
HAL Id: hal-00307119
https://hal.science/hal-00307119

Submitted on 1 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Similarity Between Quotiented Ordered Trees
Pascal Ferraro, Aïda Ouangraoua, Laurent Tichit, Serge Dulucq

To cite this version:
Pascal Ferraro, Aïda Ouangraoua, Laurent Tichit, Serge Dulucq. Local Similarity Between Quotiented
Ordered Trees. Journal of Discrete Algorithms, 2007, 5 (1), pp.23-35. �hal-00307119�

https://hal.science/hal-00307119
https://hal.archives-ouvertes.fr

Local similarity between quotiented ordered

trees

Pascal Ferraro a,∗ Aı̈da Ouangraoua a Laurent Tichit a,1

Serge Dulucq a

aLaBRI - Université de Bordeaux 1

351 Cours de la Libération, 33405 Talence Cedex, France

Abstract

In this paper we propose a dynamic programming algorithm to evaluate local simi-
larity between ordered quotiented trees using a constrained edit scoring scheme. A
quotiented tree is a tree defined with an additional equivalent relation on vertices
and such that the quotient graph is also a tree. The core of the method relies on
two adaptations of an algorithm proposed by Zhang et al. [1] for comparing ordered
rooted trees. After some preliminary definitions and the description of this tree edit
algorithm, we propose extensions to globally and locally compare two quotiented
trees. This last method allows to find the region in each tree with the highest similar-
ity. Algorithms are currently being used in genomic analysis to evaluate variability
between RNA secondary structures.

Key words: Ordered labeled trees, local edition, quotiented graph, dynamic
programming.

1 Introduction

The comparison of trees is an important operation applied in several fields,
such as molecular biology [2,3], botany [4], pattern recognition [5], etc. To
compute similarity between trees, edit distance metrics, initially introduced
for string to string comparison problem [6], were first extended to compare

∗ Corresponding author.
Email addresses: pascal.ferraro@labri.fr (Pascal Ferraro),

aida.ouangraoua@labri.fr (Aı̈da Ouangraoua), tichit@iml.univ-mrs.fr
(Laurent Tichit), serge.dulucq@labri.fr (Serge Dulucq).
1 Present address: IML - Université de la Méditerranée
Campus de Luminy, Case 907 - 13288 MARSEILLE Cedex 9

Preprint submitted to Elsevier Science 30 November 2005

ordered trees [7,8] and then unordered trees [9] (see [10,11] for a review). A
distance between two trees is thus computed as the minimum cost of a sequence
of elementary operations that converts one tree into the other and minimiz-
ing the operation costs. In this article, we consider extensions of Zhang and
Shasha [1] algorithm, that computes the distance by considering an optimal
mapping between two trees. Note that Jiang et al. [12] have also introduced
an alternative to mapping and tree edition called alignment of trees, but the
notion of alignment won’t be considered here.

To take into account the multiscale nature of different biological structures
(e.g. plants [13], RNA [3,14]) Zhang and Shasha algorithm has been extended
to compare quotiented ordered trees. A quotiented ordered tree [13] is a tree
with an equivalence relation defined on the set of vertices, and such that the
resulting quotient graph is also an ordered tree. A quotiented tree can thus be
considered as an auto-similar structure represented by trees on two different
scales. An equivalent problem has been solved by Ferraro and Godin [15] who
proposed a constrained edit distance between unordered quotiented tree.

These distances allow the user to globally evaluate similarity between two trees
or two quotiented trees. However, in many cases trees share only a limited
region of similarity. We thus proposed extensions of Smith and Waterman
algorithm [16] for evaluating local similarities between ordered trees and then
to locally compare quotiented trees. The local edit score computation between
two trees is an alternative to the basic global score computation algorithm
which often gives different and yet sometimes more relevant results than the
global approach when dealing with real biological data.

2 Definitions and notations

A rooted tree is a directed acyclic connected graph T = (V, E) (V and E

are respectively the set of vertices and edges) in which one of the vertex is
distinguished from the others. The distinguished vertex is called the root of
the tree (Figure 1.a). By extension, the particular graph θ = (∅, ∅) is a tree
and is called the empty tree.

Let T = (V, E) be a rooted tree, |T | represents the number of vertices of T .
Let (v, w) be an edge of V , v is called the father of w and w is a child of v.
A vertex that have no child is called a leaf. A vertex v is called an ancestor
of a vertex w (and w is called a descendant of v) if there exists a sequence of
vertices (x1, x2, . . . , xn), called a path, such that x1 = v and xn = w, and for
each consecutive pair of vertices (xi, xi+1), xi+1 is a child of xi. The ancestor
relationship is a partial order relation denoted by �.

