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The a
ir
uiti
 dire
ted star arbori
ityof sub
ubi
 graphs is at most fourAlexandre Pinlou, �Eri
 SopenaLaBRI, Universit�e Bordeaux I,351, 
ours de la Lib�eration33405 Talen
e Cedex, Fran
eE-mail: fAlexandre.Pinlou,Eri
.Sopenag�labri.frO
tober 8, 2004Abstra
tA dire
ted star forest is a forest all of whose 
omponents are starswith ar
s emanating from the 
enter to the leaves. The a
ir
uiti
dire
ted star arbori
ity of an oriented graph G (that is a digraph withno opposite ar
s) is the minimum number of edge-disjoint dire
ted starforests whose union 
overs all edges of G and su
h that the union ofany two su
h forests is a
ir
uiti
. We show that every sub
ubi
 graphhas a
ir
uiti
 dire
ted star arbori
ity at most four.1 Introdu
tionWe 
onsider �nite simple oriented graphs, that is digraphs with no oppositear
s. For an oriented graph G, we denote by V (G) its set of verti
es and byA(G) its set of ar
s.In [1℄, Algor and Alon introdu
ed the notion of the dire
ted star arbori
ityof a digraph G, de�ned as the minimum number of edge-disjoint dire
tedstar forests needed to 
over A(G). (A dire
ted star forest is a forest all ofwhose 
omponents are dire
ted stars, that is stars with ar
s emanating fromthe 
enter.) In the same vein, we study here the new notion of the a
ir
uiti
dire
ted star arbori
ity of an oriented graph G, de�ned as the minimumnumber of edge-disjoint dire
ted star forests needed to 
over A(G) in su
h1



a way that the union of any two su
h forests 
ontains no 
ir
uit. In [5℄,Guiduli proved that every oriented graph with indegree and outdegree bothless than D has dire
ted star arbori
ity at most D + 20 logD + 84 
olors.In this paper, we prove the followingTheorem 1 Every graph with maximum degree at most 3 has a
ir
uiti
dire
ted star arbori
ity at most 4.The notion of a
ir
uiti
 dire
ted star arbori
ity arises from the studyof ar
-
oloring of oriented graphs. In [4℄, Cour
elle introdu
ed the notionof vertex-
oloring of oriented graphs as follows: a k-vertex-
oloring of anoriented graph G is a mapping f from V (G) to a set of k 
olors su
h that(i) f(u) 6= f(v) whenever �!uv is an ar
 in G, and (ii) f(u) 6= f(x) whenever�!uv and �!wx are two ar
s in G with f(v) = f(w). Vertex-
oloring of orientedgraphs have been studied by several authors in the last past years (seee.g. [2, 6℄ or [9℄ for an overview).Re
all that an a
y
li
 
oloring of an undire
ted graph U is a proper
oloring of U su
h that every 
y
le in U uses at least three 
olors. Raspaudand Sopena proved in [8℄ that every orientation of an undire
ted graph thatadmits an a
y
li
 k-
oloring admits an oriented (k � 2k�1)-
oloring.One 
an de�ne ar
-
olorings of oriented graphs in a natural way by sayingthat, as in the undire
ted 
ase, an ar
-
oloring of an oriented graph G isa vertex-
oloring of the line digraph of G. (Re
all that the line digraphL(G) of G is given by V (L(G)) = A(G) and (�!uv;�!vw) 2 A(L(G)) whenever�!uv 2 A(G) and �!vw 2 A(G).) It is not diÆ
ult to see that every orientedgraph having a k-vertex-
oloring admits a k-ar
-
oloring (from a k-vertex-
oloring f , we obtain a k-ar
-
oloring g by setting g(�!uv) = f(u)).By adapting the proof of the above-mentionned result of Raspaud andSopena, it is not diÆ
ult to prove that every oriented graph with a
ir
uiti
dire
ted star arbori
ity at most k admits a (k � 2k�1)-ar
-
oloring.This paper is organised as follows: we introdu
e the main de�nitions andnotation in the next se
tion and prove our main result in Se
tion 3.2 De�nitions and notationIn the rest of the paper, oriented graphs will be simply 
alled graphs. For avertex v, we denote by d�(v) the indegree of v, by d+(v) its outdegree andby d(v) its degree, that is d(v) = d+(v) + d�(v). A sour
e vertex is a vertexv with d�(v) = 0. The maximum degree and minimum degree of a graph G2



