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A homomorphism from an oriented graph G to an oriented graph H is a mapping ϕ from the set of vertices of G to the set of vertices of

The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (Recall that LD(G) is given by V (LD(G)) = A(G) and -→ ab ∈ A(LD(G)) whenever a = -→ uv and b = -→ vw). We prove that every oriented subcubic graph has oriented chromatic index at most 7 and construct a subcubic graph with oriented chromatic index 6.

Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite arcs. For an oriented graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs.

In [START_REF] Courcelle | The monadic second order-logic of graphs VI : on several representations of graphs by relationnal stuctures[END_REF], Courcelle introduced the notion of vertex-coloring of oriented graphs as follows: an oriented k-vertex-coloring of an oriented graph G is a mapping ϕ from V (G) to a set of k colors such that (i) ϕ(u) = ϕ(v) whenever -→ uv is an arc in G, and (ii) ϕ(u) = ϕ(x) whenever -→ uv and -→ wx are two arcs in G with ϕ(v) = ϕ(w). The oriented chromatic number of an oriented graph G, denoted by χ o (G), is defined as the smallest k such that G admits an oriented k-vertex-coloring.

Let H and H ′ be two oriented graphs. A homomorphism from H to H ′ is a mapping ϕ from V (H) to V (H ′ ) that preserves the arcs:

-----→ ϕ(u)ϕ(v) ∈ A(H ′ ) whenever -→ uv ∈ A(H). An oriented k-vertexcoloring of G can be equivalently defined as a homomorphism ϕ from G to H, where H is an oriented graph of order k. The existence of such a homomorphism from G to H is denoted by G → H. The graph H will be called color-graph and its vertices will be called colors, and we will say that G is H-colorable. The oriented chromatic number can be then equivalently defined as the smallest order of an oriented graph H such that G → H. Oriented vertex-colorings have been studied by several authors in the last past years (see e.g. [START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF][START_REF] Kostochka | Acyclic and oriented chromatic numbers of graphs[END_REF][START_REF] Sopena | Oriented graph coloring[END_REF] or [START_REF] Wood | Acyclic, star and oriented colourings of graph subdivisions[END_REF] for an overview).

One can define oriented arc-colorings of oriented graphs in a natural way by saying that, as in the undirected case, an oriented arc-coloring of an oriented graph G is an oriented vertex-coloring of the line digraph LD(G) of G (Recall that LD(G) is given by V (LD(G)) = A(G) and -→ ab ∈ A(LD(G)) whenever a = -→ uv and b = -→ vw). We will say that an oriented graph G is H-arc-colorable if there exists a homomorphism ϕ from LD(G) to H and ϕ is then an H-arc-coloring or simply an arc-coloring of G. Therefore, an oriented arc-coloring ϕ of G must satisfy (i) ϕ( -→ uv) = ϕ( -→ vw) whenever -→ uv and -→ vw are two consecutive arcs in G, and

(ii) ϕ( -→ vw) = ϕ( -→ xy) whenever -→ uv, -→ vw, -→ xy, -→ yz ∈ A(G) with ϕ( -→ uv) = ϕ( -→ yz). The oriented chromatic index of G, denoted by χ ′ o (G)
, is defined as the smallest order of an oriented graph H such that LD(G) → H.

The notion of oriented chromatic index can be extended to undirected graphs as follows. The oriented chromatic index χ ′ o (G) of an undirected graph G is the maximum of the oriented chromatic indexes taken over all the orientations of G (an orientation of an undirected graph G is obtained by giving one of the two possible orientations to every edge of G).

In this paper, we are interested in oriented arc-coloring of subcubic graphs, that is graphs with maximum degree at most 3.

Oriented vertex-coloring of subcubic graphs has been first studied in [START_REF] Sopena | The chromatic number of oriented graphs[END_REF] where it was proved that every oriented subcubic graph admits an oriented 16-vertex-coloring. In 1996, Sopena and Vignal improved this result:

Theorem 1 [START_REF] Sopena | A note on the chromatic number of graphs with maximum degree three[END_REF] Every oriented subcubic graph admits an oriented 11-vertex-coloring.

It is not difficult to see that every oriented graph having an oriented k-vertex-coloring admits a k-arc-coloring (from a k-vertex-coloring f , we obtain a k-arc-coloring g by setting g( -→ uv) = f (u) for every arc -→ uv). Therefore, every oriented subcubic graph admits an oriented 11-arc-coloring.

