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Abstract

A directed star forest is a forest all of whose components are stars
with arcs emanating from the center to the leaves. The acircuitic
directed star arboricity of an oriented graph G (that is a digraph with
no opposite arcs) is the minimum number of edge-disjoint directed star
forests whose union covers all edges of G and such that the union of
any two such forests is acircuitic. We show that every subcubic graph
has acircuitic directed star arboricity at most four.

1 Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite
arcs. For an oriented graph G, we denote by V(G) its set of vertices and by
A(G) its set of arcs.

In [1], Algor and Alon introduced the notion of the directed star arboricity
of a digraph G, defined as the minimum number of edge-disjoint directed
star forests needed to cover A(G). (A directed star forest is a forest all of
whose components are directed stars, that is stars with arcs emanating from
the center.) In the same vein, we study here the new notion of the acircuitic
directed star arboricity of an oriented graph G, defined as the minimum
number of edge-disjoint directed star forests needed to cover A(G) in such



a way that the union of any two such forests contains no circuit. In [5],

Guiduli proved that every oriented graph with indegree and outdegree both

less than D has directed star arboricity at most D + 201log D + 84 colors.
In this paper, we prove the following

Theorem 1 Fvery graph with maximum degree at most 3 has acircuitic
directed star arboricity at most 4.

The notion of acircuitic directed star arboricity arises from the study
of arc-coloring of oriented graphs. In [4], Courcelle introduced the notion
of vertex-coloring of oriented graphs as follows: a k-vertez-coloring of an
oriented graph G is a mapping f from V(G) to a set of k colors such that
(i) f(u) # f(v) whenever @0 is an arc in G, and (ii) f(u) # f(z) whenever
b and w# are two arcs in G with f(v) = f(w). Vertex-coloring of oriented
graphs have been studied by several authors in the last past years (see
e.g. [2, 6] or [9] for an overview).

Recall that an acyclic coloring of an undirected graph U is a proper
coloring of U such that every cycle in U uses at least three colors. Raspaud
and Sopena proved in [8] that every orientation of an undirected graph that
admits an acyclic k-coloring admits an oriented (k - 2¥~!)-coloring.

One can define arc-colorings of oriented graphs in a natural way by saying
that, as in the undirected case, an arc-coloring of an oriented graph G is
a vertex-coloring of the line digraph of G. (Recall that the line digraph
L(@) of G is given by V(L(G)) = A(G) and (ud, vtb) € A(L(G)) whenever
uwh € A(G) and v € A(G).) Tt is not difficult to see that every oriented
graph having a k-vertex-coloring admits a k-arc-coloring (from a k-vertex-
coloring f, we obtain a k-arc-coloring g by setting q(ﬁ) = f(u)).

By adapting the proof of the above-mentionned result of Raspaud and
Sopena, it is not difficult to prove that every oriented graph with acircuitic
directed star arboricity at most k admits a (k - 25~ 1)-arc-coloring.

This paper is organised as follows: we introduce the main definitions and
notation in the next section and prove our main result in Section 3.

2 Definitions and notation

In the rest of the paper, oriented graphs will be simply called graphs. For a
vertex v, we denote by d~ (v) the indegree of v, by d* (v) its outdegree and
by d(v) its degree, that is d(v) = d™ (v) +d~ (v). A source vertez is a vertex
v with d~(v) = 0. The mazimum degree and minimum degree of a graph G



are respectively denoted by A(G) and §(G). A graph G is said to be cubic
if A(G) = §(G) = 3 and subcubic if A(G) < 3.

We denote by w0 the arc from u to v or simply uv whenever its orientation
is not relevant (therefore uv = uh or uv = 1)_17) If a = b is an arc, then u
is the tail and v is the head of a.

For a graph G and a vertex v of V(G), we denote by G \ v the graph
obtained from G by removing v together with the set of its incident arcs;
similarly, for an arc a of A(G), G\ a denotes the graph obtained from G by
removing a. These two notions are extended to sets in a standard way: for a
set of vertices V', G\ V' denotes the graph obtained from G by successively
removing all vertices of V’ and their incident arcs, and for a set of arcs A,
G \ A’ denotes the graph obtained from G by removing all arcs of A’.