are respe
tively denoted by �(G) and Æ(G). A graph G is said to be 
ubi
if �(G) = Æ(G) = 3 and sub
ubi
 if �(G) � 3.We denote by�!uv the ar
 from u to v or simply uv whenever its orientationis not relevant (therefore uv = �!uv or uv = �!vu). If a = �!uv is an ar
, then uis the tail and v is the head of a.For a graph G and a vertex v of V (G), we denote by G n v the graphobtained from G by removing v together with the set of its in
ident ar
s;similarly, for an ar
 a of A(G), G n a denotes the graph obtained from G byremoving a. These two notions are extended to sets in a standard way: for aset of verti
es V 0, G nV 0 denotes the graph obtained from G by su

essivelyremoving all verti
es of V 0 and their in
ident ar
s, and for a set of ar
s A0,G n A0 denotes the graph obtained from G by removing all ar
s of A0.The notions of arbori
ity dis
ussed in the previous se
tion may be de�nedin terms of ar
-
olorings or partitions of the set of ar
s. More pre
isely, ak-dire
ted-star-
oloring (or simply k-dst-
oloring) of a graph G is a partitionof A(G) into k dire
ted star forests fF1; F2; : : : ; Fkg. Equivalently, a k-dst-
oloring of G is a k-
oloring f of A(G) su
h that (i) �!uv;�!vw 2 A(G) )f(�!uv) 6= f(��!vw), and (ii) �!uv;�!tv 2 A(G) ) f(�!uv) 6= f(�!tv). The dire
tedstar arbori
ity of G, denoted by dst(G), is then the smallest k for whi
h Gadmits a k-dst-
oloring.A graph G is a
ir
uiti
 if it does not 
ontain any 
ir
uit. A k-a
ir
uiti
-dire
ted-star-
oloring (or simply k-adst-
oloring) of a graph G is a partitionof A(G) into k dire
ted star forests fF1; F2; : : : ; Fkg su
h that for all i; j 2[1; k℄; Fi [ Fj is a
ir
uiti
. Equivalently, a k-adst-
oloring of G is a k-dst-
oloring of G su
h that no 
ir
uit inG is bi
hromati
. The a
ir
uiti
 dire
tedstar arbori
ity ofG, denoted by adst(G), is the smallest k for whi
hG admitsa k-adst-
oloring.Note that from the above de�nitions we get that every edge-
oloring ofan undire
ted graph H is a dst-
oloring of any orientation of H. Similarly,every a
y
li
 edge-
oloring of H is an adst-
oloring of any orientation of H.The following notation will be extensively used in the rest of the paper.Consider a graph G and let A0 = fa1; a2; : : : ; ang be a subset of A(G). Wedenote by CG(a1; a2; : : : ; an), or simply CG(A0), the set of 
ir
uits of G that
ontain all the ar
s a1; a2; : : : ; an.Drawing 
onventions. In all the �gures, we shall use the following 
on-vention: a vertex whose neighbors are totally spe
i�ed will be bla
k, whereasa vertex whose neighbors are partially spe
i�ed will be white. Moreover, anedge will represent an ar
 with any of its two possible orientations.3



