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Abstract. A homomorphism from an oriented graphG to an oriented graphH is a mappingϕ from

the set of vertices ofG to the set of vertices ofH such that
−−−−−→
ϕ(u)ϕ(v) is an arc inH whenever−→uv is an

arc inG. The oriented chromatic index of an oriented graphG is the minimum number of vertices in
an oriented graphH such that there exists a homomorphism from the line digraphLD(G) of G to H

(Recall thatLD(G) is given byV (LD(G)) = A(G) and
−→
ab ∈ A(LD(G)) whenevera =−→uv andb =−→vw).

We prove that every oriented subcubic graph has oriented chromatic index at most 7 and construct a
subcubic graph with oriented chromatic index 6.

AMS Subject Classification: 05C15.
Keywords: Graph coloring, oriented graph coloring, arc-coloring, cubic graphs.

1 Introduction

We consider finite simpleoriented graphs, that is digraphs with no opposite arcs. For an oriented
graphG, we denote byV (G) its set of vertices and byA(G) its set of arcs.

In [2], Courcelle introduced the notion of vertex-coloringof oriented graphs as follows: anori-
ented k-vertex-coloring of an oriented graphG is a mappingϕ fromV (G) to a set ofk colors such that
(i) ϕ(u) 6= ϕ(v) whenever−→uv is an arc inG, and(ii) ϕ(u) 6= ϕ(x) whenever−→uv and−→wx are two arcs in
G with ϕ(v) = ϕ(w). Theoriented chromatic number of an oriented graphG, denoted byχo(G), is
defined as the smallestk such thatG admits an orientedk-vertex-coloring.

Let H and H ′ be two oriented graphs. Ahomomorphism from H to H ′ is a mappingϕ from

V (H) toV (H ′) that preserves the arcs:
−−−−−→
ϕ(u)ϕ(v) ∈ A(H ′) whenever−→uv ∈ A(H). An orientedk-vertex-

coloring ofG can be equivalently defined as a homomorphismϕ from G to H, whereH is an oriented
graph of orderk. The existence of such a homomorphism fromG to H is denoted byG→ H. The
graphH will be calledcolor-graph and its vertices will be calledcolors, and we will say thatG is
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H-colorable. The oriented chromatic number can be then equivalently defined as the smallest order of
an oriented graphH such thatG→ H.

Oriented vertex-colorings have been studied by several authors in the last past years (see e.g. [1,
3, 5] or [7] for an overview).

One can defineoriented arc-colorings of oriented graphs in a natural way by saying that, as in
the undirected case, an oriented arc-coloring of an oriented graphG is an oriented vertex-coloring of
the line digraphLD(G) of G (Recall thatLD(G) is given byV (LD(G)) = A(G) and

−→
ab ∈ A(LD(G))

whenevera =−→uv andb =−→vw). We will say that an oriented graphG is H-arc-colorable if there exists
a homomorphismϕ from LD(G) to H andϕ is then anH-arc-coloring or simply anarc-coloring of G.
Therefore, an oriented arc-coloringϕ of G must satisfy(i) ϕ(−→uv) 6= ϕ(−→vw) whenever−→uv and−→vw are two
consecutive arcs inG, and(ii) ϕ(−→vw) 6= ϕ(−→xy) whenever−→uv,−→vw,−→xy,−→yz ∈ A(G) with ϕ(−→uv) = ϕ(−→yz).
Theoriented chromatic index of G, denoted byχ′o(G), is defined as the smallest order of an oriented
graphH such thatLD(G)→ H.

The notion of oriented chromatic index can be extended to undirected graphs as follows. The
oriented chromatic indexχ′o(G) of an undirected graphG is the maximum of the oriented chromatic
indexes taken over all the orientations ofG (an orientation of an undirected graphG is obtained by
giving one of the two possible orientations to every edge ofG).

In this paper, we are interested in oriented arc-coloring ofsubcubic graphs, that is graphs with
maximum degree at most 3.

Oriented vertex-coloring of subcubic graphs has been first studied in [4] where it was proved that
every oriented subcubic graph admits an oriented 16-vertex-coloring. In 1996, Sopena and Vignal
improved this result:

Theorem 1 [6] Every oriented subcubic graph admits an oriented 11-vertex-coloring.