The notions of arboricity discussed in the previous section may be defined
in terms of arc-colorings or partitions of the set of arcs. More precisely, a
k-directed-star-coloring (or simply k-dst-coloring) of a graph G is a partition
of A(G) into k directed star forests {Fy, Fy, ..., Fi}. Equivalently, a k-dst-
coloring of G is a k-coloring f of A(G) such that (i) ud, 00 € A(G) =

f(m # f(m, and (ii) ud, W e AG) = f(m # f(m The directed
star arboricity of G, denoted by dst(G), is then the smallest k for which G
admits a k-dst-coloring.

A graph G is acircuitic if it does not contain any circuit. A k-acircuitic-
directed-star-coloring (or simply k-adst-coloring) of a graph G is a partition
of A(G) into k directed star forests {Fy, Fy,..., Fi} such that for all 4,5 €
[1,k]. F; U Fj is acircuitic. Equivalently, a k-adst-coloring of G is a k-dst-
coloring of G such that no circuit in G is bichromatic. The acircuitic directed
star arboricity of G, denoted by adst((G), is the smallest k for which G admits
a k-adst-coloring.

Note that from the above definitions we get that every edge-coloring of
an undirected graph H is a dst-coloring of any orientation of H. Similarly,
every acyclic edge-coloring of H is an adst-coloring of any orientation of H.

The following notation will be extensively used in the rest of the paper.

Consider a graph G and let A" = {a1,a9,...,a,} be a subset of A(G). We
denote by Cg (a1, as, ..., ay), or simply Ci(A’), the set of circuits of G that
contain all the arcs ai,aq, ..., ay,.
Drawing conventions. In all the figures, we shall use the following con-
vention: a vertex whose neighbors are totally specified will be black, whereas
a vertex whose neighbors are partially specified will be white. Moreover, an
edge will represent an arc with any of its two possible orientations.



3 Proof of Theorem 1

Suppose that Theorem 1 is false and consider a minimal counter-example
(G. We prove a series of lemmas. In each of them, we reduce G to a smaller
graph G’ (that is |A(G)| > |A(G")|) which admits a 4-adst-coloring f’ which
is also a partial adst-coloring of G (that is an adst-coloring only defined
on some subset A’ of A(G)). We extend such a partial adst-coloring f’ to
an adst-coloring f of G. In this case, it should be understood that we set
f(a) = f'(a) for every arc a € A(G'). We then explain how to set f(a)
for every uncolored a € A(G). The existence of f proves that G does not
contain some specific configurations. This set of configurations will finally
lead to a contradiction.

Consider a circuit C and let u,v € V(C). We denote by Pc(u,v) the
directed path from u to v in C.

The following observation will be extensively used in the sequel:

Observation 2 Let C be a circuit, f an adst-coloring of C, and C' the
circuit obtained from C by replacing Po(u,v) by a directed path Per(u,v). If
1" is a dst-coloring of C' such that f'(a) = f(a) for every a ¢ Per(u,v) and
{f(a); a € Po(u,v)} C {f'(a'); a' € Por(u,v)} then f' is an adst-coloring
of C'.

This directly follows from the fact that |f'(C")| > |f(C)| > 3.
We first show that a minimal counter-example to Theorem 1 is neces-
sarily a cubic graph.

Lemma 3 If G is a minimal counter-example to Theorem 1, then 6(G) > 3.

Proof. Let v € V(G) with d(v) < 2. We consider two cases:

Case 1 : dg(v) = 1.
Consider the dangling arc uv in G and let f’ be any 4-adst-coloring of
the graph G' = G\ {v}. We extend f' to a 4-adst-coloring f of G by
setting f(uv) = a for some color a distinct from the colors of the at
most two arcs incident to uw.

Case 2 : dg(v) = 2.
Consider the two arcs uv and wv in G and let f’ be any 4-adst-coloring
of the graph G’ obtained from G by contracting uv in a single vertex z.
We extend f' to a 4-adst-coloring f of G by setting f(wv) = f'(wz)
and f(uv) = a for any a distinct from the colors of the three arcs
incident to uw. (By Observation 2, no circuit in G can be bichromatic.)



In both cases we thus obtain a 4-adst-coloring f of (G, a contradiction. m

Lemma 4 If G is a minimal counter-example to Theorem 1, then G does
not contain any source vertez.