3 Proof of Theorem 1Suppose that Theorem 1 is false and 
onsider a minimal 
ounter-exampleG. We prove a series of lemmas. In ea
h of them, we redu
e G to a smallergraph G0 (that is jA(G)j > jA(G0)j) whi
h admits a 4-adst-
oloring f 0 whi
his also a partial adst-
oloring of G (that is an adst-
oloring only de�nedon some subset A0 of A(G)). We extend su
h a partial adst-
oloring f 0 toan adst-
oloring f of G. In this 
ase, it should be understood that we setf(a) = f 0(a) for every ar
 a 2 A(G0). We then explain how to set f(a)for every un
olored a 2 A(G). The existen
e of f proves that G does not
ontain some spe
i�
 
on�gurations. This set of 
on�gurations will �nallylead to a 
ontradi
tion.Consider a 
ir
uit C and let u; v 2 V (C). We denote by PC(u; v) thedire
ted path from u to v in C.The following observation will be extensively used in the sequel:Observation 2 Let C be a 
ir
uit, f an adst-
oloring of C, and C 0 the
ir
uit obtained from C by repla
ing PC(u; v) by a dire
ted path PC0(u; v). Iff 0 is a dst-
oloring of C 0 su
h that f 0(a) = f(a) for every a =2 PC0(u; v) andff(a); a 2 PC(u; v)g � ff 0(a0); a0 2 PC0(u; v)g then f 0 is an adst-
oloringof C 0.This dire
tly follows from the fa
t that jf 0(C 0)j � jf(C)j � 3.We �rst show that a minimal 
ounter-example to Theorem 1 is ne
es-sarily a 
ubi
 graph.Lemma 3 If G is a minimal 
ounter-example to Theorem 1, then Æ(G) � 3.Proof. Let v 2 V (G) with d(v) � 2. We 
onsider two 
ases:Case 1 : dG(v) = 1.Consider the dangling ar
 uv in G and let f 0 be any 4-adst-
oloring ofthe graph G0 = G n fvg. We extend f 0 to a 4-adst-
oloring f of G bysetting f(uv) = a for some 
olor a distin
t from the 
olors of the atmost two ar
s in
ident to uv.Case 2 : dG(v) = 2.Consider the two ar
s uv and wv in G and let f 0 be any 4-adst-
oloringof the graph G0 obtained from G by 
ontra
ting uv in a single vertex x.We extend f 0 to a 4-adst-
oloring f of G by setting f(wv) = f 0(wx)and f(uv) = a for any a distin
t from the 
olors of the three ar
sin
ident to uv. (By Observation 2, no 
ir
uit inG 
an be bi
hromati
.)4



