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Abstract. A homomorphism from an oriented graghto an oriented graphl is a mappingp from
the set of vertices dB to the set of vertices dfl such thath(u)¢(v) is an arc irH wheneverv is an
arc inG. The oriented chromatic index of an oriented gr&pts the minimum number of vertices in
an oriented graph such that there exists a homomorphism from the line digtdptG) of Gto H
(Recall that.D(G) is given byV (LD(G)) = A(G) andab € A(LD(G)) wheneve = i andb = ).
We prove that every oriented subcubic graph has orientemhwditic index at most 7 and construct a
subcubic graph with oriented chromatic index 6.
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1 Introduction

We consider finite simpleriented graphs, that is digraphs with no opposite arcs. For an oriented
graphG, we denote by (G) its set of vertices and b§(G) its set of arcs.

In [2], Courcelle introduced the notion of vertex-colorin§oriented graphs as follows: ami-
ented k-vertex-coloring of an oriented grapfs is a mappingp fromV (G) to a set ok colors such that
(i) ¢(u) # d(v) wheneverv is an arc inG, and(ii) ¢ (u) # ¢(x) wheneverv andwx are two arcs in
G with ¢(v) = ¢(w). Theoriented chromatic number of an oriented grapi®, denoted byx,(G), is
defined as the smallektsuch thatG admits an oriente#é-vertex-coloring.

Let H andH’ be two oriented graphs. Aomomorphism from H to H’ is a mappingd from
V(H)toV (H’) that preserves the aras(u)d(v) € A(H’) wheneverv € A(H). An orientedk-vertex-
coloring of G can be equivalently defined as a homomorphgsfrom G to H, whereH is an oriented
graph of ordek. The existence of such a homomorphism fr@o H is denoted byG — H. The
graphH will be called color-graph and its vertices will be calledolors, and we will say thats is



H-colorable. The oriented chromatic number can be then abpntly defined as the smallest order of
an oriented graphl such thailG — H.

Oriented vertex-colorings have been studied by severabasiin the last past years (see e.g. [1,
3, 5] or [7] for an overview).

One can defineriented arc-colorings of oriented graphs in a natural way by saying that, as in
the undirected case, an oriented arc-coloring of an ordegitaphG is an oriented vertex-coloring of
the line digraphLD(G) of G (Recall that_D(G) is given byV (LD(G)) = A(G) andab € A(LD(G))
whenevera = v andb = w(). We will say that an oriented grajghis H-arc-colorable if there exists
a homomorphisng from LD(G) to H and¢ is then arH-arc-coloring or simply anarc-coloring of G.
Therefore, an oriented arc-coloriggof G must satisfy(i) ¢ (Tv) # ¢ (W) wheneveiiv andwi are two
consecutive arcs i, and (i) (W) # d(Xy) wheneverv, Wi, xy, yz € A(G) with ¢(Uv) = ¢ (y2).
Theoriented chromatic index of G, denoted byx,(G), is defined as the smallest order of an oriented
graphH such that.D(G) — H.

The notion of oriented chromatic index can be extended torecied graphs as follows. The
oriented chromatic index;(G) of an undirected grap® is the maximum of the oriented chromatic
indexes taken over all the orientations@f(an orientation of an undirected graghis obtained by
giving one of the two possible orientations to every edg&)f

In this paper, we are interested in oriented arc-coloringulifcubic graphs, that is graphs with
maximum degree at most 3.

Oriented vertex-coloring of subcubic graphs has been finsliesd in [4] where it was proved that
every oriented subcubic graph admits an oriented 16-vexéocing. In 1996, Sopena and Vignal
improved this result:

Theorem 1 [6] Every oriented subcubic graph admits an oriented 11-vertex-coloring.

It is not difficult to see that every oriented graph having aierdedk-vertex-coloring admits a
k-arc-coloring (from &-vertex-coloringf, we obtain a-arc-coloringg by settingg(v) = f(u) for
every arclv). Therefore, every oriented subcubic graph admits an @iehl-arc-coloring.