A complete subtree (or simply a subtree) is a particular connected subgraph
of a tree. Let T = (V, E) be a tree, rooted in r, a subtree of T rooted in x

2

(a)

4

1

2

3

11

5

6 7

8
9

10

(b)

4

1

2

3 5

6 7

8
9

10

Fig. 1. (a) A tree with postfix order numbering and (b) the forest F [1 . . . 10]

is denoted by T [x] = (V [x], E[x]), where V [x] = {y ∈ V |x � y} and E[x] =
{(u, v) ∈ E|u ∈ V [x] and v ∈ V [x]}. A partial subtree is a connected subgraph
of a subtree T [x] which does not necessarily include all the descendants of x.
For instance, in Figure 1.a, the sub graph of T [10] made of vertices 10, 5 and
8 is a partial subtree.

A rooted tree is said ordered if the set of children of a given vertex are ordered.
These are therefore trees for which the left-to-right order among the sibling
vertices is significant (see [17] or [18]). In this paper, trees will be ordered
according to the postfix order. The postfix order relationship on the vertices
of an ordered rooted tree T rooted in r is obtained by visiting all the subtrees
of T rooted on the children of r (in respect with the order on these children)
and finally the root r. The postfix order relationship is a total order relation
on vertices denoted by ≤. Moreover, vertices will purposely be identified with
their postfix order index (Fig. 1a). The leftmost leaf descendant of the subtree
rooted at vertex i according to the postfix order is denoted by l(i) (for instance,
in figure 1, l(10) = 5).

A forest is a directed graph whose connected components are ordered rooted
trees. Referring to the notations of [3,19], let x1 < x2 < . . . < xk be the
vertices of T [xk], F [x1 . . . xi] is the forest consisting in the subtrees of T [xk]
restricted to the vertices x1, x2, . . . , xi. Particularly, F [x1 . . . xk] is the whole
tree T [xk]. By convention, if xk < x1 then F [x1 . . . xk] represents θ the empty
tree.

A quotiented tree is a 3-tuple Q = (T, W, π) where T = (V, E) is a tree called
the support of Q, W is a set of vertices and π a surjective application from V

to W . For any vertex x in V , the vertex π(x) is called the complex of x and
reciprocally, x is a component of π(x). π−1(X) = {x ∈ V |π(x) = X} denotes
the set of components of a vertex X of W and if x is a vertex of V , π−1(π(x))
is the set of components of π(x). By convention, π−1(X) is identified with the
subtree of T made of vertices in π−1(X). The function π induces a partition
πQ on V : πQ = {π−1(X)|X ∈ W}. The quotient graph π(T) associated with
Q is (W, Eπ) such that: ∀(x, y) ∈ E, (π(x), π(y)) ∈ Eπ ⇔ π(x) 6= π(y). By
definition, in a quotiented tree graph, quotient graph and support graph are

3

π

W TT

π T

Quotiented tree (, ,) Support tree

Quotient tree ()

Fig. 2. A quotiented tree, its support T and its quotient π(T)

both trees (Fig. 2). A quotiented tree is said ordered if its quotient tree and
support tree are both ordered. Thus, previous definitions and notations are
still valid on quotiented trees. Let X1 < X2 < . . . < Xi be vertices of W ,
the quotiented subtree of Q rooted in X1 is denoted by Q(X1). Referring
to previous notation, Q[X1 . . .Xi] is the quotiented forest consisting in the
subtrees of Q(Xi) restricted to the vertices X1, X2, . . . , Xi.

In the following, we consider labeled ordered rooted (and eventually quo-
tiented) trees and labeled forests. Each vertex of a tree T = (V, E) or a forest
is labeled by a symbol belonging to a finite set Σ of labels using a labeling
function α : V → Σ. We will consider an edit score function on this set of
labels. The score function s assigns a real number s(a, b) to each pairs of labels
(a, b) in Σ ∪ {λ} where λ represents the empty symbol (s(a, λ) is the score of
the deletion of symbol a in Σ and s(λ, b) is the score of the insertion of b) such
that:

s(a, a) > 0 ∀a ∈ Σ,

s(a, b) < 0 ∀a 6= b, a, b ∈ Σ ∪ {λ}.

This means that the score between two symbols a and b become higher with
their similarity. Moreover, in the following, we constraint the score function
to respect the dual of the triangle inequality for distance:

s(a, b) ≥ s(a, c) + s(c, b), ∀a, b, c ∈ Σ ∪ {λ}.

Usually, in comparison tree problems, labels and vertices are identified. Here,
we will make the distinction between these both notions. So, for an edit oper-
ation on a tree consisting to the “transformation” of a vertex x in a vertex y

(transformation means substitution, deletion or insertion), the resulting score
is denoted by s(α(x), α(y)).

4

3 Global similarity

3.1 Global comparison between ordered trees

A considerable amount of works has been done on ordered tree comparison.
Among various tree metrics, Täı [8] and Selkow [7] proposed an edit distance
metric between ordered rooted trees based on the generalization of string
comparison defined by Wagner and Fisher [6].