It is not difficult to see that every oriented graph having an orientedk-vertex-coloring admits a
k-arc-coloring (from ak-vertex-coloring f , we obtain ak-arc-coloringg by settingg(−→uv) = f (u) for
every arc−→uv). Therefore, every oriented subcubic graph admits an oriented 11-arc-coloring.

We improve this bound and prove the following

Theorem 2 Every oriented subcubic graph admits a 7-arc-coloring.

More precisely, we shall show that every oriented subcubic graph admits a homomorphism to
QR7, a tournament on 7 vertices described in section 3.

Note that Sopena conjectured that every oriented connectedsubcubic graph admits an oriented
7-vertex-coloring [4].

This paper is organised as follows. In the next section, we introduce the main definitions and
notation. In section 3, we described the tournamentQR7 and give some properties of this graph.
Finally, Section 4 is dedicated to the proof of Theorem 2.

2 Definitions and notation

In the rest of the paper, oriented graphs will be simply called graphs. For a graphG and a vertexv of
G, we denote byd−G (v) the indegree ofv, by d+

G (v) its outdegree and bydG(v) its degree. A vertex of
degreek (resp. at mostk, at leastk) will be called ak-vertex (resp.≤k-vertex,≥k-vertex). Asource
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vertex (or simplya source) is a vertexv with d−(v) = 0 and asink vertex (or simply asink) is a vertex
v with d+(v) = 0. A source (resp. sink) of degreek will be called ak-source (resp. ak-sink).

We denote byN+
G (v), N−G (v) andNG(v) respectively the set of successors ofv, the set of predeces-

sors ofv and the set of neighbors ofv in G. Themaximum degree andminimum degree of a graphG
are respectively denoted by∆(G) andδ(G).

We denote by−→uv the arc fromu to v or simplyuv whenever its orientation is not relevant (therefore
uv =−→uv or uv =−→vu).

For a graphG and a vertexv of V (G), we denote byG\v the graph obtained fromG by removing
v together with the set of its incident arcs; similarly, for anarc a of A(G), G \ a denotes the graph
obtained fromG by removinga. These two notions are extended to sets in a standard way: fora set
of verticesV ′, G \V ′ denotes the graph obtained fromG by successively removing all vertices ofV ′

and their incident arcs, and for a set of arcsA′, G\A′ denotes the graph obtained fromG by removing
all arcs ofA′.

The drawing conventions for a configuration are the following: a vertex whose neighbors are
totally specified will be black (i.e. vertex of fixed degree),whereas a vertex whose neighbors are
partially specified will be white. Moreover, an edge will represent an arc with any of its two possible
orientations.

3 Some properties of the tournamentQR7

For a primep≡ 3 (mod 4), the Paley tournamentQRp is defined as the oriented graph whose vertices
are the integers modulop and such that−→uv is an arc if and only ifv−u is a non-zero quadratic residue
of p.

For instance, let us consider the tournamentQR7 with V (QR7) = {0,1, . . . ,6} and−→uv ∈ A(QR7)
wheneverv−u≡ r (mod 7) for r ∈ {1,2,4}.

This graph has the two following useful properties [1]:

(P1) Every vertex ofQR7 has three successors and three predecessors.

(P2) For every two distinct verticesu andv, there exists four verticesw1,w2,w3 andw4 such that:

• −−→uw1 ∈ A(QR7) and−→vw1 ∈ A(QR7);

• −−→uw2 ∈ A(QR7) and−→w2v ∈ A(QR7);

• −−→w3u ∈ A(QR7) and−→w3v ∈ A(QR7);

• −−→w4u ∈ A(QR7) and−→vw4 ∈ A(QR7).

4 Proof of Theorem 2

Let G be an oriented subcubic graph andC be a cycle inG (C is a subgraph ofG). A vertexu of C is
a transitive vertex of C if d+

C (u) = d−C (u) = 1 (therefore 2≤ dG(u)≤ 3).
A cycleC in G is aspecial cycle if and only if:

(1) every non-transitive vertex ofC is a 2-source or a 2-sink inG;

(2) C has either exactly 1 transitive vertex or exactly 2 transitive vertices, and in this case, both
transitive vertices have the same orientation onC.
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Figure 1: Two special cycles

Figure 1 shows two special cycles; the first one has exactly 1 transitive vertex while the second
has exactly 2 transitive vertices oriented in the same direction. Verticessi, s′j andtk are respectively
the sinks, sources, and transitive vertices of the special cycles.