We improve this bound and prove the following

Theorem 2 Every oriented subcubic graph admits a 7-arc-coloring.

More precisely, we shall show that every oriented subcubéply admits a homomorphism to
QRy, atournament on 7 vertices described in section 3.

Note that Sopena conjectured that every oriented connectiecubic graph admits an oriented
7-vertex-coloring [4].

This paper is organised as follows. In the next section, wediice the main definitions and
notation. In section 3, we described the tournanf@Ry and give some properties of this graph.
Finally, Section 4 is dedicated to the proof of Theorem 2.

2 Definitions and notation

In the rest of the paper, oriented graphs will be simply cidigphs. For a graphG and a vertex of
G, we denote byl (v) the indegree of, by df (v) its outdegree and byg (V) its degree. A vertex of
degreek (resp. at mosk, at leastk) will be called ak-vertex (resp.=k-vertex,~k-vertex). Asource



vertex (or simplya source) is a vertexv with d~(v) = 0 and asink vertex (or simply asink) is a vertex
vwith d*(v) = 0. A source (resp. sink) of degré&evill be called ak-source (resp. &sink).

We denote byNZ (v), Ng (v) andNg(v) respectively the set of successorvahe set of predeces-
sors ofv and the set of neighbors ofin G. The maximum degree andminimum degree of a graphG
are respectively denoted i G) andd(G).

We denote byav the arc fromu to v or simplyuv whenever its orientation is not relevant (therefore
uv = v or uv = VUi).

For a graplG and a vertex of V(G), we denote bys \ v the graph obtained fror® by removing
v together with the set of its incident arcs; similarly, for @ a of A(G), G\ a denotes the graph
obtained fromG by removinga. These two notions are extended to sets in a standard wag: Jer
of verticesV’, G\ V' denotes the graph obtained fra@nby successively removing all vertices\6f
and their incident arcs, and for a set of af¢sG \ A’ denotes the graph obtained fr@érby removing
all arcs ofA'.

The drawing conventions for a configuration are the follayvira vertex whose neighbors are
totally specified will be black (i.e. vertex of fixed degre@)hereas a vertex whose neighbors are
partially specified will be white. Moreover, an edge will repent an arc with any of its two possible
orientations.

3 Some properties of the tournamenQRy

Foraprimep=3 (mod 4, the Paley tourname@R;, is defined as the oriented graph whose vertices
are the integers modulpand such thaiv is an arc if and only i/ — u is a non-zero quadratic residue
of p.

For instance, let us consider the tournam®R% with V(QR7) = {0,1,...,6} anduv € A(QR;)
whenevev—u=r (mod 7) forr € {1,2 4}.

This graph has the two following useful properties [1]:

(P1) Every vertex ofQRy has three successors and three predecessors.

(P,) For every two distinct vertices andyv, there exists four vertices;, w,, w3 andw, such that:

e Uw; € A(QR;) andw; € A(QRy)
(QR7 (QR7)
( andwsv € A(QRy;)
( andwv; € A(QRy).

o UW; € A andw,v € A

e W3li € A(QR;
o Watl € A(QR;

~— ~— ~— ~—

4 Proof of Theorem 2

Let G be an oriented subcubic graph abdbe a cycle inG (C is a subgraph o). A vertexu of C is
atransitive vertex of C if dZ (u) = dz (u) = 1 (therefore < dg(u) < 3).
A cycleCin Gis aspecial cycleif and only if:

(1) every non-transitive vertex & is a 2-source or a 2-sink i;

(2) C has either exactly 1 transitive vertex or exactly 2 tramsitvertices, and in this case, both
transitive vertices have the same orientatiorCon



Figure 1: Two special cycles

Figure 1 shows two special cycles; the first one has exactharisitive vertex while the second
has exactly 2 transitive vertices oriented in the same ftilinec Verticess;, S; andty are respectively
the sinks, sources, and transitive vertices of the spegtdés.

