02, 2 7→ 1 shows that S′ contains
the point P0 =

(

1
3 , 1

3

)

.
To our knowledge every infinite ternary square-free word constructed in the

litterature correspond to a point inside the triangle (P0, P1, P2). This triangle,
which is inside the convex hull of S′, already occupies most of the area of the
region bounded by equations 1 to 4, which contains S′.

In Section 2, we give a way to obtain new bounds on S′. In Section 3, we
obtain two new points in S′ that extend the triangle (P0, P1, P2). The C sources
of the programs used in this paper are available at
http://dept-info.labri.fr/∼ochem/morphisms/ .
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2 Negative results

We extend the method [6] by putting weights on the alphabet letters. A weight
function ω : Σ∗

k → R is a mapping satisfying ω(uv) = ω(u) + ω(v) for every
u, v ∈ Σ∗

k. It is thus completely defined by the k-tuple (ω(0), . . . , ω(k − 1)).

The average weight of a finite word w ∈ Σ∗
k is αω(w) = ω(w)

|w| . Alternatively,

we have αω(w) =
∑k−1

i=0
|w|i
|w| ω(i), which allows to extend the definition of the

average weight to infinite words such that the frequency of every alphabet letter
is defined.

A word w is said to be t-biprolongable in a factorial language L if there
exists a word lwr ∈ L such that |l| = |r| = t. A suffix cover of L is a set S of
finite words in L such that every finite word that is t-biprolongable in L and of
length at least maxu∈S |u| has a suffix that belongs to S, for some finite number
t. Taking t = 20 is sufficient for every negative result in this paper. For a weight
function ω and a word u ∈ S, let

Aω,u(q) = {w ∈ L | uw ∈ L and for every prefix w′ of w, αω(w′) < q} .

Lemma 3. Let L be a factorial language and S one of its suffix covers. Let
q ∈ Q. If Aω,u(q) is finite for every word u ∈ S, then αω(w) ≥ q for every
infinite word w ∈ L.

Proof. Assume Aω,u(q) is finite for every word u ∈ S. We show that every
right-infinite word w ∈ L has a decomposition into finite factors
w = pv0v1v2v3 · · · such that |p| = t, |v0| = maxu∈S |u|, and αω(vi) ≥ q for every
i ≥ 1. Notice that for every i ≥ 0, the factor fi = v0 · · · vi is t-biprolongable
in L and is such that |fi| ≥ maxu∈S |u|. Thus, for every i ≥ 0, fi has a suffix
si ∈ S, and since Aω,si

(q) is finite, there exists a finite factor vi+1 at the right
of fi such that αω(vi+1) ≥ q.

It is easy to see that Lemma 3 and the definition of Aω,u(q) can be modified
to provide bounds of the form αω(w) > q.

For two weight functions ω and ω′ respectively defined by the k-tuples
(ω(0), . . . , ω(k − 1)) and (ω′(0) = aω(0) + b, . . . , ω′(k − 1) = aω(k − 1) + b),
we have αω′(w) = aαω(w) + b. Our goal is to minimize the average weight
of a word in L, we thus put weights in decreasing order of frequency. In the
case of ternary square-free words, we can thus consider only weight functions
ωc with weights (0, c, 1 − c) with 0 ≤ c ≤ 1

2 . So 0 is the most frequent letter
with frequency z and weight 0, letter 1 has frequency y and weight c, and 2 is
the least frequent letter with frequency x and weight 1 − c.

Lemma 3 enables us to obtain bounds on S′. We first choose q ∈ Q, a suffix
cover S for ternary square-free words, and a weight functions ωc. Then we
check by computer that Aωc,u(q) is finite for every u ∈ S. This shows that for
every infinite ternary square-free word w, we have (1 − c)× x + c× y + 0× z =
(1 − c)x + cy ≥ q. Equations 3 and 4 would have corresponded to the cases
c = 0 and c = 1

2 respectively.

3



There does not seem to be “smart choices” for the values of c, so we simply
took c in

{

1
10 , 1

5 , 3
10 , 2

5

}

. In each case, the suffix cover was {0, 1, 202, 102, 2012, 21012, 0212}.
Notice that since alphabet letters play distinct roles, there is no notion of re-
duced suffix cover as in [6].

Theorem 4. If w is an infinite ternary square-free word with letter frequencies
(x, y, z) such that x ≤ y ≤ z, then:

y >
4230

1493
− 9x (5)

y >
729

500
− 4x (6)

y >
380

381
−

7

3
x (7)

y >
340

447
−

3

2
x (8)

3 Positive results

To prove that a point (x, y) ∈ Q2 belongs to S′, we construct an infinite ternary
square-free word w as the image of any infinite ternary square-free word by a
suitable square-free morphism. We write x = nx

d
and y =

ny

d
. For increasing

values of t, we look for a square-free (t × d)-uniform morphism h such that
|h(i)|2 = t × nx and |h(i)|1 = t × ny for every i ∈ Σ3. The square-freeness of h

is checked thanks a result of Crochemore [3] saying that a uniform morphism is
square-free if the image of every square-free word of length 3 is square-free.

Theorem 5. There exists infinite ternary square-free words with letter fre-
quencies

(

13
45 , 1

3 , 17
45

)

and
(

2
7 , 19

56 , 3
8

)

.

Proof. Ternary square-free words with letter frequencies
(

13
45 , 1

3 , 17
45

)

can be con-
structed with the following square-free (2 × 45)-uniform morphism

0 → 0102012021012010201210120102101210201021012010201202101201

02101202102010210120102012021012

1 → 0102101210201021012010201202102010210120102012101201021012

02102010210120102012021020121012

2 → 0102101210201021012010201202102010210120102012102010210120

21020102101210201021201020121012.

Ternary square-free words with letter frequencies
(

2
7 , 19

56 , 3
8

)

can be con-
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structed with the following square-free (2 × 56)-uniform morphism

0 → 0102012101201020120210120102012101201021012102010210120102

012021012010210120210201021012010201202101201021012102

1 → 0102101201020120210201021012010201210120102101210201021012

010201202101201021012102010210120102012102010210120212

2 → 0102101201020121012010210120210201021012010201210120102101

210201021012010201202102010210120102012102010210120212.

Theorem 5 means that S′ also contains P3 =
(

13
45 , 1

3

)

and P4 =
(

2
7 , 19

56

)

.
The figure below is meant to visualize the known results about the set S′.
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