The tree-to-tree correction problem consists in determining the distance be-
tween two trees measured by the optimal sequence of edit operations needed
to transform one tree into the other. Following Wagner and Fisher original
definitions on sequences, three edit operations are used: substituting a vertex
x into a vertex y means changing the label of x into the label of y, deleting a
vertex x means making the children of x become a new children of the father
of x and then removing x, inserting a vertex y means that y becomes the child
of a vertex x and a subset of consecutive children (relatively to their order) of
x becomes the set of children of y.

Let e be an edit operation, a score σ is assigned to each edit operation as
follows: if e substitutes x into y then σ(e) = s(α(x), α(y)), if e deletes x

then σ(e) = s(α(x), λ) and if e inserts the vertex y then σ(e) = s(λ, α(y)).
The score σ is extended to a sequence of edit operation E = (e1, e2, . . . , en)
by letting σ(E) =

∑n
i=1 σ(ei). This makes it possible to define a similarity

S(T1, T2) between trees T1 and T2 as the maximum score of edit operation
sequences transforming T1 into T2, namely

S(T1, T2) = max
E∈E

{σ(E)},

where E represents the set of sequences of edit operations transforming T1

into T2. Likewise, we can extend this notion to the similarity between forests
S(F1, F2).

Zhang et al. [1] proposed a general recurrence formula for computing similarity
between ordered forest. Let F1 and F2 be two ordered forests and let x1, y1
and x2, y2 be vertices of F1 and F2 respectively.

S(F1[x1 . . . y1], F2[x2 . . . y2]) = max































S(F1[x1 . . . y1 − 1], F2[x2 . . . y2]) + s(α(y1), λ)

S(F1[x1 . . . y1], F2[x2 . . . y2 − 1]) + s(λ, α(y2))

S(F1[x1 . . . l(y1)− 1], F2[x2 . . . l(y2)− 1])

+ S(F1[l(y1) . . . y1 − 1], F2[l(y2) . . . y2 − 1])

+s(α(y1), α(y2))

(1)

Note, if y1 (resp. y2) is an ancestor of x1 (resp. x2), then F1[x1 . . . y1] (resp.
F1[x2 . . . y2]) is a tree and F1[x1 . . . l(y1) − 1] (resp. F2[x2 . . . l(y2) − 1]) is the

5

empty tree.

3.2 Global comparison between quotiented trees

Ferraro and Godin [15] have recently introduced an edit distance between un-
ordered quotiented trees based on a comparison of support graph and edit
operations that preserves equivalence relations. We propose here a symmetric
approach by comparing quotiented trees at the more macroscopic scale. Ba-
sically, quotiented trees refer to trees whose nodes are also trees. Edit score
related to quotient vertices is thus defined as an edit score computation be-
tween the support subtrees of these vertices.

Let Q1 = (T1, W1, π1) and Q2 = (T2, W2, π2) be two quotiented trees (if no
confusion is possible π1 and π2 are denoted by π). Let e be an edit operation,
the score σQ assigned to each edit operation is defined as follow:

• if e is a substitution of X1 into X2: σQ(e) = S(π−1(X1), π
−1(X2)),

• if e is a deletion of X1: σQ(e) = S(π−1(X1), θ),
• if e is an insertion of X2: σQ(e) = S(θ, π−1(X2)).

Like previously, σQ is extended to define the cost of a sequence of edit opera-
tions E from π(T1) to π(T2) by letting SQ(π(T1), π(T2)) = σQ(E) =

∑n
i=1 σQ(ei).

A score between quotiented trees is then defined by the following optimization
problem:

Problem 1 Let Q1 and Q2 be two quotiented trees, find σQ(E) maximum,
such that E is a sequence of edit operation that transforms π(T1) into π(T2),
namely:

SQ(Q1, Q2) = max
E∈EQ

{σQ(E)},

where EQ represents the set of sequences of edit operations transforming π(T1)
into π(T2).

Let Q1 = (T1, W1, π) and Q2 = (T2, W2, π) be both quotiented trees and let
X1, Y1 and X2, Y2 be respectively vertices of π(T1) (ie. W1) and π(T2) (ie. W2),
we can then deduce from equation 1 the following recurrence formula:

SQ(Q1[X1 . . . Y1], Q2[X2 . . . Y2]) = max































SQ(Q1[X1 . . . Y1 − 1], Q2[X2 . . . Y2]) + S(π−1(Y1), θ)

SQ(Q1[X1 . . . Y1], Q2[X2 . . . Y2 − 1]) + S(θ, π−1(Y2))

SQ(Q1[X1 . . . l(Y1)− 1], Q2[X2 . . . l(Y2)− 1])

+SQ(Q1[l(Y1) . . . Y1], Q2[l(Y2) . . . Y2 − 1])

+S(π−1(Y1), π−1(Y2)).

(2)

The main difference between this recursive relation and the computation of
global edit score between trees lies in the computation of the score of the edit

6

operations between quotient vertices. There are computed as the edit score
between the support subtrees corresponding to the quotient vertices.