In both 
ases we thus obtain a 4-adst-
oloring f of G, a 
ontradi
tion.Lemma 4 If G is a minimal 
ounter-example to Theorem 1, then G doesnot 
ontain any sour
e vertex.Proof. Let v 2 V (G) be a sour
e vertex, u1, u2 and u3 be the three neigh-bors of v and f 0 be any 4-adst-
oloring of the graph G0 = Gnv. By Lemma 3,we know that d+(v) = 3. Ea
h of the ar
s �!vu1, �!vu2 and �!vu3 has at least twoavailable 
olors. Sin
e they 
an get the same 
olor, we 
an extend f 0 to a4-adst-
oloring f of G, a 
ontradi
tion.We now prove that a minimal 
ounter-example to Theorem 1 
ontainsno triangle.Lemma 5 If G is a minimal 
ounter-example to Theorem 1, then G istriangle-free.Proof. If G 
ontains three pairwise adja
ent triangles, then G is an orien-tation of the 
omplete graph K4. By Lemma 4 we only have to 
onsider thetwo orientations of K4 depi
ted on Figures 1(a) and 1(b) that both admit a4-adst-
oloring.If G 
ontains two adja
ent triangles, then G 
ontains the 
on�gurationof Figure 1(
). Consider the graph G0 = G n fw; xg and let f 0 be a 4-adst-
oloring of G0 su
h that f 0(uv) 6= f 0(yz) (this 
an be done sin
e we have twopossible 
hoi
es for 
oloring ea
h of uv and uz). Suppose without loss ofgenerality that f 0(uv) = 1 and f 0(yz) = 2. In this 
ase, we 
an produ
e ana
y
li
 4-edge-
oloring as depi
ted on Figure 1(
). Indeed, this 
oloring is aproper edge-
oloring and no path linking u and z is bi
hromati
. Hen
e, forall possible orientations of the ar
s of the 
on�guration, this 
oloring givesa 4-adst-
oloring f of G.Suppose �nally that G 
ontains the 
on�guration of Figure 1(d), andlet f 0 be any 4-adst-
oloring of the graph G0 obtained from G by 
on-tra
ting the triangle v1v2v3 in a single vertex v. Therefore, every 
ir
uitC 2 CG(��!uivi;��!vjuj) 
orresponds to a 
ir
uit C 0 2 CG0(�!uiv;�!vuj).We now extend the partial adst-
oloring f 0 to a 4-adst-
oloring f of Gas follows. We distinguish two 
ases:Case 1 : f 0(vu1) 6= f 0(vu2) 6= f 0(vu3) 6= f 0(vu1).Without loss of generality, suppose that f 0(v1u1) = 1, f 0(v2u2) = 2 andf 0(v3u3) = 3. We then set f(v3v1) = 2, f(v1v2) = 3 and f(v2v3) = 1.5
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Case 2 : 9 i; j 2 f1; 2; 3g, i 6= j, f 0(viui) = f 0(vjuj) = a.In this 
ase we ne
essarily have ��!viui;��!vjuj 2 A(G). Let k 2 f1; 2; 3g,k 6= i; j. We then set f(vivk), f(vjvk) and f(vivj) as follows:1. f(vivk) = b for any b 62 fa; f 0(ukvk)g,2. f(vjvk) = 
 for any 
 62 fa; b; f 0(ukvk)g,3. f(vivj) = d for any d 62 fa; b; 
g.This 
an be done sin
e we have four available 
olors.In both 
ases, thanks to Observation 2, we obtain a 4-adst-
oloring f of G,a 
ontradi
tion.Let G be a graph and C a 
ir
uit in G. An ar
 having exa
tly one ofits endpoints in C is said to be in
ident to C. Moreover, two su
h in
identar
s are neighboring if their endpoints in C are linked by an ar
 of C.The four next lemmas will allow us to prove that a minimal 
ounter-example G to Theorem 1 is ne
essarily a
ir
uiti
.Lemma 6 If G is a minimal 
ounter-example to Theorem 1, then G doesnot 
ontain a 
ir
uit all of whose verti
es have indegree one and outdegreetwo.Proof. Suppose that there exists a 
ir
uit C = f��!v0v1, ��!v1v2, : : :, ������!vk�2vk�1,����!vk�1v0g in G su
h that d+(vi) = 1 and d�(vi) = 2 for i 2 [0; k � 1℄ and letf 0 be any 4-adst-
oloring of the graph G0 = G nC. Let f��!viui j i 2 [0; k� 1℄gbe the set of ar
s in
ident to C.We extend the partial 
oloring f 0 to a 4-adst-
oloring f of G as follows.Due to the orientation of G, C is the only 
ir
uit of G that does not belongto G0. Therefore, we only need to 
olor the ar
s of C in su
h a way that Cis not bi
hromati
. We distinguish two 
ases depending on the 
olors of thear
s in
ident to C.1. All ar
s in
ident to C are 
olored with the same 
olor. In this 
ase,we 
olor the ar
s of C using the three other remaining 
olors.2. Two neighboring ar
s in
ident to C have distin
t 
olors. Supposewithout loss of generality that f 0(��!v0u0) = 
0 and f 0(��!v1u1) 6= 
0. Inthis 
ase, we set(a) f(��!v0v1) = 
0, 7