Proof. Let v € V(G) be a source vertex, uy, uy and ug be the three neigh-
bors of v and f’ be any 4-adst-coloring of the graph G’ = G'\v. By Lemma 3,
we know that d*(v) = 3. Each of the arcs vu{, vuj and vuj has at least two
available colors. Since they can get the same color, we can extend f’ to a
4-adst-coloring f of G, a contradiction. [

We now prove that a minimal counter-example to Theorem 1 contains
no triangle.

Lemma 5 If G is a minimal counter-ezample to Theorem 1, then G is
triangle-free.

Proof. If G contains three pairwise adjacent triangles, then G is an orien-
tation of the complete graph K4. By Lemma 4 we only have to consider the
two orientations of K, depicted on Figures 1(a) and 1(b) that both admit a
4-adst-coloring.

If G contains two adjacent triangles, then G contains the configuration
of Figure 1(c). Consider the graph G' = G \ {w,z} and let f' be a 4-adst-
coloring of G’ such that f'(uv) # f'(yz) (this can be done since we have two
possible choices for coloring each of uv and uz). Suppose without loss of
generality that f'(uv) =1 and f’(yz) = 2. In this case, we can produce an
acyclic 4-edge-coloring as depicted on Figure 1(c¢). Indeed, this coloring is a
proper edge-coloring and no path linking u and z is bichromatic. Hence, for
all possible orientations of the arcs of the configuration, this coloring gives
a 4-adst-coloring f of G.

Suppose finally that G contains the configuration of Figure 1(d), and
let f' be any 4-adst-coloring of the graph G’ obtained from G by con-
tracting the triangle vjvovs in a single vertex v. Therefore, every circuit
C € Cq(uiv;, vju;) corresponds to a circuit C' € Ce (U0, va}).

We now extend the partial adst-coloring f’ to a 4-adst-coloring f of G
as follows. We distinguish two cases:

Case 1 : f'(vur) # f'(vuz) # f'(vus) # f'(vur).
Without loss of generality, suppose that f'(viuq) = 1, f'(vous) = 2 and
f'(v3us) = 3. We then set f(vsv1) =2, f(vivg) = 3 and f(vov3) = 1.
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Figure 1: Configurations of Lemma 5



Case 2 : 34,5 € {1,2,3}, i # 7, f'(viw;) = f'(vju;) = a.
In this case we necessarily have W,W € A(G). Let k € {1,2,3},
k #1,5. We then set f(vvy), f(vjor) and f(v;v;) as follows:

L. f(”ivk) = b for any b Q {(1,, fl(Uk?)k)},
2. f(vjur) = c for any ¢ & {a,b, f'(ugvr)},
3. f(vjv;) = d for any d & {a,b, c}.

This can be done since we have four available colors.

In both cases, thanks to Observation 2, we obtain a 4-adst-coloring f of G,
a contradiction. ]

Let G be a graph and C a circuit in G. An arc having exactly one of
its endpoints in C is said to be incident to C. Moreover, two such incident
arcs are neighboring if their endpoints in C' are linked by an arc of C.

The four next lemmas will allow us to prove that a minimal counter-
example G to Theorem 1 is necessarily acircuitic.

Lemma 6 If G is a minimal counter-example to Theorem 1, then G does
not contain a circuit all of whose vertices have indegree one and outdegree
two.

Proof. Suppose that there exists a circuit C' = {m, m, e m,
vp 100} in G such that dt(v;) =1 and d (v;) = 2 for i € [0,k — 1] and let
f' be any 4-adst-coloring of the graph ' = G\ C. Let {v;u | i € [0,k — 1]}
be the set of arcs incident to C.

We extend the partial coloring f’ to a 4-adst-coloring f of G as follows.
Due to the orientation of G, C'is the only circuit of G that does not belong
to G'. Therefore, we only need to color the arcs of C' in such a way that C
is not bichromatic. We distinguish two cases depending on the colors of the
arcs incident to C.

1. All arcs incident to C' are colored with the same color. In this case,
we color the arcs of C using the three other remaining colors.

2. Two neighboring arcs incident to C have distinct colors. Suppose
without loss of generality that f'(voug) = ¢ and f'(viui) # ¢o. In
this case, we set

(a) f(vgui) = co,
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(a) The graph G (b) The graph G’

Figure 2: The configuration of Case 1 of Lemma 7 and its reduction.