We improve this bound and prove the following Theorem 2 Every oriented subcubic graph admits a 7-arc-coloring.

More precisely, we shall show that every oriented subcubic graph admits a homomorphism to QR 7 , a tournament on 7 vertices described in section 3.

Note that Sopena conjectured that every oriented connected subcubic graph admits an oriented 7-vertex-coloring [START_REF] Sopena | The chromatic number of oriented graphs[END_REF]. This paper is organised as follows. In the next section, we introduce the main definitions and notation. In section 3, we described the tournament QR 7 and give some properties of this graph. Finally, Section 4 is dedicated to the proof of Theorem 2.

Definitions and notation

In the rest of the paper, oriented graphs will be simply called graphs. For a graph G and a vertex v of G, we denote by d - G (v) the indegree of v, by d + G (v) its outdegree and by d G (v) its degree. A vertex of degree k (resp. at most k, at least k) will be called a k-vertex (resp. ≤ k-vertex, ≥ k-vertex). A source vertex (or simply a source) is a vertex v with d -(v) = 0 and a sink vertex (or simply a sink) is a vertex v with d + (v) = 0. A source (resp. sink) of degree k will be called a k-source (resp. a k-sink).

We denote by N + G (v), N - G (v) and N G (v) respectively the set of successors of v, the set of predecessors of v and the set of neighbors of v in G. The maximum degree and minimum degree of a graph G are respectively denoted by ∆(G) and δ(G).

We denote by -→ uv the arc from u to v or simply uv whenever its orientation is not relevant (therefore uv = -→ uv or uv = -→ vu).

For a graph G and a vertex v of V (G), we denote by G \ v the graph obtained from G by removing v together with the set of its incident arcs; similarly, for an arc a of A(G), G \ a denotes the graph obtained from G by removing a. These two notions are extended to sets in a standard way: for a set of vertices V ′ , G \V ′ denotes the graph obtained from G by successively removing all vertices of V ′ and their incident arcs, and for a set of arcs A ′ , G \ A ′ denotes the graph obtained from G by removing all arcs of A ′ .

The drawing conventions for a configuration are the following: a vertex whose neighbors are totally specified will be black (i.e. vertex of fixed degree), whereas a vertex whose neighbors are partially specified will be white. Moreover, an edge will represent an arc with any of its two possible orientations.

3 Some properties of the tournament QR 7 For a prime p ≡ 3 (mod 4), the Paley tournament QR p is defined as the oriented graph whose vertices are the integers modulo p and such that -→ uv is an arc if and only if vu is a non-zero quadratic residue of p.

For instance, let us consider the tournament QR 7 with V (QR 7 ) = {0, 1, . . . , 6} and -→ uv ∈ A(QR 7 ) whenever vu ≡ r (mod 7) for r ∈ {1, 2, 4}.

This graph has the two following useful properties [START_REF] Borodin | On the maximum average degree and the oriented chromatic number of a graph[END_REF]:

(P 1 )
Every vertex of QR 7 has three successors and three predecessors.

(P 2 ) For every two distinct vertices u and v, there exists four vertices w 1 , w 2 , w 3 and w 4 such that:

• --→ uw 1 ∈ A(QR 7 ) and -→ vw 1 ∈ A(QR 7 ); • --→ uw 2 ∈ A(QR 7 ) and -→ w 2 v ∈ A(QR 7 ); • --→ w 3 u ∈ A(QR 7 ) and -→ w 3 v ∈ A(QR 7 ); • --→ w 4 u ∈ A(QR 7 ) and -→ vw 4 ∈ A(QR 7 ).

Proof of Theorem 2

Let G be an oriented subcubic graph and C be a cycle in

G (C is a subgraph of G). A vertex u of C is a transitive vertex of C if d + C (u) = d - C (u) = 1 (therefore 2 ≤ d G (u) ≤ 3). A cycle C in G is a special cycle if

and only if:

(1) every non-transitive vertex of C is a 2-source or a 2-sink in G;

(2) C has either exactly 1 transitive vertex or exactly 2 transitive vertices, and in this case, both transitive vertices have the same orientation on C.
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Figure 1: Two special cycles

Figure 1 shows two special cycles; the first one has exactly 1 transitive vertex while the second has exactly 2 transitive vertices oriented in the same direction. Vertices s i , s ′ j and t k are respectively the sinks, sources, and transitive vertices of the special cycles.