Remark 3 Every 2-source (resp. 2-sink) in a special cycleC is necessarily adjacent to a 2-sink (resp.
2-source). This directly follows from the fact thatC does not contain two transitive vertices oriented
in opposite direction.

We shall denote bySSG(C) the set of 2-sources and 2-sinks of the cycleC in G.
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Figure 2: Graphs with a special cycle

Remark 4 Note that a special cycle may only be connected to the rest of the graph by its transitive
vertices (see Figure 2 for an example).

A QR7-arc-coloring f of an oriented subcubic graphG is good if and only if :

• for every 2-sourceu, |C+
f (u)|= 1,

• for every 2-sinkv, |C−f (v)|= 1.
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Note that if a subcubic graphG admits a goodQR7-arc-coloring, then for every 2-vertexv of G,
|C+

f (v)| ≤ 1 and|C−f (v)| ≤ 1.
We first prove the following:

Theorem 5 Every oriented subcubic graph with no special cycle admits a good QR7-arc-coloring.

We define a partial order≺ on the set of all graphs. Letn2(G) be the number of≥2-vertices ofG.
For any two graphsG1 andG2, G1≺ G2 if and only if at least one of the following conditions holds:

• G1 is a proper subgraph ofG2;

• n2(G1) < n2(G2).

Note that this partial order is well-defined, since ifG1 is a proper subgraph ofG2, thenn2(G1)≤
n2(G2). The partial order≺ is thus a partial linear extension of the subgraph poset.

In the rest of this section, letH a be counter-example to Theorem 5 which is minimal with respect
to≺.

We shall show in the following lemmas thatH does not contain some configurations.
In all the proofs which follow, we shall proceed similarly. We suppose thatH contains some con-

figurations and, for each of them, we consider a reductionH ′ of H with no special cycle such that
H ′ ≺ H. Therefore, due to the minimality ofH, there exists a goodQR7-arc-coloring f of H ′. The
coloring f is a partial goodQR7-arc-coloring ofH, that is an arc-coloring of some subsetS of A(H)
and we show how to extend it to a goodQR7-arc-coloring ofH. This proves thatH cannot contain
such configurations.

We will extensively use the following proposition:

Proposition 6 Let
−→
G be an oriented graph which admits a good QR7-arc-coloring. Let

←−
G be the

graph obtained from
−→
G by giving to every arc its opposite direction. Then,

←−
G admits a good QR7-

arc-coloring.

Proof : Let f be a goodQR7-arc-coloring of
−→
G . Consider the coloringf ′ : V (QR7)→ A(

←−
G ) defined

by f ′(−→uv) = 6− f (−→vu).
It is easy to see that for every arc−→uv ∈ A(QR7), we have−→xy ∈ A(QR7) for x = 6− v andy = 6−u.

Moreover, the two incident arcs to a 2-source (or a 2-sink) will get the same color byf ′ since they got
the same color byf . 2

Therefore, when considering oriented goodQR7-arc-coloring of an oriented graphG, we may
assume that one arc inG has a given orientation.

The following remark will be extensively used in the following lemmas :

Remark 7 Let G be a graph with no special cycle andA⊆ A(G) be an arc set. If the graphG′ = G\A
contains a special cycleC, then at least one of the vertices incident toA is a 2-source or a 2-sink inG′

and belongs toV (C), since otherwiseC would be a special cycle inG.
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Lemma 8 The graph H is connected.

Proof : Suppose thatH = H1⊎H2 (disjoint union). We haveH1≺H andH2≺H. The graphsH1 and
H2 contain no special cycle and then, by minimality ofH, H1 andH2 admits goodQR7-arc-colorings
f1 and f2 respectively that can easily be extended to a goodQR7-arc-coloring f = f1∪ f2 of H. 2

Lemma 9 The graph H contains no 3-source and no 3-sink.

Proof : By Proposition 6, we just have to consider the 3-source case. Let u be a 3-source inH and
H ′ be the graph obtained fromH by splittingu into three 1-verticesu1,u2,u3. We haveH ′ ≺ H since
n2(H ′) = n2(H)−1. Any goodQR7-arc-coloring ofH ′ is clearly a goodQR7-arc-coloring ofH. 2

Lemma 10 The graph H contains no 1-vertex.