(b) Vi€ [1,k—2], f(viviyi) = ¢; for any ¢; & {ci—1, f(vipiuiri) },
(c) flok—1v0) = cp—1 for any cp_1 & {co, c1,ch—2}.

The circuit C' is clearly not bichromatic since ¢g # ¢1 # cx_1 # ¢p-

In both cases, we obtain a 4-adst-coloring f of GG, a contradiction. [

Lemma 7 If G is a minimal counter-example to Theorem 1, then G does
not contain a circuit all of whose vertices have indegree two and outdegree
one.

Proof. Suppose that there exists a circuit C' = {?)[]—?)1>, 1)1—?)5, e m,
vp_100} in G (see Figures 2(a) or 3(a)) such that d* (v;) = 2 and d~(v;) = 1
for i € [0,k — 1]. Let {u;0} | i € [0,k — 1]} be the set of arcs incident to C.
By Lemma 5, the tails of two neighboring arcs incident to C are necessarily
distinct.

We consider two cases depending on whether the vertices ug and ug are
distinct or not. We first show that in both cases there exists a reduction G’
of G (see Figures 2(b) and 3(b)) which admits a 4-adst-coloring f’ such that
f'(ugug) # f'(wvf) # f'(ua03) # f'(uvt).

Case 1 : ug # ugy (see Figure 2(a)).
Let f' be any 4-adst-coloring of the graph G’ obtained from G\ C by
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(a) The graph G (b) The graph G

Figure 3: The configuration of Case 2 of Lemma 7 and its reduction.

identifying vy, v1 and vy in a single vertex v (see Figure 2(b)). We

clearly have f(ug0) # f(urd) # f(uzd) # f(ugh).

Case 2 : ug = ug = u (see Figure 3(a)).
Note that by Lemma 4 we have u; # u. Let f’ be any 4-adst-coloring
of the graph G’ = G\ C (see Figure 3(b)). Since we have at least three
available colors for the arcs uvg and 7%, we can choose f' in such a
way that f'(ut) # f'(urol) # f'(uvs) # f (ug).

Assume now that f(u()—uo)) = ¢y, f(ul—?)l>) # ¢1 and f(u2—1)2>) # c1. Asin
the previous lemma, C is the only circuit of G that does not belong to G'.
Therefore, we only need to color the arcs of C in such a way that C' is not
bichromatic. We then set f as follows:

~—

|

1

~

~— ~

V103) = €1,

2. Vi€[2k—1], j=i+1 (mod k), f(0;0) = ¢
for any ¢; ¢ {ci—1, f(wiv}), f(w;0))},

3. f(vovt) = o for any co & {cx1,c1, f (7))}

Note that ¢x_1 # f(ugvy) = ¢1. Therefore, ¢y # co # ¢1 # ¢,_1 and C
is not bichromatic. We thus obtain a 4-adst-coloring f of G, a contradiction.
]



From the two previous lemmas, we get that if C' is a circuit in a minimal
counter-example to Theorem 1, there exist two neighboring arcs incident
with C having opposite directions (with respect to C'). The next two lemmas
will show that this situation is also not possible.

Lemma 8 If G is a minimal counter-example to Theorem 1, then G does
not contain the configuration depicted on Figure 4(a).

Proof. Suppose that the graph G contains the configuration of Figure 4(a),
with the arcs v} u, ubu, yly, yhy, viv, vhv, 2]z and 2,z being pairwise distinct,
and let f’ be any 4-adst-coloring of the graph G’ obtained from G \ {w,z}
by adding the arcs ug) and v2 (see Figure 4(b)). Suppose that f’(@) =a
and f'(v%) = b.

We extend the partial 4-adst-coloring f' to a 4-adst-coloring f of G as
follows.

Let E = Cq(uab, w#,z)) U Cq(vth, wi, £2) and F = Cq(uab, w#, z) U
Ce(vth, wt, z7)). We ﬁrst set f(z9) = a and f(z%) = b. Clearly, all circuits
in G not belonging to E U F also belong to G', and thus are already not
bichromatic. Moreover, by Observation 2, the circuits in £ will not be
bichromatic. Therefore, we only have to pay attention to the circuits in F'.