v1v0 v2u0 u1 u2
(a) The graph G

u0 u1 u2v
(b) The graph G0Figure 2: The 
on�guration of Case 1 of Lemma 7 and its redu
tion.(b) 8i 2 [1; k � 2℄; f(���!vivi+1) = 
i for any 
i 62 f
i�1; f(�����!vi+1ui+1)g,(
) f(����!vk�1v0) = 
k�1 for any 
k�1 62 f
0; 
1; 
k�2g.The 
ir
uit C is 
learly not bi
hromati
 sin
e 
0 6= 
1 6= 
k�1 6= 
0.In both 
ases, we obtain a 4-adst-
oloring f of G, a 
ontradi
tion.Lemma 7 If G is a minimal 
ounter-example to Theorem 1, then G doesnot 
ontain a 
ir
uit all of whose verti
es have indegree two and outdegreeone.Proof. Suppose that there exists a 
ir
uit C = f��!v0v1, ��!v1v2, : : :, ������!vk�2vk�1,����!vk�1v0g in G (see Figures 2(a) or 3(a)) su
h that d+(vi) = 2 and d�(vi) = 1for i 2 [0; k � 1℄. Let f��!uivi j i 2 [0; k � 1℄g be the set of ar
s in
ident to C.By Lemma 5, the tails of two neighboring ar
s in
ident to C are ne
essarilydistin
t.We 
onsider two 
ases depending on whether the verti
es u0 and u2 aredistin
t or not. We �rst show that in both 
ases there exists a redu
tion G0of G (see Figures 2(b) and 3(b)) whi
h admits a 4-adst-
oloring f 0 su
h thatf 0(��!u0v0) 6= f 0(��!u1v1) 6= f 0(��!u2v2) 6= f 0(��!u0v0).Case 1 : u0 6= u2 (see Figure 2(a)).Let f 0 be any 4-adst-
oloring of the graph G0 obtained from G n C by8



v1v0 v2u1 u
(a) The graph G

v1v0 v2u1 u
(b) The graph G0Figure 3: The 
on�guration of Case 2 of Lemma 7 and its redu
tion.identifying v0, v1 and v2 in a single vertex v (see Figure 2(b)). We
learly have f(�!u0v) 6= f(�!u1v) 6= f(�!u2v) 6= f(�!u0v).Case 2 : u0 = u2 = u (see Figure 3(a)).Note that by Lemma 4 we have u1 6= u. Let f 0 be any 4-adst-
oloringof the graph G0 = GnC (see Figure 3(b)). Sin
e we have at least threeavailable 
olors for the ar
s �!uv0 and �!uv2, we 
an 
hoose f 0 in su
h away that f 0(�!uv0) 6= f 0(��!u1v1) 6= f 0(�!uv2) 6= f 0(�!uv0).Assume now that f(��!u0v0) = 
1, f(��!u1v1) 6= 
1 and f(��!u2v2) 6= 
1. As inthe previous lemma, C is the only 
ir
uit of G that does not belong to G0.Therefore, we only need to 
olor the ar
s of C in su
h a way that C is notbi
hromati
. We then set f as follows:1. f(��!v1v2) = 
1,2. 8 i 2 [2; k � 1℄; j = i+ 1 (mod k); f(��!vivj) = 
ifor any 
i 62 f
i�1; f(��!uivi); f(��!ujvj)g,3. f(��!v0v1) = 
0 for any 
0 =2 f
k�1; 
1; f(��!u1v1)g.Note that 
k�1 6= f(��!u0v0) = 
1. Therefore, 
k�1 6= 
0 6= 
1 6= 
k�1 and Cis not bi
hromati
. We thus obtain a 4-adst-
oloring f of G, a 
ontradi
tion.9