Proof : Let u1 be a 1-vertex inH, v be its neighbor andNH(v) = {ui,1 ≤ i ≤ dH(v)}. By Proposition
6, we may assume−→u1v ∈ A(H). We consider three subcases.

1. dH(v) = 1.

By Lemma 8,H =−→u1v and obviously,H admits a goodQR7-arc-coloring.

2. dH(v) = 2.

Let H ′ = H \u1; we haveH ′ ≺H andH ′ contains no special cycle by remark 7. By minimality
of H, H ′ admits a goodQR7-arc-coloring f that can easily be extended toH: if v is a 2-sink, we
set f (−→u1v) = f (−→u2v); otherwise, we have three available colors forf (−→u1v) by Property(P1)

3. dH(v) = 3.

Let H ′ = H \u1; we haveH ′ ≺ H.

If H ′ contains no special cycle then, by minimality ofH, H ′ admits a goodQR7-arc-coloring f
such that|C+

f (v)| ≤ 1. The coloringf can then be extended toH since we have three available
colors to setf (−→u1v) by property(P1).

If H ′ contains a special cycleC, v ∈ C and v is a 2-source inH ′ by Remark 7 and Lemma
9. We may assume w.l.o.g. thatu2 is a 2-sink by Remark 3. LetNH(u2) = {v,x} andH ′′ =
H \{−→vu2,

−→u1v}. We haveH ′′ ≺H andH ′′ contains no special cycle by Remark 7. By minimality
of H, H ′′ admits a goodQR7-arc-coloring f that can be extended toH: we setf (−→vu2) = f (−→xu2),
and we have at least one available color forf (−→u1v) by Property(P2).

2

Recall that abridge in a graphG is an edge whose removal increases the number of components
of G.

Lemma 11 The graph H contains no bridge.

Proof : Suppose thatH contains a bridgeuv. LetH \uv = H1⊎H2. Fori = 1,2, considerH ′i = Hi +uv.
By Lemma 10,uv is not a dangling arc inH. MoreoverH ′i ≺ H for i = 1,2. Clearly, the graphsH ′1
andH ′2 have no special cycle and therefore, by minimality ofH, they admit goodQR7-arc-colorings
f1 and f2 respectively. By cyclically permuting the colors off2 if necessary, we may assume that
f1(uv) = f2(uv). The mappingf = f1∪ f2 is then clearly a goodQR7-arc-coloring ofH. 2
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Figure 3: Configurations of Lemma 14

Lemma 12 The graph H contains no 2-sink adjacent to a 2-source.

Proof : Suppose thatH contains a 2-sinkv adjacent to a 2-sourcew. Let N(v) = {u,w} andN(w) =
{v,x}. SinceH contains no special cycle,u andx are distinct vertices and−→xu /∈ A(H).

Let H ′ be the graph obtained fromH \{v,w} by adding−→ux (if it did not already belong toA(H)).
We haveH ′ ≺ H sincen2(H ′) ≤ n2(H)− 2. Since the verticesu andx are neither 3-sources nor 3-
sinks inH by Lemma 9, they are neither 2-sources nor 2-sinks inH ′ and therefore, by Remark 7,H ′

contains no special cycle. Hence, by minimality ofH, H ′ admits a goodQR7-arc-coloring f ′ that can
be extended toH by setting f (−→uv) = f (−→wv) = f (−→wx) = f (−→ux). 2

Lemma 13 Every 2-source (resp. 2-sink) of H is adjacent to a vertex v with d+(v) = 2 (resp. d−(v) =
2).

Proof : Suppose thatH contains a 2-sourceu adjacent to two verticesv andw such thatd+(v) 6= 2
andd+(w) 6= 2 (by Proposition 6, it is enough to consider this case). LetH ′ = H \u; by hypothesis
and by Lemmas 9 and 12, the verticesv andw are such thatd+

H′(v) = d−H′(v) = d+
H′(w) = d−H′(w) = 1.

Therefore, the graphH ′ contains no special cycle by Remark 7. By minimality ofH, H ′ admits a
good QR7-arc-coloring f that can be extended toH in such a way thatf (−→uu1) = f (−→uu2) thanks to
Property(P2). 2

Recall that we denote bySSG(C) the set of 2-sources and 2-sinks of the cycleC in G.

Lemma 14 Let u be a vertex of H and H ′ = H \u. Then H ′ does not contain a special cycle C with
|NH(u)∩SSH′(C)|= 1.