4 Local similarity

In many cases trees share only a limited region of similarity. This may be a
common domain or simply a short region of recognizable similarity. This case is
dealt with by so-called local mapping in an algorithm developed by Smith and
Waterman [16] to evaluate local similarity between strings. Local similarity
aims at identifying the best pair of regions, one from each string, such that
the optimal (global) similarity of these two regions is the best possible. This
relies on a scoring scheme that maximizes a similarity score because otherwise
an empty sequence of edit operations would always yield the smallest score.
Naively, the algorithm to compute the local similarity would need to inspect
every pair of regions and apply a global comparison algorithm to it. The
decisive idea of Smith and Waterman was to find for any prefix of the sequences
a suffix with a maximal score. We propose a generalization of this algorithm
to evaluate local similarity between ordered and quotiented trees.

A first algorithm for finding similar regions in trees has been recently proposed
by Höshmann et al. [20]. It build upon the tree alignment algorithm for ordered
trees given by Jiang et al. [12]. This algorithm is used for evaluating local
similarity in RNA secondary structures. However, since edition of trees and
tree alignments are different concepts and lead to different algorithms, this
method is not discussed in this paper. Note that in [21,22], Wang et al. solved
a similar problem consisting of finding the largest approximately common
substructures in ordered labeled trees. Given two trees T1 and T2 and an
additional parameter δ, their algorithm determine the argest subtrees U1 and
U2 of respectively T1 and T2 whose distance is at most δ. It is based on the
computation of the global edit distance between two trees, and is therefore a
minimization problem. Our variation does not use any additional parameter
and thus cannot be solved as a minimization problem.

4.1 Local comparison between ordered trees

The computation of a local similarity allows to detect local conserved areas
between both trees. The solution of such a problem is based on the notion of
prefix mapping between trees.

Definition 2 Let T be a tree rooted in r, any partial subtree of T rooted in
r is called a prefix of T or a T -prefix. By convention, the empty tree θ is a
T -prefix.

7

Note that a particular prefix of T rooted in r is T [r] itself. Let T1 and T2 be two
trees and let x1 and x2 be two vertices of T1 and T2, the set of T1[x1]-prefixes
and T2[x2]-prefixes are respectively denoted by T1[x1] and T2[x2].

A similar definition can be proposed for a forest:

Definition 3 Let F be a forest made of n trees T1, . . . , Tn respectively rooted
in r1, r2, . . . , rn. A F -prefix is a sub-forest of F made of any prefixes of T1, . . . , Tn.

The local prefix mapping problem for a given pair x1, x2 of vertices is to find a
(possibly empty) prefix ρ1 of T1[x1] and a (possibly empty) prefix ρ2 of T2[x2]
(Figure 3.a) such that the score of the optimal sequence of edit operations
transforming ρ1 into ρ2 is the maximum over all scores of sequences of edit
operations between prefixes of T1[x1] and T2[x2].

Fig. 3. Local prefix definition for (a) two trees and (b) two forests

The score of the sequence solving the optimal local prefix mapping problem
(called local score) for a given pair x1, x2 of vertices is denoted by LS(T1[x1], T2[x2]):

LS(T1[x1], T2[x2]) = max{S(ρ1, ρ2), (ρ1, ρ2) ∈ T1[x1] × T2[x2]}.

Note that a local prefix problem between two forests F1[x1 . . . y1] and F2[x2 . . . y2]
is similarly defined as:

LS(F1[x1 . . . y1], F2[x2 . . . y2]) = max{SF (ρ1, ρ2), (ρ1, ρ2) ∈ F1[x1 . . . y1]×F2[x2 . . . y2]}.

where F1[x1 . . . y1] and F2[x2 . . . y2] represent respectively the set of F1[x1 . . . y1]-
prefixes and F2[x2 . . . y2]-prefixes (Fig. 3.b).

8

Local similarity between two trees is then defined as the score of the best pair
of local prefixes in trees T1 and T2:

Theorem 4

LS(T1, T2) = max{LS(T1[x1], T2[x2]), (x1, x2) ∈ V1 × V2}.

So, in order to evaluate local similarity, the algorithm needs to find maximum
similarity between prefixes of T1[x1] and T2[x2], for any pair of vertices (x1, x2)
of V1 × V2, and then to determine the best pair of vertices xMax

1 , xMax
2 of T1

and T2.