Remark 3 Every 2-source (resp. 2-sink) in a special cycle C is necessarily adjacent to a 2-sink (resp. 2-source). This directly follows from the fact that C does not contain two transitive vertices oriented in opposite direction.

We shall denote by SS G (C) the set of 2-sources and 2-sinks of the cycle C in G.
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Figure 2: Graphs with a special cycle Remark 4 Note that a special cycle may only be connected to the rest of the graph by its transitive vertices (see Figure 2 for an example).

A QR 7 -arc-coloring f of an oriented subcubic graph G is good if and only if :

• for every 2-source u, |C + f (u)| = 1, • for every 2-sink v, |C - f (v)| = 1.
Note that if a subcubic graph G admits a good QR 7 -arc-coloring, then for every 2-vertex v of G,

|C + f (v)| ≤ 1 and |C - f (v)| ≤ 1.
We first prove the following: Theorem 5 Every oriented subcubic graph with no special cycle admits a good QR 7 -arc-coloring.

We define a partial order ≺ on the set of all graphs. Let n 2 (G) be the number of ≥ 2-vertices of G. For any two graphs G 1 and G 2 , G 1 ≺ G 2 if and only if at least one of the following conditions holds:

• G 1 is a proper subgraph of G 2 ; • n 2 (G 1 ) < n 2 (G 2 ).
Note that this partial order is well-defined, since if

G 1 is a proper subgraph of G 2 , then n 2 (G 1 ) ≤ n 2 (G 2 ).
The partial order ≺ is thus a partial linear extension of the subgraph poset.

In the rest of this section, let H a be counter-example to Theorem 5 which is minimal with respect to ≺.

We shall show in the following lemmas that H does not contain some configurations. In all the proofs which follow, we shall proceed similarly. We suppose that H contains some configurations and, for each of them, we consider a reduction H ′ of H with no special cycle such that H ′ ≺ H. Therefore, due to the minimality of H, there exists a good QR 7 -arc-coloring f of H ′ . The coloring f is a partial good QR 7 -arc-coloring of H, that is an arc-coloring of some subset S of A(H) and we show how to extend it to a good QR 7 -arc-coloring of H. This proves that H cannot contain such configurations.

We will extensively use the following proposition:

Proposition 6 Let

-→ G be an oriented graph which admits a good QR 7 -arc-coloring. Let ← -G be the graph obtained from -→ G by giving to every arc its opposite direction. Then, ← -G admits a good QR 7arc-coloring.

Proof : Let f be a good QR 7 -arc-coloring of -→ G . Consider the coloring f ′ : V (QR 7 ) → A( ← - G ) defined by f ′ ( -→ uv) = 6 -f ( -→ vu).
It is easy to see that for every arc -→ uv ∈ A(QR 7 ), we have -→ xy ∈ A(QR 7 ) for x = 6v and y = 6u. Moreover, the two incident arcs to a 2-source (or a 2-sink) will get the same color by f ′ since they got the same color by f . 2

Therefore, when considering oriented good QR 7 -arc-coloring of an oriented graph G, we may assume that one arc in G has a given orientation.

The following remark will be extensively used in the following lemmas :

Remark 7 Let G be a graph with no special cycle and A ⊆ A(G) be an arc set. If the graph G ′ = G \ A contains a special cycle C, then at least one of the vertices incident to A is a 2-source or a 2-sink in G ′ and belongs to V (C), since otherwise C would be a special cycle in G.

Lemma 8

The graph H is connected. 

Proof : Suppose that H = H 1 ⊎ H 2 (disjoint
(v) = {u i , 1 ≤ i ≤ d H (v)}.
By Proposition 6, we may assume -→ u 1 v ∈ A(H). We consider three subcases.

1. d H (v) = 1.
By Lemma 8, H = -→ u 1 v and obviously, H admits a good QR 7 -arc-coloring.

d H

(v) = 2.
Let H ′ = H \ u 1 ; we have H ′ ≺ H and H ′ contains no special cycle by remark 7. By minimality of H, H ′ admits a good QR 7 -arc-coloring f that can easily be extended to 

H: if v is a 2-sink, we set f ( -→ u 1 v) = f ( -→ u 2 v);
set f ( -→ vu 2 ) = f ( -→ xu 2
), and we have at least one available color for f ( -→ u 1 v) by Property (P 2 ).

2

Recall that a bridge in a graph G is an edge whose removal increases the number of components of G.