Proof : Let v1 ∈ N(u) and w.l.o.g., suppose thatH ′ = H \ u contains a special cycleC such that
NH(u)∩SSH′(C) = {v1}; by Remark 7,v1 is a 2-source or a 2-sink inH ′ and by Proposition 6 we may
assume w.l.o.g. thatv1 is a 2-source.

By Remark 3,v1 is adjacent to a 2-sinkv2. By Lemma 12, the only pair of adjacent 2-source and
2-sink inH ′ is v1,v2. Therefore, we have 3≤ |C| ≤ 4. LetV (C) = {v1,v2,v3,v4} andv3 = v4 if |C|= 3.
Moreoverv3 andv4 are necessarily two transitives vertices ofC. Furthermore, we have−→yv3 ∈ A(H) by
Lemma 13 and−→uv1 ∈ A(H) by Lemma 9. Then, we have only two possible configurations, depicted
in Figure 3.
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• If |C| = 3 (see Figure 3(a)), considerH ′1 = H \−−→v1v2. This graph contains no special cycle by
Remark 7 and we haveH ′1 ≺ H. By minimality of H, H ′1 admits a goodQR7-arc-coloring f
that can be extended toH: we first erasef (−−→v1v3); then, we can setf (−−→v1v2) = f (−−→v3v2) thanks to
Property(P2) and then we have one avalaible color forf (−−→v1v3) by Property(P2) since f (−→uv1) 6=
f (−−→v3v2).

• If |C|= 4 (see Figure 3(b)), consider the graphH ′2 = H \ v2. We haveH ′2≺ H.

– If H ′2 contains no special cycle, by minimality ofH, H ′2 admits a goodQR7-arc-coloring
f that can be extended toH in such a way thatf (−−→v3v2) = f (−−→v1v2) thanks to Property(P2)
since f (−−→v4v3) = f (−→yv3).

– Suppose now thatH ′2 contains a special cycleC′. By Remark 7,v3 belong toC′ and by
Remark 3,y is a 2-sink. By Lemma 12, the only pair of adjacent 2-source and 2-sink
in H ′ is v3,y, and therefore|C′| is a special cycle of length 3 or 4. Suppose first that
{u,v1,v4,v3,y} ⊆ V (C′); we thus haveu = y, that is a contradiction since by hypothesis
NH(u)∩SSH′(C) = {v1} 6= {v1,v3}.

ThereforeV (C′) = {y,v3,v4,z}, and then−→zv4 ∈ A(H). If |C′| = 3, we havey = z and in
this case, the graphH contains a bridge−→uv1 that is forbidden by Lemma 11. Therefore,
we have|C′|= 4 andz is a transitive vertex ofC′.
Consider in this case the graphH ′3 = H \v4. This graph contains no special cycle since the
verticesv1 andv3 are two transitive 2-vertices oriented in opposite directions. We have
H ′3≺ H and therefore, by minimality ofH, there exists a goodQR7-arc-coloring f of H ′3
such thatC−f (v1) = {c1},C

−
f (v2) = {c2} andC+

f (y) = C−f (z) = {c3}. The mappingf can
be extended toH as follows: we can setf (−−→v4v3) = c4 /∈ {c1,c3} thanks to Property(P1).
Then, by Property(P2), we have one avalaible color forf (−−→v1v4) sincec1 6= c4 and one
avalaible color forf (−→zv4) sincec3 6= c4.

2

Lemma 15 The graph H does not contain two adjacent 2-vertices.

Proof : Suppose thatH contains two adjacent 2-verticesv andw. LetN(v) = {u,w} andN(w)= {v,x}
andH ′ = H \ v. By Lemma Remark 7 and 14,H contains no special cycle. We haveH ′ ≺ H and by
minimality of H, H ′ admits a goodQR7-arc-coloring f .

We shall consider two cases depending on the orientation of the arcs incident tov and w (by
Proposition 6, we may assume that−→uv ∈ A(H)).

1. v is a 2-sink andw is a transitive vertex.
By Lemma 12,u is not a 2-source inH. We have|C−f (u)| ≤ 1 and then, we can setf (−→uv) =

f (−→wv) thanks to Property(P2).