Remark 3 Every 2-source (resp. 2-sink) in a special cyCls necessarily adjacent to a 2-sink (resp.
2-source). This directly follows from the fact thatdoes not contain two transitive vertices oriented
in opposite direction.

We shall denote b$S;(C) the set of 2-sources and 2-sinks of the clie G.

Figure 2: Graphs with a special cycle

Remark 4 Note that a special cycle may only be connected to the resteoftaph by its transitive
vertices (see Figure 2 for an example).

A QRy-arc-coloringf of an oriented subcubic grafghis good if and only if :
o for every 2-source, |C{ (u)| =1,

o for every 2-sinkv, |C; (v)| = 1.



Note that if a subcubic grapB admits a good)Rz-arc-coloring, then for every 2-vertexof G,
IC{ (V)| < 1and|Cf (v)| < 1.
We first prove the following:

Theorem 5 Every oriented subcubic graph with no special cycle admits a good QRy-arc-coloring.

We define a partial ordex on the set of all graphs. Let(G) be the number of 2-vertices ofG.
For any two graph&; andG,, G; < G if and only if at least one of the following conditions holds:

e Gy is a proper subgraph @;
° nz(Gl) < nZ(GZ)'

Note that this partial order is well-defined, sincé&if is a proper subgraph @, thenny(G;) <
n2(Gy). The partial order is thus a partial linear extension of the subgraph poset.

In the rest of this section, I&t a be counter-example to Theorem 5 which is minimal with respe
to <.

We shall show in the following lemmas thidtdoes not contain some configurations.

In all the proofs which follow, we shall proceed similarly.e\§uppose thdtl contains some con-
figurations and, for each of them, we consider a redudtiéf H with no special cycle such that
H’ < H. Therefore, due to the minimality ¢, there exists a goo@Ry-arc-coloring f of H’. The
coloring f is a partial gooddR7-arc-coloring ofH, that is an arc-coloring of some sub&sof A(H)
and we show how to extend it to a goQiR;-arc-coloring ofH. This proves thaH cannot contain
such configurations.

We will extensively use the following proposition:

Proposition 6 Let G be an oriented graph which admits a good QRy-arc-coloring. Let G bethe
= phtd

graph obtained from G by giving to every arc its opposite direction. Then, G admits a good QR7-

arc-coloring.

Proof : Let f be a goodQR;-arc-coloring ofG. Consider the colorind’ : V(QRy) — A(E) defined
by f'(v) = 6— f (V).

It is easy to see that for every aim € A(QR;), we havexy € A(QRy) for x=6—vandy = 6— u.
Moreover, the two incident arcs to a 2-source (or a 2-sink)get the same color by’ since they got
the same color by. O

Therefore, when considering oriented goQRz-arc-coloring of an oriented grapB, we may
assume that one arc & has a given orientation.
The following remark will be extensively used in the followjilemmas :

Remark 7 LetG be a graph with no special cycle aAd- A(G) be an arc set. If the graghl = G\ A
contains a special cyclg, then at least one of the vertices incidenftis a 2-source or a 2-sink i@’
and belongs t& (C), since otherwis€ would be a special cycle i6.



Lemma 8 The graph H is connected.

Proof : Suppose that = H; W H> (disjoint union). We havél; < H andH, < H. The graphdd; and
H, contain no special cycle and then, by minimalitytbfH; andH, admits goodQR;-arc-colorings
f1 and f, respectively that can easily be extended to a g@Bg-arc-coloringf = fyU f of H. O

Lemma 9 The graph H contains no 3-source and no 3-sink.

Proof : By Proposition 6, we just have to consider the 3-source.chstu be a 3-source il and
H’ be the graph obtained frokt by splitting u into three 1-verticesiy, Uy, us. We haveH’ < H since
n2(H") = nz(H) — 1. Any goodQRy-arc-coloring ofH’ is clearly a goodQR7-arc-coloring ofH. O

Lemma 10 The graph H contains no 1-vertex.