Lemma 11

The graph H contains no bridge.

Proof : Suppose that H contains a bridge uv. Let H \uv = H 1 ⊎ H 2 . For i = 1, 2, consider H ′ i = H i + uv. By Lemma 10, uv is not a dangling arc in H. Moreover H ′ i ≺ H for i = 1, 2.
Clearly, the graphs H ′ 1 and H ′ 2 have no special cycle and therefore, by minimality of H, they admit good QR 7 -arc-colorings f 1 and f 2 respectively. By cyclically permuting the colors of f 2 if necessary, we may assume that

f 1 (uv) = f 2 (uv). The mapping f = f 1 ∪ f 2 is then clearly a good QR 7 -arc-coloring of H. 2 y w v 3 = v 4 x v 2 v 1 u (a) z w x v 2 v 1 y v 4 v 3 u (b)
Figure 3: Configurations of Lemma 14

Lemma 12

The graph H contains no 2-sink adjacent to a 2-source.

Proof : Suppose that H contains a 2-sink v adjacent to a 2-source w. Let N(v) = {u, w} and N(w) = {v, x}. Since H contains no special cycle, u and x are distinct vertices and -→ xu / ∈ A(H). Let H ′ be the graph obtained from H \ {v, w} by adding -→ ux (if it did not already belong to A(H)).

We have

H ′ ≺ H since n 2 (H ′ ) ≤ n 2 (H) -2.
Since the vertices u and x are neither 3-sources nor 3sinks in H by Lemma 9, they are neither 2-sources nor 2-sinks in H ′ and therefore, by Remark 7, H ′ contains no special cycle. Hence, by minimality of H, H ′ admits a good QR 7 -arc-coloring f ′ that can be extended to H by setting f 

( -→ uv) = f ( -→ wv) = f ( -→ wx) = f ( -→ ux).
′ is v 1 , v 2 . Therefore, we have 3 ≤ |C| ≤ 4. Let V (C) = {v 1 , v 2 , v 3 , v 4 } and v 3 = v 4 if |C| = 3.
Moreover v 3 and v 4 are necessarily two transitives vertices of C. Furthermore, we have -→ yv 3 ∈ A(H) by Lemma 13 and -→ uv 1 ∈ A(H) by Lemma 9. Then, we have only two possible configurations, depicted in Figure 3. 

• If |C| = 3 (see Figure 3(a)), consider H ′ 1 = H \ --→ v 1 v 2 .
( --→ v 1 v 3 ); then, we can set f ( --→ v 1 v 2 ) = f ( --→ v 3 v 2 )
thanks to Property (P 2 ) and then we have one avalaible color for f ( --→

v 1 v 3 ) by Property (P 2 ) since f ( -→ uv 1 ) = f ( --→ v 3 v 2 ). • If |C| = 4 (see Figure 3(b)), consider the graph H ′ 2 = H \ v 2 . We have H ′ 2 ≺ H.
-If H ′ 2 contains no special cycle, by minimality of H, H ′ 2 admits a good QR 7 -arc-coloring f that can be extended to H in such a way that f

( --→ v 3 v 2 ) = f ( --→ v 1 v 2 ) thanks to Property (P 2 ) since f ( --→ v 4 v 3 ) = f ( -→ yv 3 ).
-Suppose now that H ′ 2 contains a special cycle C ′ . By Remark 7, v 3 belong to C ′ and by Remark 3, y is a 2-sink. By Lemma 12, the only pair of adjacent 2-source and 2-sink in H ′ is v 3 , y, and therefore |C ′ | is a special cycle of length 3 or 4. Suppose first that {u, v 1 , v 4 , v 3 , y} ⊆ V (C ′ ); we thus have u = y, that is a contradiction since by hypothesis Proof : Suppose that H contains two adjacent 2-vertices v and w. Let N(v) = {u, w} and N(w) = {v, x} and H ′ = H \ v. By Lemma Remark 7 and 14, H contains no special cycle. We have H ′ ≺ H and by minimality of H, H ′ admits a good QR 7 -arc-coloring f . We shall consider two cases depending on the orientation of the arcs incident to v and w (by Proposition 6, we may assume that -→ uv ∈ A(H)).

N H (u) ∩ SS H ′ (C) = {v 1 } = {v 1 , v 3 }. Therefore V (C ′ ) = {y, v 3 , v 4 ,
1. v is a 2-sink and w is a transitive vertex.