2. v andw are transitive vertices.
By the previous case,u is not a 2-source. We have|C−f (u)| ≤ 1. Thanks to Property(P1), we
can setf (−→uv) 6= f (−→wx) and finally, we have one available color forf (−→vw) by Property(P2) since
f (−→uv) 6= f (−→wx).

2
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Figure 4: Configurations of Lemma 16

Lemma 16 The graph H contains no 2-vertex.

Proof : Suppose thatH contains a 2-vertexu and letN(u) = {u1,u2}. The verticesu1 andu2 are
3-vertices by Lemma 15. By Proposition 6, we may assume w.l.o.g. that−→uu1 ∈ A(H). Let H ′1 = H \u;
we haveH ′1≺ H.

If H ′1 contains no special cycle, then by minimality ofH, H ′1 admits a goodQR7-arc-coloring
f of H ′1 that can be extended toH as follows. If u is a 2-source , we can setf (−→uu1) = f (−→uu2)
thanks to Property(P2) since |C+

f (u1)| ≤ 1 and |C+
f (u2)| ≤ 1. If u is a transitive vertex, we can

set f (−→uu1) /∈ C−f (u2) thanks to Property(P1) and then we have one available color forf (−→u2u) by
Property(P2).

Suppose now thatH ′1 contains a special cycleC. By Lemma 14,u1 andu2 belongs toC and at
least one of them is a 2-source or a 2-sink.

Suppose first thatu1 is a 2-source inH ′1 andu2 is neither a 2-source nor a 2-sink inH ′1. Then, since
H contains no adjacent 2-vertices by Lemma 15, we have only three possible configurations depicted
in Figures 4(a), 4(b) and 4(c).

Clearly, the configuration of Figure 4(a) admits a goodQR7-arc-coloring. The white vertex of the
configuration of Figure 4(b) is a 3-vertex by Lemma 15, but in this case, the graph contains a bridge,
that is forbidden by Lemma 11. The white vertex of the configuration of Figure 4(c) is of degree two
by Lemma 11 and this configuration clearly admits a goodQR7-arc-coloring.

Therefore,u1 and u2 are either 2-sources or 2-sinks inH ′1. In this case, sinceH contains no
adjacent 2-vertices by Lemma 15, we have only three possibleconfigurations depicted in Figure 4(d),
4(e) and 4(f).

• Figure 4(d): by Lemma 9, we have−→u2u,−→uu1 ∈ A(H). Consider the graphH ′2 = H \−−→u1u2; H ′2
contains no special cycle. SinceH ′2 ≺ H, by minimality of H, H ′2 admits a goodQR7-arc-
coloring f that can be extended toH thanks to Property(P2) since f (−→u2u) 6= f (−→uu1).

• Figure 4(e): by Lemma 9, we have−→u2u,−→uu1 ∈ A(H). By Lemma 15,u4 is a 3-vertex. If
d−(u4) = 2, this configuration is forbidden by Lemma 13. Ifd+(u4) = 2, this configuration is
also forbidden by Lemma 13.
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• Figure 4(f): by Lemma 9, we have−→uu1,
−→uu2 ∈ A(H). Therefore, by Lemma 13,d−(u4) = 2.

ConsiderH ′4 = H \−−→u1u3; clearly,H ′4 contains no special cycle. By minimality ofH, H ′4 admits
a goodQR7-arc-coloring that can be extended toH as follows. We first erasef (−−→u2u4) and
f (−−→u4u3); then, thanks to Property(P2), we can setf (−−→u1u3) = f (−−→u4u3). Finally, sincef (−→uu2) 6=
f (u4u3), we can extendf to a goodQR7-arc-coloring ofH thanks to Property(P2).

2

u2
u3u1

u

(a)

v

u1 u3u2

u

(b)

u1 u3

v1

u

u2

(c)

u3u1

v2v1

u2

u

(d)

Figure 5: Configurations of Lemma 17

Lemma 17 The graph H contains no 3-vertex.

Proof : By Lemmas 10 and 16,H is a 3-regular graph. Letu be a vertex ofH with neighborsu1, u2

andu3. By Lemma 9,u is neither a 3-source nor a 3-sink and therefore, by Proposition 6, we may
assume w.l.o.g. thatd+(u) ≥ d−(u). Let−→u1u,−→uu2,

−→uu3 ∈ A(H).
If H ′1 = H \u contains no special cycle, by minimality ofH, H ′1 admits a goodQR7-arc-coloring f

that can be extended toH as follows. We can setf (−→u1u) /∈C+
f (u2)∪C+

f (u3) thanks to Property(P1).
Then, thanks to Property(P2), we can extendf to a goodQR7-arc-coloring ofH.