Proof : Letu; be a 1-vertex iH, v be its neighbor antlly (v) = {u;,1 < i < dy(v)}. By Proposition
6, we may assumi Vv € A(H). We consider three subcases.

1. dy (V) =1.
By Lemma 8H = u;v and obviouslyH admits a goodQR;-arc-coloring.
2. dH (V) =2.

LetH" = H\ u;; we haveH’ < H andH’ contains no special cycle by remark 7. By minimality
of H, H” admits a good)R-arc-coloringf that can easily be extendedHb if vis a 2-sink, we
setf(Upv) = f(UV); otherwise, we have three available colors fou;V) by Property(P;)

3. dH(V) =3.
LetH’ =H\ u;; we haveH’ < H.

If H’ contains no special cycle then, by minimalitytdf H’ admits a goodR;-arc-coloring f
such thatC{ (v)| < 1. The coloringf can then be extended kb since we have three available
colors to setf (UyV) by property(Py).

If H" contains a special cyclg, ve C andv is a 2-source irH’ by Remark 7 and Lemma
9. We may assume w.l.o.g. thaf is a 2-sink by Remark 3. Létly(uz) = {v,x} andH” =

H\ {Vu3,0;v}. We haveH” < H andH” contains no special cycle by Remark 7. By minimality
of H, H” admits a goo@Ry-arc-coloringf that can be extended k: we setf (Viz) = f(xU3),
and we have at least one available color fou;V) by Property(Ps).

|

Recall that éridge in a graphG is an edge whose removal increases the number of components
of G.

Lemma 11 The graph H contains no bridge.

Proof : Suppose thatl contains a bridgev. LetH \ uv=H;wWH,. Fori = 1,2, consideH/ = H; +uv.

By Lemma 10,uv is not a dangling arc itd. MoreoverH; < H for i = 1,2. Clearly, the graphbi;
andHj have no special cycle and therefore, by minimality-Hofthey admit goodQR;-arc-colorings

f1 and f, respectively. By cyclically permuting the colors &f if necessary, we may assume that
f1(uv) = f2(uv). The mappingf = f1 U f; is then clearly a goo@R;-arc-coloring ofH. O
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Figure 3: Configurations of Lemma 14

Lemma 12 The graph H contains no 2-sink adjacent to a 2-source.

Proof : Suppose that contains a 2-sink adjacent to a 2-sourcg. LetN(v) = {u,w} andN(w) =
{v,x}. SinceH contains no special cycle,andx are distinct vertices ankli ¢ A(H).

Let H' be the graph obtained from \ {v,w} by addingux (if it did not already belong té\(H)).
We haveH’ < H sinceny(H’) < ny(H) — 2. Since the vertices andx are neither 3-sources nor 3-
sinks inH by Lemma 9, they are neither 2-sources nor 2-sinkd’iand therefore, by Remark A/
contains no special cycle. Hence, by minimalityHbfH’ admits a goodR;-arc-coloringf’ that can
be extended tél by settingf (v) = f (W) = f(wx) = f(UX). O

Lemma 13 Every 2-source (resp. 2-sink) of H isadjacent to a vertex vwithd* (v) = 2 (resp. d~ (v) =
2).

Proof : Suppose thal contains a 2-source adjacent to two verticeg andw such thatd™ (v) # 2
andd*(w) # 2 (by Proposition 6, it is enough to consider this case). H'et H \ u; by hypothesis
and by Lemmas 9 and 12, the vertiseandw are such thatl}, (v) = d;, (v) = di}, (w) = dg, (w) = 1.
Therefore, the graphl’ contains no special cycle by Remark 7. By minimalitytdf H admits a
good QR;-arc-coloring f that can be extended té in such a way thaf (Ut;) = f(Uu3) thanks to
Property(P,). O

Recall that we denote b§S;(C) the set of 2-sources and 2-sinks of the cyClia G.