4.2 Case of trees

Let T1 and T2 be two trees respectively rooted in x1 and x2 and let ρ1 and ρ2

be respectively optimal T1-prefix and T2-prefix. To evaluate the score between
ρ1 and ρ2 we consider two cases depending on ρ1 and ρ2 are or not empty:

(1) ρ1 = ∅ and ρ2 = ∅ are respectively both valid T1-prefix and T2-prefix, in
this case:

S(ρ1, ρ2) = 0

(2) ρ1 6= ∅ and ρ2 6= ∅. If ρ1 is empty then necessarily ρ2 is empty and
reciprocally. Then, during the edition of ρ1 and ρ2 and according to the
three edit operations, we consider three cases:
(a) x1 and x2 has been substituted:

S(ρ1, ρ2) = LS(F1[l(x1) . . . x1−1], F2[l(x2) . . . x2−1])+s(α(x1), α(x2))

(b) either x1 has been deleted:

S(ρ1, ρ2) = LS(F1[l(x1) . . . x1 − 1], T2[x2]) + s(α(x1), λ)

(c) x2 has been inserted:

S(ρ1, ρ2) = LS(T1[x1], F2[l(x2) . . . x2 − 1]) + s(λ, α(x2))

Therefore, the computation of the local score between two trees leads to eval-
uate local similarity between two forests.

4.3 Case of forests

Let F1[x1 . . . y1] and F2[x2 . . . y2] two forests and and let ρ1 and ρ2 be respec-
tively optimal F1[x1 . . . y1]-prefix and F2[x2 . . . y2]-prefix. By definition ρ1 and
ρ2 can be decomposed into prefixes of subtrees of F1[x1 . . . y1] and F2[x2 . . . y2],
let τ1 and τ2 be respectively the prefix of T1[y1] and T2[y2]. The computation

9

of the score between ρ1 and ρ2 can be decomposed into four cases depending
on τ1 and τ2 are empty or not:

(1) τ1 = ∅ and τ2 = ∅ are respectively both valid T1[y1]-prefix and T2[y2]-
prefix, in this case scores of deletion of T1[y1] and insertion of T2[y2]
should not be taken into account:

S(ρ1, ρ2) = LS(F1[x1 . . . l(y1) − 1], F2[x2 . . . l(y2) − 1])

(2) τ1 6= ∅ and τ2 = ∅, in this case the score of insertion of T2[y2] should not
be taken into account:

S(ρ1, ρ2) = LS(F1[x1 . . . y1], F2[x2 . . . l(y2) − 1])

(3) τ1 = ∅ and τ2 6= ∅, in this case the score of deletion of T1[y1] should not
be taken into account:

S(ρ1, ρ2) = LS(F1[x1 . . . l(y1) − 1], F2[x2 . . . y2])

(4) τ1 6= ∅ and τ2 6= ∅, in this case the score of deletion of vertices of T1[y1] and
the score of insertion of vertices of T2[y2] should be taken into account.
Then, during the edition of ρ1 and ρ2 and according to the three edit
operations, we consider three cases:
(a) y1 and y2 has been substituted:

S(ρ1, ρ2) = LS(F1(x1 . . . l(y1) − 1], F2[x2 . . . l(y2) − 1])

+LS(F1(l(y1) . . . y1 − 1], F2[l(y2) . . . y2 − 1]) + s(α(y1), α(y2))

(b) either y1 has been deleted:

S(ρ1, ρ2) = LS(F1[x1, y1 − 1], F2[x2 . . . y2]) + s(α(y1), λ)

(c) y2 has been inserted:

S(ρ1, ρ2) = LS(F1[x1 . . . y1], F2[x2 . . . x2 − 1]) + s(λ, α(x2))

The recurrence formula for the computation of the local score is thus given by
the following proposition:

Proposition 5 Let T1 and T2 be two trees and let x1, y1 and x2, y2 be vertices
of T1 and T2 respectively, with x1 < y1 and x2 < y2:

10

LS(F1[x1 . . . y1], F2[x2 . . . y2]) = max



























































LS(F1[x1 . . . l(y1)− 1], F2[x2 . . . l(y2) − 1])

LS(F1[x1 . . . y1], F2[x2 . . . l(y2)− 1])

LS(F1[x1 . . . l(y1)− 1], F2[x2 . . . y2])

LS(F1[x1 . . . l(y1)− 1], F2[x2 . . . l(y2) − 1])

+LS(F1(l(y1) . . . y1 − 1], F2[l(y2) . . . y2 − 1])

+s(α(y1), α(y2))

LS(F1[x1 . . . y1], F2[x2 . . . y2 − 1]) + s(λ, α(y2))

LS(F1[x1 . . . y1 − 1], F2[x2 . . . y2]) + s(α(y1), λ)

(3)

The complexity of this algorithm (given in Appendix A) is the same as Zhang-
Shasha’s algorithm and is bounded by O(|T1| × |T2| × min(h(T1), l(T1)) ×
min(h(T2), l(T2))) where, for any i in {1, 2}, h(Ti) and l(Ti) represent respec-
tively the height and the number of leaves of the tree Ti. The average com-
plexity of the algorithm is on the order of |T1|

3/2 × |T2|
3/2 ([19]). The space

complexity is in O(|T1| × |T2|).