From the two previous lemmas, we get that if C is a 
ir
uit in a minimal
ounter-example to Theorem 1, there exist two neighboring ar
s in
identwith C having opposite dire
tions (with respe
t to C). The next two lemmaswill show that this situation is also not possible.Lemma 8 If G is a minimal 
ounter-example to Theorem 1, then G doesnot 
ontain the 
on�guration depi
ted on Figure 4(a).Proof. Suppose that the graph G 
ontains the 
on�guration of Figure 4(a),with the ar
s u01u, u02u, y01y, y02y, v01v, v02v, z01z and z02z being pairwise distin
t,and let f 0 be any 4-adst-
oloring of the graph G0 obtained from G n fw; xgby adding the ar
s �!uy and �!vz (see Figure 4(b)). Suppose that f 0(�!uy) = aand f 0(�!vz) = b.We extend the partial 4-adst-
oloring f 0 to a 4-adst-
oloring f of G asfollows.Let E = CG(�!uw;�!wx;�!xy) [ CG(�!vw;�!wx;�!xz) and F = CG(�!uw;�!wx;�!xz) [CG(�!vw;�!wx;�!xy). We �rst set f(�!xy) = a and f(�!xz) = b. Clearly, all 
ir
uitsin G not belonging to E [ F also belong to G0, and thus are already notbi
hromati
. Moreover, by Observation 2, the 
ir
uits in E will not bebi
hromati
. Therefore, we only have to pay attention to the 
ir
uits in F .We 
onsider two 
ases depending on the 
olors a and b:Case 1 : a 6= b.We set f(�!uw) = a, f(�!vw) = b and f(�!wx) = 
 for any 
 =2 fa; bg. Sin
ejff(�!uw); f(�!wx); f(�!xz)gj = jfa; 
; bgj = 3 and jff(�!vw); f(�!wx); f(�!xy)gj =jfb; 
; agj = 3, no 
ir
uit in F is bi
hromati
.Case 2 : a = b.We 
onsider three sub
ases.1. f��!uu01;��!uu02;�!vv01;�!vv02gTA(G) 6= ;.We assume without loss of generality that �!vv01 2 A(G). In this
ase, we �rst set f(�!uw) = 
 for any 
 =2 fa; f(uu01); f(uu02)g andf(�!vw) = d for any d =2 fa; 
; f(vv02)g. Now, we 
an 
olor the ar
�!wx with the fourth 
olor e =2 fa; 
; dg. Therefore, jff(�!uw), f(�!wx),f(�!xz)gj = jf
; e; agj = 3, jff(�!vw), f(�!wx), f(�!xy)gj = jfd; e; agj =3, and so no 
ir
uit in F is bi
hromati
.2. ��!u01u;��!u02u;�!v01v;�!v02v 2 A(G)and ff(��!u01u); f(��!u02u)g 6= ff(�!v01v); f(�!v02v)g.10