Lemma 14 Let u be a vertex of H and H' = H \ u. Then H’ does not contain a special cycle C with

Nt (W) NSS4/ (C)| = 1.

Proof : Let v; € N(u) and w.l.0.g., suppose th&t’ = H \ u contains a special cyclé such that
Nu (U)NSSy (C) = {v1}; by Remark 7y; is a 2-source or a 2-sink id’ and by Proposition 6 we may
assume w.l.0.g. tha is a 2-source.

By Remark 3y, is adjacent to a 2-sink. By Lemma 12, the only pair of adjacent 2-source and
2-sink inH’ is vy, v,. Therefore, we have 8 [C| < 4. LetV(C) = {v1,V2,V3,V4} andvs = v, if |C| = 3.
Moreovervs andv, are necessarily two transitives verticesCofFurthermore, we havgrz € A(H) by
Lemma 13 andiv; € A(H) by Lemma 9. Then, we have only two possible configurationpijctied
in Figure 3.



e If |C| = 3 (see Figure 3(a)), considet, = H \ vivz. This graph contains no special cycle by
Remark 7 and we havd; < H. By minimality of H, H; admits a goodQR-arc-coloring f
that can be extended td: we first erase (V1v3); then, we can set(vivz) = f(Vav3) thanks to
Property(P,) and then we have one avalaible color fgw1v3) by Property(P,) sincef (Uv;) #
f(Vav3).

e If |C| =4 (see Figure 3(b)), consider the gragh=H \ vo. We haveH; < H.

— If H; contains no special cycle, by minimality bf, H; admits a good)R;-arc-coloring
f that can be extended t in such a way thaf (Vav;) = f (V1V3) thanks to PropertyP,)
sincef (Vav3) = f(yW3).

— Suppose now thatl; contains a special cycle’. By Remark 73 belong toC’ and by
Remark 3,y is a 2-sink. By Lemma 12, the only pair of adjacent 2-sourcg 24sink
in H" is v3,y, and thereforeC’| is a special cycle of length 3 or 4. Suppose first that
{u,v1,vs,v3,y} C V(C'); we thus haves =y, that is a contradiction since by hypothesis
NH (U) NSS4/ (C) = {va} # {va,v3}.
ThereforeV (C') = {y,vs,V4,2}, and therzv; € A(H). If |C'| = 3, we havey = zand in
this case, the grapH contains a bridgev; that is forbidden by Lemma 11. Therefore,
we havelC'| = 4 andzis a transitive vertex o’
Consider in this case the grap§ = H \ v4. This graph contains no special cycle since the
verticesvy andvs are two transitive 2-vertices oriented in opposite diwi We have
H; < H and therefore, by minimality dfl, there exists a goo@R;-arc-coloringf of Hj
such thaCy (v1) = {¢1},C; (v2) = {c2} andC{ (y) = C; (2) = {cs}. The mappingf can
be extended tél as follows: we can set(V4V3) = c4 ¢ {c1,c3} thanks to PropertyPy).
Then, by PropertyP,), we have one avalaible color fdi(vivs) sincec; # ¢4 and one
avalaible color forf (2v) sincecs # cs.

Lemma 15 The graph H does not contain two adjacent 2-vertices.

Proof : Suppose thatl contains two adjacent 2-verticesindw. LetN(v) = {u,w} andN(w) = {v,x}
andH’ = H \v. By Lemma Remark 7 and 1#{ contains no special cycle. We haiMé < H and by
minimality of H, H” admits a goodR;-arc-coloringf.

We shall consider two cases depending on the orientatioheoftcs incident tow and w (by
Proposition 6, we may assume thatc A(H)).

1. vis a 2-sink andv is a transitive vertex.
By Lemma 12,u is not a 2-source . We have|C; (u)| < 1 and then, we can sé{iv) =

f (Wv) thanks to PropertyPs).