This recurrence formula is not totally equivalent to Smith and Waterman’s
computation [16]. Let us consider the problem of local similarity between se-
quences as a tree edit problem. Any sequence with a length n could be repre-
sented following two different graphs, ie. as a graph with n vertices and such
that any vertex has only one child except one, the leaf, or as a graph made of
a root and exactly n−1 children. In the first case, since any vertex (except the
leaf) has only one child, the local score LS(F1[x1 . . . l(y1)−1], F2[x2 . . . l(y2)−
1]) is always equal to zero. Similarly, three first line of equation 3 are equiva-
lent to zero. Then the computation of local similarity between trees leads to
the same equivalence relation than Smith and Waterman’s one [16]. However,
since order relations are not taken into account to define the notion of optimal
T -prefix, the second case does not lead to the same result. Then to get Smith
and Waterman result, a sequence of symbol should be represented using the
first model.

4.4 Local comparison between quotiented trees

We consider in this section the generalisation of proposition 5 to quotiented
trees. Let Q1 = (T1, W1, π1) and Q2 = (T2, W2, π2) be two quotiented trees.
Since definitions of local prefixes and local scores presented in previous sub-
section are independant of the edit score, the local comparison bewteen quo-
tiented trees consists in computing the local similarity between quotient trees
π(T1) and π(T2) using the support subtrees to compute the scores.

Thus, from proposition 5, local score between quotiented trees can be recur-
sively computed as follow:

Proposition 6 Let Q1 = (T1, W1, π) and Q2 = (T2, W2, π) be two ordered
quotiented trees and X1, X2, Y1 and Y2 four quotient vertices of π(T1) and

11

π(T2) ((X1, X2) ∈ W1 × W1, X1 ≤ X2 and (Y1, Y2) ∈ W2 × W2, Y1 ≤ Y2)

LSQ(Q1[X1 . . . Y1], Q2[X2 . . . Y2]) = max



























































LSQ(Q1[X1 . . . l(Y1)− 1], Q2[X2 . . . l(Y2) − 1])

LSQ(Q1[X1 . . . Y1], Q2[X2 . . . l(Y2)− 1])

LSQ(Q1[X1 . . . l(Y1)− 1], Q2[X2 . . . Y2])

LSQ(Q1[X1 . . . l(Y1)− 1], Q2[X2 . . . l(Y2) − 1])

+LSQ(Q1[l(Y1) . . . Y1 − 1], Q2[l(Y2) . . . Y2 − 1])

+S(π−1(Y1), π−1(Y2))

LSQ(π(T1)[Y1], Q2[X2 . . . Y2 − 1]) + S(θ, π−1(Y2))

LSQ(Q1[X1 . . . Y1 − 1], π(T2)[Y2]) + S(π−1(Y1), θ)

Considering the variables previously defined, the complexity of the algorithm is
bounded by O(|W1|×min(l(π(T1)), h(π(T1)))×|W2|×min(l(π(T2)), h(π(T2)))×
max
t1∈W1

{|t1| × min(h(t1), l(t1))}× max
t2∈W2

{|t2| × min(h(t2), l(t2))} where h(ti) and

l(ti) are the height and the number of leaves of the tree ti. The space com-
plexity is in O(|T1| × |T2|).

5 Biological considerations

This section briefly illustrates the use of the global and local comparison meth-
ods in application context.

After a piece-by-piece comparison, algorithms provide the optimal sequence
of edit operations. The user can thus identify which vertices are substituted
during the comparison. Thus, the comparison method gives the user a qual-
itative outline of the similar subparts of both trees that are conserved. For
instance, figure 4 represents the results obtained from a comparison of two
quotiented trees using a global (Fig. 4a.) and a local (Fig. 4b) approach with
a score of 1 for a substitution of a symbol by himself, and −1 for any other
edit operation (insertion, deletion or substitution of a symbol by another one).
Vertices conserved by substitutions are represented in black color. We can note
that during the comparison conserved regions are distributed in several small
connected groups whereas the local quotiented algorithm gathers these small
mappings into a more dense one.

These approaches have been currently implemented in the AMAPmod system
[23], a software originally dedicated to plant architecture analysis and more
generally to analyze any object represented as tree-graphs. The methodology
is currently being validated on RNase P RNA secondary structures of prokary-
otes as well as on SSU and LSU ribosomal RNA. The detailed analysis of their
structure organization has been carried out.

Descriptions of RNAs commonly rely on a tree graph representation [3,24]. A
RNA secondary structure can be represented by a tree where vertices labels
are:

12

d

dd
a

a a

aa a a

d d d d

b
a a a

aaa

c

cc

c c c c

a

a

a
a

d c

cc c c

aa a a

a

c

c

dddd

a a a

a
baa

a d

d

a

Fig. 4. Global (left) and local (right) quotiented edition of trees. Vertices that are
substituted during the edition are in black, vertices inserted or deleted are repre-
sented in white.

• structural elements (sequences of paired bases, hairpins, loop, bulges, stems).
• or nucleic acids (A, C, G, U) and pairs of nucleic acids.