yxwu
zv01 v z01

u01 u02 y01y02
v02 z02

a b
(a) The graph G

yu
zv01 v z01

u01 u02 y01y02
v02 z02

a
b(b) The redu
tion G0Figure 4: The 
on�guration of Lemma 8 and its redu
tion.
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Note that sin
e a =2 ff(��!u01u); f(��!u02u); f(�!v01v); f(�!v02v)g, we ne
essar-ily have ff(��!u01u); f(��!u02u)g \ ff(�!v01v); f(�!v02v)g 6= ;. Therefore, we
an assume without loss of generality that f(��!u01u) = f(�!v01v) = 
,f(��!u02u) = d and f(�!v02v) = e, with a; 
; d; e being pairwise distin
t.In this 
ase, we set f(�!uw) = e and f(�!vw) = d. Now, we 
an 
olorthe ar
 �!wx with the 
olor 
. Therefore, jff(�!uw), f(�!wx), f(�!xz)gj= jfe; 
; agj = 3, jff(�!vw), f(�!wx), f(�!xy)gj = jfd; 
; agj = 3, andso no 
ir
uit in F is bi
hromati
.3. ��!u01u;��!u02u;�!v01v;�!v02v 2 A(G)and ff(��!u01u); f(��!u02u)g = ff(�!v01v); f(�!v02v)g.We assume without loss of generality that f(��!u01u) = f(�!v01v) = 
and f(��!u02u) = f(�!v02v) = d, a 6= 
 6= d 6= a. We then set f(�!vw) = aand f(�!uw) = e with e =2 fa; 
; dg.Sin
e �!uw and �!xz are 
olored with distin
t 
olors, no 
ir
uit inCG(�!uw;�!wx;�!xz) is bi
hromati
.We still have to set the 
olor of the ar
 �!wx. We 
onsider threesub
ases.(a) f�!y01y;�!y02ygTA(G) 6= ;We assume without loss of generality that �!y01y 2 A(G). So,if f(yy02) = 
 (resp. f(yy02) = d), we set f(�!wx) = d (resp.f(�!wx) = 
), otherwise (f(yy02) = e), we use either 
 or d.Therefore, jff(�!wx); f(�!xy); f(�!yy02)gj = 3, and thus no 
ir
uitin CG(�!vw;�!wx;�!xy) is bi
hromati
.(b) �!yy01;�!yy02 2 A(G) and ff(�!v01v); f(�!v02v)g 6= ff(�!yy01); f(�!yy02)g.We assume without loss of generality that f(�!yy02) = e. Now,if f(�!yy01) = 
 (resp. f(�!yy01) = d) we set f(�!wx) = d (resp.f(�!wx) = 
). This implies that for any i 2 f1; 2g, jff(�!wx),f(�!xy), f(�!yy0i)gj = 3, and thus no 
ir
uit in CG(�!vw;�!wx;�!xy) isbi
hromati
.(
) �!yy01;�!yy02 2 A(G) and ff(�!v01v); f(�!v02v)g = ff(�!yy01); f(�!yy02)g.We 
an suppose without loss of generality that f(�!yy01) = 
and f(�!yy02) = d. We then set f(�!wx) = 
. If there is noar
 emanating from y01 and 
olored with a, no 
ir
uit inCG(�!vw;�!wx;�!xy) is bi
hromati
. If there exists an ar
 ema-nating from y01 and 
olored with a, then there exists at leastone available 
olor distin
t from 
 that 
an be used to re
olor12