2. vandw are transitive vertices.
By the previous casey is not a 2-source. We hay€; (u)| < 1. Thanks to PropertyP;), we
can setf (V) # f(Wx) and finally, we have one available color fbfw) by Property(P,) since
f(av) # f(WX).
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Figure 4: Configurations of Lemma 16

Lemma 16 The graph H contains no 2-vertex.

Proof : Suppose thaH contains a 2-vertex and letN(u) = {us,uz}. The verticesu; andu, are
3-vertices by Lemma 15. By Proposition 6, we may assume.g.ltbattu; € A(H). LetH] =H \ u;
we haveH; < H.

If H; contains no special cycle, then by minimality léf H; admits a goodQR;-arc-coloring
f of H] that can be extended td as follows. Ifuis a 2-source , we can sé{uu;) = f(Utp)
thanks to PropertyP,) since|C{ (u1)| < 1 and|C{ (wp)| < 1. If uis a transitive vertex, we can
set f(UUty) ¢ C; (uz) thanks to PropertyP;) and then we have one available color fioitizU) by
Property(P,).

Suppose now thatl; contains a special cycle. By Lemma 14,u; andu, belongs toC and at
least one of them is a 2-source or a 2-sink.

Suppose first that; is a 2-source it andus is neither a 2-source nor a 2-sinkHtj. Then, since
H contains no adjacent 2-vertices by Lemma 15, we have ondethossible configurations depicted
in Figures 4(a), 4(b) and 4(c).

Clearly, the configuration of Figure 4(a) admits a g@@i,-arc-coloring. The white vertex of the
configuration of Figure 4(b) is a 3-vertex by Lemma 15, buhis tase, the graph contains a bridge,
that is forbidden by Lemma 11. The white vertex of the configjon of Figure 4(c) is of degree two
by Lemma 11 and this configuration clearly admits a gQ&4-arc-coloring.

Therefore,u; anduy are either 2-sources or 2-sinks lf{. In this case, sincél contains no
adjacent 2-vertices by Lemma 15, we have only three possilsiigurations depicted in Figure 4(d),
4(e) and 4(f).

e Figure 4(d): by Lemma 9, we haweu,uu; € A(H). Consider the graphl) = H \ UzUz; H}
contains no special cycle. Siné#, < H, by minimality of H, H5 admits a goodQR-arc-
coloring f that can be extended kb thanks to PropertyP,) sincef (UzU) # f(Uuy).

e Figure 4(e): by Lemma 9, we hawgu,uu; € A(H). By Lemma 15,uy is a 3-vertex. If
d~(u4) = 2, this configuration is forbidden by Lemma 13.dif (u4) = 2, this configuration is
also forbidden by Lemma 13.



e Figure 4(f): by Lemma 9, we havau;,ut; € A(H). Therefore, by Lemma 13~ (ug) = 2.
ConsiderH; = H \ UpUz; clearly,H; contains no special cycle. By minimality f, H; admits
a goodQRy-arc-coloring that can be extended Hobas follows. We first erasé (Uus) and
f (UsU3); then, thanks to PropertyP;), we can seff (UpU3) = f(UsU3). Finally, sincef (Uu3) #
f(ususz), we can extend to a goodQRy-arc-coloring ofH thanks to PropertyP,).

\ Vi Vi Vo
7l S
u u u u
@) (b) (c) (d)

Figure 5: Configurations of Lemma 17

Lemma 17 The graph H contains no 3-vertex.

Proof : By Lemmas 10 and 164 is a 3-regular graph. Let be a vertex oH with neighborsuz, u,
anduz. By Lemma 9,u is neither a 3-source nor a 3-sink and therefore, by Prapogi, we may
assume w.l.o.g. that™ (u) > d~(u). LetUpU, Uz, Uuz € A(H).

If H{ = H \ u contains no special cycle, by minimality bf, H; admits a goo@QR;-arc-coloringf
that can be extended t as follows. We can set(U;U) ¢ C; (uz) UC] (ug) thanks to PropertyP; ).
Then, thanks to Property,), we can extend to a goodQRy-arc-coloring ofH.