Both tree models of a RNA secondary structure represent information in the
molecule at two distinct scales and are gathered in a single model: a quotiented
tree.

(a)

(b)

(d)

(c)

S

I

S

B

M
S

H

S B S H

Fig. 5. The RNA secondary structure (a) is modeled by a microscopic tree (b)
and a macroscopic one (c). Both trees are gathered to obtain the quotiented tree
representation (d)

RNA secondary structures used to be compared using either microscopic [25]
or macroscopic [3] tree representations. A quotiented comparison will take into
account structural informations at both scales. Figure 6 shows an early exam-
ple of global and local edition algorithms on quotiented tree representation of
RNase P RNA secondary structure of Chlamydia Trachomatis and Halobac-
terium Cutirubrum. We can establish on this example that our algorithmic
approach avoid the dispersion of paired bases, thus merging the conserved
areas (substituted parts appear in darker characters).

13

6 Conclusion

In this paper we have extended an algorithm to compute distance between
ordered trees [1] in order to define a method to globally and locally com-
pare quotiented trees. These algorithms allow to consider two levels of details
within the trees and take into account the structural elements of the trees. Re-
sulting algorithms compute the optimal score recursively in polynomial time,
using the dynamic programming principle. The final complexity has the same
complexity than Zhang and Shasha [1] algorithm.

Works presented here are part of a project to develop a set of tools for analyz-
ing biological objects modeled by rooted tree graphs [13]. Proposed algorithms
and their implementation are currently integrated into this tool set.

(a)

(b)

Fig. 6. (a) Global and (b) local quotiented edition of Chlamydia Trachomatis and
Halobacterium Cutirubrum.

14

A Algorithm

Algorithm 1 Local score between ordered trees

LSMax = 0; LS(θ, θ) = 0; LS(θ, θ) = 0; M = ∅;
-- LS and LS are two matrices of local scores between trees and forests

indexed by vertices of T1 and T2.

-- KeyRoots(T1) and KeyRoots(T2) are the roots of the special subtrees of T1

and T2 respectively

For v in T1 Do LS(T1[v], θ)← 0
For w in T2 Do LS(θ, T2[j])← 0
For v in KeyRoots(T1) Do

For i = l(v) to v Do

LS(F1[l(v) . . . i], θ)← 0
For w in KeyRoots(T2) Do

For j = l(w) to w Do

LS(θ, F2[l(w) . . . j])← 0
For v in KeyRoots(T1) Do

For w in KeyRoots(T2) Do

For i = l(v) to v Do

For j = l(w) to w Do

LS ← 0
If l(i) = l(v) and l(j) = l(w) Then

If LS < LS(F1[l(v) . . . i− 1], F2[l(w) . . . j − 1]) + s(i, j) Then

LS ← LS(F1[l(v) . . . i− 1], F2[l(w) . . . j − 1]) + s(i, j)
case← 1

If LS < LS(F1[l(v) . . . i− 1], F2[l(w) . . . j]) + s(i, λ) Then

LS ← LS(F1[l(v) . . . i− 1], F2[l(w) . . . j]) + s(i, λ)
case← 2

If LS < LS(F1[l(v) . . . i], F2[l(w) . . . j − 1]) + s(λ, j) Then

LS ← LS(F1[l(v) . . . i], F2[l(w) . . . j − 1]) + s(λ, j)
case← 3

LS(T1[v], T2[w])← LS
Else

LS ← 0
If LS < LS(F1[l(v) . . . l(i) − 1], F2[l(w) . . . l(j)− 1]) Then

LS ← LS(F1[l(v) . . . l(i)− 1], F2[l(w) . . . l(j)− 1])
caseF ← 1

If LS < LS(F1[l(v) . . . i], F2[l(w) . . . l(j)− 1]) Then

LS ← LS(F1[l(v) . . . i], F2[l(w) . . . l(j)− 1])
caseF ← 2

If LS < LS(F1[l(v) . . . l(i) − 1], F2[l(w) . . . j]) Then

LS ← LS(F1[l(v) . . . l(i)− 1], F2[l(w) . . . j])
caseF ← 3

If LS < LS(F1[l(v) . . . l(i) − 1], F2[l(w) . . . l(j)− 1])
+LS(F1[l(i) . . . i− 1], F2[l(j) . . . j − 1]) + s(i, j) Then

LS ← LS(F1[l(v) . . . l(i)− 1], F2[l(w) . . . l(j)− 1])
+LS(F1[l(i) . . . i− 1], F2[l(j) . . . j − 1]) + s(i, j)
caseF ← 4

If LS < LS(F1[l(v) . . . i], F2[l(w) . . . j − 1]) + s(λ, j) Then

LS ← LS(F1[l(v) . . . i], F2[l(w) . . . j − 1]) + s(λ, j)
caseF ← 5

If LS < LS(F1[l(v) . . . i− 1], F2[l(w) . . . j]) + s(i, λ) Then

LS ← LS(F1[l(v) . . . i− 1], F2[l(w) . . . j]) + s(i, λ)
caseF ← 3

LS(F1[l(v) . . . i], F2[l(w) . . . j])← LS
-- We store the best local prefix tree

If LS > LSMax Then

LSMax ← LS and (vMax, wMax)← (v, w)
-- Computation of the Mapping List

If case = 1 Then

M(i, j)← FM(i, j) ∪ {(i, j)}
FM(v, w)← FM(v, w) ∪M(i, j)

Else If caseF = 4 Then

FM(v, w)← FM(v, w) ∪M(i, j)

return LSMax and M(vMax, wMax)

15

References

[1] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between
trees and related problems (1989) 1245–1262.