We consider two cases depending on the colors a and b:

Case 1 : a #b.
We set f(ur ))—(1 f(ow) = b and f(w#) = ¢ for any ¢ ¢ {a,b}. Since
|{f (@d), f(w). f(22)}] = {a, ¢,b}| = 3and [{f (vD), f (w), f ()}| =

|{b, c,a}| =3, no circuit in F' is bichromatic.

Case 2 : a =b.
We consider three subcases.

L. {ud), ui w0l v} VA(G) # 0.
We assume without loss of generality that 1;71 € A(G). In this
case, we first set f(uw) = ¢ for any ¢ ¢ {a, f(uu}), f(uub)} and
f(m) =d for any d ¢ {a,c, f(vv})}. Now, we can color the arc
w# with the fourth color e ¢ {a ¢, d} Therefore {f (uad), f(w#),
F@EE)Y = [{e.e,al| =3, [{f (@), f(wk), f@)} = [{d.e,a}| =

3, and so no circuit in F' is blchrornatm.

/ o o
2. vju, uhu, viv,vhv € A(G)

— — =
and {f(uu), f(uyn)} # {f(050). J (oh0)}.

10
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(b) The reduction G’

Figure 4: The configuration of Lemma 8 and its reduction.
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Note that sirﬁa ¢ {f_()u’]u), f (ubu), f(vﬁ_v), f(vhv)}, we necessar-
iy have {7 (), £ ()} 1 1 (070), F040)} # 0. Therefore, we
can assume without_l)oss of generality that f(uju) = f(viv) = ¢,
f(ubu) = d and f(vhv) = e, with a, ¢, d, e being pairwise distinct.
In this case, we set f(uw) = e and f (o) = d. Now, we can color
the arc w# with the color c. Therefore [{f(ud), f(w#), f(z2)}|

= [{e,c.a}| = 3, [{f (o), [ F@E)Y = H{d,c.a}] = 3, and

so no circuit in F' is blchromatlc.
T T
. uhu, uyu, viv,v5 € A(G)

] . TN (T

and {f (uju), f(uyu)} = {f(v10), f(v50)}-

— —
We assume without loss of generality that f(uju) = f(v]v)

H

and f(uQu) = f(vhv) =d, a # ¢ # d # a. We then set f(va)
and f(uh) = e with e ¢ {a, ¢, d}.
Since wh and 7% are colored with distinct colors, no circuit in
Ce(uth, w#, z2) is bichromatic.
We still have to set the color of the arc w#. We consider three
911b(‘a§e§

(a) {yiw. oy} NA(G) #0
We assume without loss of generality that yly € A(G). So,

if f(yys) = c (vesp. f(yys) = d), we set f(wE) = d (resp.
f(w#) = ¢), otherwise (f(yy,) = e), we use either ¢ or d.
Therefore, |{f(w#), f(z1), f y?2 )} = 3, and thus no circuit
in C(;(ﬁ,w. ,.@ is blchromatlc

C

(b) g9yl € A(G) and {£(u]0). (o)} # {5l Flush)).
We assume without loss of generality that f(yy;) = e. Now,

if f(gﬁy]) = ¢ (resp. f(gﬁy]) = d) we set f(wt) = d (resp

f(wit) = ¢). This implies that for any i € {1, 2} \{f(u ),
ﬁ f(yy!)}| = 3, and thus no circuit in Cp (v, wi ﬁ is

1tghroﬁmatlc . . — —

(c) yy1.yys € A(G) and {f(viv), f(vy0)} = {f(yy1), f(y%)}-
We can suppose without loss of generality that f(yy;) =
and f(gﬁyQ) = d. We then set f(w#) = c. If there is no
arc emanating from y] and colored with a, no circuit in
Ce; (v, w#, z7) is bichromatic. If there exists an arc ema-
nating from y] and colored with a, then there exists at least
one available color distinct from ¢ that can be used to recolor

~—

12



the arc gﬁy] in such a way that we forbid bichromatic circuits

in C(;(m,w.,,@).
In all cases, we obtain a 4-adst-coloring f of G, a contradiction. [

In the configuration of the previous Lemma, the arcs uu and m)} on
one hand, yy; and zz; on the other hand, are necessarily distinct since, by
Lemma 5, a minimal counter-example to Theorem 1 contains no triangle.
The next lemma deals with the case where two arcs uu; (or vv;) and yyj (or
z2%) are the same. Without loss of generality, we will suppose that the arcs

j
vjv and 2}z are the same.