Suppose now thatH ′1 contains a special cycleC. The graphH ′1 contains three 2-vertices. Since a
special cycle consists ink pairs of 2-sources and 2-sinks,C contains only one pair of adjacent 2-source
and 2-sink (w.l.o.g.u1 andu2 respectively). Therefore, we have only four possible configurations
depicted in Figure 5.

Clearly, the configuration of Figure 5(a) admits a goodQR7-arc-coloring. The white vertex of
the configuration of Figure 5(c) is a 2-vertex by Lemma 11 and it is easy to check that there exits a
goodQR7-arc-coloring of this graph. Consider now the configurations of Figures 5(b) and 5(d) and let
H ′2 = H \−−→u1u2. We haveH ′2≺ H and clearly,H ′2 contains no special cycle. Therefore, by minimality
of H, H ′2 admits a goodQR7-arc-coloing f that can be extended toH thanks to Property(P2) since for
any orientation ofH, C−f (u1)∩C+

f (u2) = /0. 2

Proof of Theorem 2:
By Lemmas 10, 16 and 17, a minimal counter-example to Theorem5 does not exist.
We now say that aQR7-arc-coloring f of an oriented subcubic graphG is quasi-good if and only

if for every 2-sourceu, |C+
f (u)|= 1.

Note that if a subcubic graph admits a quasi-goodQR7-arc-coloring f , we have|C+
f (v)| ≤ 1 for

every≤2-vertexv of G.
We shall then prove Theorem 2 by showing that every subcubic graph admits a quasi-goodQR7-

arc-coloring.
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Let H be a minimal counter-example to Theorem 2.
If H contains no special cycle, by Theorem 5,H admits a goodQR7-arc-coloring which is a

quasi-goodQR7-arc-coloring.
Suppose now thatH contains at least one special cycle. By definition, a specialcycle contains

at least one 2-source. We inductively define a sequence of graphs H0,H1, . . . ,Hn for n ≥ 0, and a
sequence of verticesu0,u1, . . . ,un−1 such that:

• H0 = H;

• Hi contains a special cycle, and thus a 2-sourceui for 0≤ i < n;

• Hi+1 = Hi \ui for 0≤ i < n;

• Hn has no special cycle.

By Theorem 5,Hn admits a goodQR7-arc-coloring, and therefore a quasi-goodQR7-arc-coloring.
Suppose thatHi+1 admits a quasi-goodQR7-arc-coloring fi+1 for 1≤ i < n; we claim that we can
extend fi+1 to a quasi-goodQR7-arc-coloring fi of Hi as follows. To see that, letvi andwi be the two
neighbors ofui which are≤2-vertices inHi+1. Therefore, we have|C+

fi+1
(vi)| ≤ 1 and|C+

fi+1
(wi)| ≤ 1

and thanks to Property(P2), we can setfi(
−→uivi) = fi(

−−→uiwi).
Therefore, any quasi-goodQR7-arc-coloring ofHn can be extended toH0 = H, that is a contradic-

tion. A minimal counter-example to Theorem 2 does not exist,that completes the proof. 2

x

u

w

v

z

y

Figure 6: Cubic graphG with χ′o(G) = 6

Currently, we cannot provide an oriented subcubic graph with oriented chromatic index 7. How-
ever, the oriented cubic graphG depicted in Figure 6 has oriented chromatic index 6.

Suppose we want to colorG with five colors 1,2,3,4,5. Necessarily the colors of−→vw,−→xy and−→zu are
pairwise distinct and we may assume w.l.o.g. thatf (−→vw) = 1, f (−→xy) = 2 and f (−→zu) = 3. Clearly, each
of the colors 4 and 5 will appear at most once on−→uv, −→wx and−→yz . Therefore, w.l.o.g. we may assume
that f (−→yz) = 1, which implies w.l.o.g. that we must setf (−→ux) = 4. Thus, we must setf (−→yv) = 5, and
then we have no remaining color to colorf (−→wz).

Therefore, we have the following:

Proposition 18 Let C be the class of subcubic graphs. Then 6≤ χ′o(C)≤ 7.
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