[2] G. Collins, S. Le, K. Zhang, A new algorithm for computing similarity between
RNA structures, in: Proceedings of the 5th Joint Conference on Information
Sciences, 2000, pp. 761–765.

[3] B. A. Shapiro, K. Zhang, Comparing multiple RNA secondary structures using
tree comparisons, Cabios 6 (1990) 309–318.

[4] P. Ferraro, C. Godin, A distance measure between plant architectures, Annals
of Forest Science 57 (2000) 445–461.

[5] S. Lu, K. FU, Error-correcting tree automata for syntactic pattern recognition,
IEEE Trans. Computers 27 (1978) 1040–1053.

[6] R. A. Wagner, M. J. Fisher, The string-to-string correction problem, Journal
of the association for computing machinery 21 (1974) 168–173.

[7] S. M. Selkow, The tree-to-tree editing problem, Information processing letters
(1977) 184–186.

[8] K.-C. Tai, The tree-to-tree correction problem, Journal of the Association for
Computing Machinery (1979) 422–433.

[9] K. Zhang, A new editing-based distance between unordered trees, in:
Combinatorial Pattern Matching, 4th Ann. Symp., CPM’93, Padala (Italy),
1993, pp. 254–265.

[10] P. Ferraro, Méthodes algorithmiques de comparaison d’arborescences.
Applications à la comparaison de l’architecture des plantes, Phd thesis, Institut
National Polytechnique de Toulouse, France (November 2000).

[11] E. Tanaka, K. Tanaka, The tree-to-tree editing problem, International Journal
Pattern Recognition and Artificial Intelligency 2 (2) (1988) 221–240.

[12] T. Jiang, L. Wang, K. Zhang, Alignment of trees - an alternative to tree edit, in:
Combinatorial Pattern Matching’94, 5th Annual Symposium, 1994, pp. 75–86.

[13] C. Godin, Y. Caraglio, A multiscale model of plant topological structures,
Journal of theoretical biology 191 (1998) 1–46.

[14] A. Ouangraoua, Distance multi-échelles entre structures secondaires d’ARN,
Tech. rep., Université Bordeaux 1 - LaBRI (2004).

[15] P. Ferraro, C. Godin, An edit distance between quotiented trees, Algorithmica
36 (2003) 1–39.

[16] T. Smith, M. Waterman, Identification of common molecular subsequences,
Journal of Molecular Biology 147 (1981) 195–197.

16

[17] M. Vauchaussade, X. Viennot, Enumeration of RNA secondary structures by
complexity (1985) 360–365.

[18] W. Schmitt, M. Waterman, Linear trees and RNA secondary structures (1994)
317–323.

[19] S. Dulucq, L. Tichit, RNA secondary structure comparison: exact analysis of
the Zhang-Shasha tree edit algorithm 306 (2003) 471–484.

[20] M. Höchsmann, T. Töller, R. Giegerich, S. Kurtz, Local similarity in
RNA secondary structures, in: Proceedings of Computational Systems
Bioinformatics, (CSB’03), 2003, pp. 159–168.

[21] J. T. Wang, B. A. Shapiro, D. Shasha, K. Zhang, K. M. Currey, An algorithm
for finding the largest approximately common substructures of two trees, IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 889–895.

[22] J. T. Wang, K. Zhang, C. Y. Chang, Identifying approximately common
substructures in trees based on a restricted edit distance, Information Sciences
121 (1999) 367–386.

[23] C. Godin, Y. Guédon, E. Costes, Y. Caraglio, Measuring and analyzing
plants with the amapmod software, in: M. Michalewicz (Ed.), Advances in
computational life sciences, Vol I : Plants to ecosystems, Vol. January, Csiro,
Australia, 1997, pp. 63–94, chapitre 4.

[24] M. Vauchassade De Chaumont, X. Viennot, Polynômes orthogonaux et
problèmes d’énumération en biologie moléculaire, in: Séminaire Lotharingien
de Combinatoire, B08l, 1984, pp. 79–86.

[25] K. Zhang, Computing similarity between RNA seondary structures, in:
Proceedings of IEEE International Joint Symposia on Intelligence and Systems,
Rockville, Maryland, 1998, pp. 126–132.

17