By Lemma 12, u is not a 2-source in H. We have |C - f (u)| ≤ 1 and then, we can set f ( -→ uv) = f ( -→ wv) thanks to Property (P 2 ).

2. v and w are transitive vertices. By the previous case, u is not a 2-source. We have |C - f (u)| ≤ 1. Thanks to Property (P 1 ), we can set f ( -→ uv) = f ( -→ wx) and finally, we have one available color for f ( -→ vw) by Property (P 2 ) since f ( -→ uv) = f ( -→ wx).

2

2 Lemma 15

 215 z}, and then -→ zv 4 ∈ A(H). If |C ′ | = 3, we have y = z and in this case, the graph H contains a bridge -→ uv 1 that is forbidden by Lemma 11. Therefore, we have |C ′ | = 4 and z is a transitive vertex of C ′ . Consider in this case the graph H ′ 3 = H \ v 4 . This graph contains no special cycle since the vertices v 1 and v 3 are two transitive 2-vertices oriented in opposite directions. We have H ′ 3 ≺ H and therefore, by minimality of H, there exists a good QR 7-arc-coloring f of H ′ 3 such that C - f (v 1 ) = {c 1 },C - f (v 2 ) = {c 2 } and C + f (y) = C - f (z) = {c 3 }.The mapping f can be extended to H as follows: we can set f ( --→ v 4 v 3 ) = c 4 / ∈ {c 1 , c 3 } thanks to Property (P 1 ). Then, by Property (P 2 ), we have one avalaible color for f ( --→ v 1 v 4 ) since c 1 = c 4 and one avalaible color for f ( -→ zv 4 ) since c 3 = c 4 . The graph H does not contain two adjacent 2-vertices.

  union). We have H 1 ≺ H and H 2 ≺ H. The graphs H 1 and H 2 contain no special cycle and then, by minimality of H, H 1 and H 2 admits good QR 7 -arc-colorings f 1 and f 2 respectively that can easily be extended to a good QR 7 -arc-coloring f = f 1 ∪ f 2 of H. 2 Proof : By Proposition 6, we just have to consider the 3-source case. Let u be a 3-source in H and H ′ be the graph obtained from H by splitting u into three 1-vertices u 1 , u 2 , u 3 . We have H ′ ≺ H since n 2 (H ′ ) = n 2 (H) -1. Any good QR 7 -arc-coloring of H ′ is clearly a good QR 7 -arc-coloring of H. 2

	Lemma 9 The graph H contains no 3-source and no 3-sink.
	Lemma 10 The graph H contains no 1-vertex.

Proof : Let u 1 be a 1-vertex in H, v be its neighbor and N H

  We have H ′′ ≺ H and H ′′ contains no special cycle by Remark 7. By minimality of H, H ′′ admits a good QR 7 -arc-coloring f that can be extended to H: we

otherwise, we have three available colors for f ( -→ u 1 v) by Property (P 1 )

3. d H (v) = 3. Let H ′ = H \ u 1 ; we have H ′ ≺ H.

If H ′ contains no special cycle then, by minimality of H, H ′ admits a good QR 7 -arc-coloring f such that |C + f (v)| ≤ 1. The coloring f can then be extended to H since we have three available colors to set f ( -→ u 1 v) by property (P 1 ).

If H ′ contains a special cycle C, v ∈ C

and v is a 2-source in H ′ by Remark 7 and Lemma 9. We may assume w.l.o.g. that u 2 is a 2-sink by Remark 3. Let N H (u 2 ) = {v, x} and H ′′ = H \ { -→ vu 2 , -→ u 1 v}.

  2Proof : Suppose that H contains a 2-source u adjacent to two vertices v and w such that d + (v) = 2 and d + (w) = 2 (by Proposition 6, it is enough to consider this case). Let H ′ = H \ u; by hypothesis and by Lemmas 9 and 12, the vertices v and w are such thatd + H ′ (v) = d - H ′ (v) = d + H ′ (w) = d - H ′ (w) = 1.Therefore, the graph H ′ contains no special cycle by Remark 7. By minimality of H, H ′ admits a good QR 7 -arc-coloring f that can be extended to H in such a way that f ( -→ uu 1 ) = f ( -→ uu 2 ) thanks to Property (P 2 ).2Recall that we denote by SS G (C) the set of 2-sources and 2-sinks of the cycle C in G.Lemma 14 Let u be a vertex of H and H′ = H \ u. Then H ′ does not contain a special cycle C with |N H (u) ∩ SS H ′ (C)| = 1. Proof : Let v 1 ∈ N(u)and w.l.o.g., suppose that H ′ = H \ u contains a special cycle C such that N H (u) ∩ SS H ′ (C) = {v 1 }; by Remark 7, v 1 is a 2-source or a 2-sink in H ′ and by Proposition 6 we may assume w.l.o.g. that v 1 is a 2-source. By Remark 3, v 1 is adjacent to a 2-sink v 2 . By Lemma 12, the only pair of adjacent 2-source and 2-sink in H