Suppose now thatl; contains a special cycle. The graptH; contains three 2-vertices. Since a
special cycle consists kpairs of 2-sources and 2-sinkdcontains only one pair of adjacent 2-source
and 2-sink (w.l.o.g.u; andu, respectively). Therefore, we have only four possible camégons
depicted in Figure 5.

Clearly, the configuration of Figure 5(a) admits a gd@@R;-arc-coloring. The white vertex of
the configuration of Figure 5(c) is a 2-vertex by Lemma 11 dnsl €asy to check that there exits a
goodQRy-arc-coloring of this graph. Consider now the configuragiohFigures 5(b) and 5(d) and let
Hj =H \ UzUz. We haveH} < H and clearlyH} contains no special cycle. Therefore, by minimality
of H, Hj admits a goo®R;-arc-coloingf that can be extended kb thanks to PropertyP,) since for
any orientation oH, C; (u1) NCy{ (u2) = 0. O

Proof of Theorem 2:

By Lemmas 10, 16 and 17, a minimal counter-example to The&rdoes not exist.

We now say that &Ry-arc-coloringf of an oriented subcubic graghis quasi-good if and only
if for every 2-sourcey, |C{ (u)| = 1.

Note that if a subcubic graph admits a quasi-g@iRi-arc-coloring f, we have|C{ (v)| < 1 for
every=2-vertexv of G.

We shall then prove Theorem 2 by showing that every subcuiajechgadmits a quasi-godgR7-
arc-coloring.
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Let H be a minimal counter-example to Theorem 2.

If H contains no special cycle, by TheoremH,admits a goodQRz-arc-coloring which is a
quasi-goodQRz-arc-coloring.

Suppose now thatl contains at least one special cycle. By definition, a spasicle contains
at least one 2-source. We inductively define a sequence phgidy,Hs,...,H, for n> 0, and a
sequence of verticag, Uz, ..., Uy_1 Such that:

e Ho=H;

e Hj contains a special cycle, and thus a 2-sowrder 0 <i < n;
e Hip=H\uyfor0O<i<n

e H, has no special cycle.

By Theorem 5,H,, admits a goodQRy-arc-coloring, and therefore a quasi-goQ&;-arc-coloring.
Suppose thaH; 1 admits a quasi-goo@Ry-arc-coloring fi.1 for 1 <i < n; we claim that we can
extendfi; to a quasi-goodR;-arc-coloringf; of H; as follows. To see that, l& andw; be the two
neighbors ol which are=2-vertices inHi ;. Therefore, we haviCy  (vi)| <1 and|Cy (wi)] <1
and thanks to Propert{P,), we can seff;(GiV;) = f;(GW).

Therefore, any quasi-god@dR;-arc-coloring ofH,, can be extended tdg = H, that is a contradic-

tion. A minimal counter-example to Theorem 2 does not etistt, completes the proof. O
u )
z W
y X

Figure 6: Cubic graplks with x;,(G) =6

Currently, we cannot provide an oriented subcubic graph witented chromatic index 7. How-
ever, the oriented cubic graghdepicted in Figure 6 has oriented chromatic index 6.

Suppose we want to col@® with five colors 12,3,4,5. Necessarily the colors W, Xy andzi are
pairwise distinct and we may assume w.l.0.g. thaiw) = 1, f(Xy) = 2 andf(Z) = 3. Clearly, each
of the colors 4 and 5 will appear at most oncetmnwx andyz. Therefore, w.l.0.g. we may assume
that f (yz) = 1, which implies w.l.0.g. that we must sétux) = 4. Thus, we must set(yw) = 5, and
then we have no remaining color to colbfwz).

Therefore, we have the following:

Proposition 18 Let € be the class of subcubic graphs. Then 6 < x4(€) < 7.
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