the ar
 �!yy01 in su
h a way that we forbid bi
hromati
 
ir
uitsin CG(�!vw;�!wx;�!xy).In all 
ases, we obtain a 4-adst-
oloring f of G, a 
ontradi
tion.In the 
on�guration of the previous Lemma, the ar
s uu0i and vv0j onone hand, yy0i and zz0j on the other hand, are ne
essarily distin
t sin
e, byLemma 5, a minimal 
ounter-example to Theorem 1 
ontains no triangle.The next lemma deals with the 
ase where two ar
s uu0i (or vv0i) and yy0j (orzz0j) are the same. Without loss of generality, we will suppose that the ar
sv01v and z01z are the same.Lemma 9 If G is a minimal 
ounter-example to Theorem 1, then G doesnot 
ontain the 
on�guration depi
ted on Figure 5(a).Proof. Suppose that the graph G 
ontains the 
on�guration of Figure 5(a)(in this 
on�guration, two ar
s linking a bla
k and a white vertex may bethe same provided it does not produ
e a triangle). We 
onsider two 
asesdepending on the orientation of the ar
 vz.Case 1 : �!vz 2 A(G).Consider the graph G01 (see Figure 5(b)) obtained from G n fw; xg byadding the ar
s �!uv and �!zy (see Figure 5(b)) and let f 01 be any 4-adst-
oloring of G01. Assume that f 01(�!uv) = a, f 01(�!vz) = b and f 01(�!zy) = 
(see Figure 5(b)). We extend the partial 4-adst-
oloring f 0 to a 4-adst-
oloring f of G as follows.We �rst set f(�!uw) = a, f(�!wx) = f(�!vz) = b and f(�!xy) = 
 (seeFigure 5(a)). By Observation 2, no 
ir
uit in G is thus bi
hromati
.We then 
olor the ar
s �!vw and �!xz so that f(�!vw) =2 fa; b; f(v0v)g andf(�!xz) =2 fb; f(zz0)g.Case 2 : �!zv 2 A(G).Consider the graph G02 obtained from G n fw; xg by adding the ar
s�!uz and �!vy and let f 02 be any 4-adst-
oloring of G02. Assume thatf 02(�!uz) = a, f 02(�!zv) = b and f 02(�!vy) = 
 (see Figure 5(
)). We extendthe partial 4-adst-
oloring f 0 to a 4-adst-
oloring f of G as follows.As in the previous 
ase, we set f(�!uw) = a, f(�!wx) = f(�!vz) = b andf(�!xy) = 
 (see Figure 5(a)). By Observation 2, we only have to payattention to the 
ir
uits in CG(�!vw;�!wx;�!xz). We then 
olor the ar
s �!vw13
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xFigure 6: The orientation �!K4 su
h that adst(�!K4) = 4and �!xz in su
h a way that f(�!vw) =2 fa; b; f(v0v)g and f(�!xz) = a (this
an be done sin
e f 0(zz0) 6= a). Sin
e a 6= b 6= f(�!vw) 6= a, no 
ir
uit inCG(�!vw;�!wx;�!xz) is bi
hromati
.In both 
ases we obtain a 4-adst-
oloring f of G, a 
ontradi
tion.Using the previous lemmas, we 
an now prove our main result.Proof of Theorem 1. By Lemmas 6, 7, 8 and 9, a minimal 
ounter-exampleG to Theorem 1 does not 
ontain any 
ir
uit. Therefore, any 4-dst-
oloringof G is a 4-adst-
oloring of G. Moreover, it follows from the de�nitionsthat any k-edge-
oloring of the underlying undire
ted graph of G is a k-dst-
oloring of G. Therefore, by Vizing's theorem [11℄, the graph G admits a4-edge-
oloring and thus a 4-adst-
oloring, a 
ontradi
tion.The bound given in Theorem 1 is optimal. To see that, 
onsider theorientation �!K4 of the 
omplete graph K4 given on Figure 6. If we want to
olor this graph with three 
olors, the only way to 
olor the ar
s �!uv, �!xv,�!xu, �!wx and �!vw is 
learly the one depi
ted on Figure 6. But in this 
ase, weneed one more 
olor for the ar
 �!wu and thus, adst(�!K4) = 4.4 Dis
ussionIn [3℄ Burnstein proved that every graph with maximum degree 4 admitsan a
y
li
 5-vertex-
oloring. Sin
e the line graph of a sub
ubi
 graph hasmaximum degree at most 4, we get that every sub
ubi
 graph admits ana
y
li
 5-edge-
oloring and thus a 5-adst-
oloring. Our result shows thatthis bound 
an be de
reased to 4 when 
onsidering oriented graphs anda
ir
uiti
 ar
-
olorings.We also provided an oriented 
ubi
 graph with a
ir
uiti
 dire
ted stararbori
ity 4. However, we do not know any other example of a 
ubi
 oriented15



graph that does not admit a 3-adst-
oloring.From our result, we get that every oriented graph with maximum degreethree admits a 4 �24�1 = 32-ar
-
oloring. However, every su
h graph admitsan 11-vertex-
oloring [10℄ and thus an 11-ar
-
oloring.In a 
ompanion paper [7℄ we show that every K4-minor free orientedgraph G has a
ir
uiti
 dire
ted star arbori
ity at most minf�(G);��(G)+2g, where ��(G) stands for the maximum indegree ofG. This 
lass of graphs
ontains in parti
ular outerplanar graphs. It would thus be interesting todetermine the a
ir
uiti
 dire
ted star arbori
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