Lemma 9 If G is a minimal counter-example to Theorem 1, then G does
not contain the configuration depicted on Figure 5(a).

Proof. Suppose that the graph G contains the configuration of Figure 5(a)
(in this configuration, two arcs linking a black and a white vertex may be
the same provided it does not produce a triangle). We consider two cases
depending on the orientation of the arc vz.

Case 1 : v% € A(G).

Consider the graph G (see Figure 5(b)) obtained from G \ {w,z} by
adding the arcs w0 and zi) (see Figure 5(b)) and let f1 be any 4-adst-
coloring of G'. Assume that f](ut) = a, f1(v2) = b and fl(z]) = ¢
(see Figure 5(b)). We extend the partial 4-adst-coloring f’ to a 4-adst-
coloring f of G as follows.

We first set f(m) = a, f(m) = f(@) = b and f(ﬁ) = ¢ (see
Figure 5(a)). By Observation 2, no circuit in G is thus bichromatic.
We then color the arcs v and z% so that f (o) ¢ {a.b, f(v'v)} and

f(@2) ¢ {b, f(z2)}.
Case 2 : 20 € A(G).

Consider the graph G, obtained from G \ {w,z} by adding the arcs
u% and o3 and let fj be any 4-adst-coloring of G). Assume that
fH(w2) = a, fi(z0) = b and f}(07) = ¢ (see Figure 5(c)). We extend
the partial 4-adst-coloring f’ to a 4-adst-coloring f of G as follows.

As in the previous case, we set f(u) = a, f(m) = f(@) = b and
f(z)) = ¢ (see Figure 5(a)). By Observation 2, we only have to pay
attention to the circuits in Cg (00, wt, 72). We then color the arcs v

13



(a) The gragh G

(b) The reduction G (¢) The reduction G

Figure 5: The configuration of Lemma 9 and its reductions.
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Figure 6: The orientation K4 such that adst(K,) = 4

and 7% in such a way that f(0w) ¢ {a.b, f(v'v)} and f(ZZ) = a (this
can be done since f'(z2') # a). Since a # b # f(m) # a, no circuit in

Ce(vth, wi, T2) is bichromatic.
In both cases we obtain a 4-adst-coloring f of G, a contradiction. [
Using the previous lemmas, we can now prove our main result.

Proof of Theorem 1. By Lemmas 6, 7, 8 and 9, a minimal counter-example
G to Theorem 1 does not contain any circuit. Therefore, any 4-dst-coloring
of G is a 4-adst-coloring of G. Moreover, it follows from the definitions
that any k-edge-coloring of the underlying undirected graph of G is a k-dst-
coloring of G. Therefore, by Vizing’s theorem [11], the graph G admits a
4-edge-coloring and thus a 4-adst-coloring, a contradiction. [

The bound given in Theorem 1 is optimal. To see that, consider the
orientation 1?4) of the complete graph K, given on Figure 6. If we want to
color this graph with three colors, the only way to color the arcs wb, 0,
.’n—&, w#: and v is clearly the one depicted on Figure 6. But in this case, we
need one more color for the arc wi and thus, adst(Ky) = 4.

4 Discussion

In [3] Burnstein proved that every graph with maximum degree 4 admits
an acyclic 5-vertex-coloring. Since the line graph of a subcubic graph has
maximum degree at most 4, we get that every subcubic graph admits an
acyclic 5-edge-coloring and thus a 5-adst-coloring. Our result shows that
this bound can be decreased to 4 when considering oriented graphs and
acircuitic arc-colorings.

We also provided an oriented cubic graph with acircuitic directed star
arboricity 4. However, we do not know any other example of a cubic oriented
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graph that does not admit a 3-adst-coloring.

From our result, we get that every oriented graph with maximum degree
three admits a 4 -2*~! = 32-arc-coloring. However, every such graph admits
an 11-vertex-coloring [10] and thus an 11-arc-coloring.

In a companion paper [7] we show that every K, -minor free oriented
graph G has acircuitic directed star arboricity at most min{A(G),A™ (G)+
2}, where A~ (G) stands for the maximum indegree of G. This class of graphs
contains in particular outerplanar graphs. It would thus be interesting to

determine the acircuitic directed star arboricity of planar graphs.
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