	Lemma 13 Every 2-source (resp. 2-sink) of H is adjacent to a vertex v with d + (v) = 2 (resp. d -(v) =
	2).

  This graph contains no special cycle by Remark 7 and we have H ′ 1 ≺ H. By minimality of H, H ′ 1 admits a good QR 7 -arc-coloring f that can be extended to H: we first erase f

Clearly, the configuration of Figure 4(a) admits a good QR 7 -arc-coloring. The white vertex of the configuration of Figure 4(b) is a 3-vertex by Lemma 15, but in this case, the graph contains a bridge, that is forbidden by Lemma 11. The white vertex of the configuration of Figure 4(c) is of degree two by Lemma 11 and this configuration clearly admits a good QR 7 -arc-coloring.

Therefore, u 1 and u 2 are either 2-sources or 2-sinks in H ′ 1 . In this case, since H contains no adjacent 2-vertices by Lemma 15, we have only three possible configurations depicted in Figure 4(d), 4(e) and 4(f).

• Figure 4(e): by Lemma 9, we have -→ 

, we can extend f to a good QR 7 -arc-coloring of H thanks to Property (P 2 ). Proof : By Lemmas 10 and 16, H is a 3-regular graph. Let u be a vertex of H with neighbors u 1 , u 2 and u 3 . By Lemma 9, u is neither a 3-source nor a 3-sink and therefore, by Proposition 6, we may assume w.l.o.g. that d

, by minimality of H, H ′ 1 admits a good QR 7 -arc-coloring f that can be extended to H as follows. We can set f ( -→ u 1 u) / ∈ C + f (u 2 ) ∪C + f (u 3 ) thanks to Property (P 1 ). Then, thanks to Property (P 2 ), we can extend f to a good QR 7 -arc-coloring of H.

Suppose now that H ′ 1 contains a special cycle C. The graph H ′ 1 contains three 2-vertices. Since a special cycle consists in k pairs of 2-sources and 2-sinks, C contains only one pair of adjacent 2-source and 2-sink (w.l.o.g. u 1 and u 2 respectively). Therefore, we have only four possible configurations depicted in Figure 5.

Clearly, the configuration of Figure 5(a) admits a good QR 7 -arc-coloring. The white vertex of the configuration of Figure 5(c) is a 2-vertex by Lemma 11 and it is easy to check that there exits a good QR 7 -arc-coloring of this graph. Consider now the configurations of Figures 5(b) and 5(d) and let

We have H ′ 2 ≺ H and clearly, H ′ 2 contains no special cycle. Therefore, by minimality of H, H ′ 2 admits a good QR 7 -arc-coloing f that can be extended to H thanks to Property (P 2 ) since for any orientation of

Proof of Theorem 2 : By Lemmas 10, 16 and 17, a minimal counter-example to Theorem 5 does not exist. We now say that a QR 7 -arc-coloring f of an oriented subcubic graph G is quasi-good if and only if for every 2-source u, |C + f (u)| = 1. Note that if a subcubic graph admits a quasi-good QR 7 -arc-coloring f , we have

We shall then prove Theorem 2 by showing that every subcubic graph admits a quasi-good QR7arc-coloring.

Let H be a minimal counter-example to Theorem 2. If H contains no special cycle, by Theorem 5, H admits a good QR 7 -arc-coloring which is a quasi-good QR 7 -arc-coloring.

Suppose now that H contains at least one special cycle. By definition, a special cycle contains at least one 2-source. We inductively define a sequence of graphs H 0 , H 1 , . . . , H n for n ≥ 0, and a sequence of vertices u 0 , u 1 , . . . , u n-1 such that:

• H i contains a special cycle, and thus a 2-source u i for 0 ≤ i < n;

• H n has no special cycle. By Theorem 5, H n admits a good QR 7 -arc-coloring, and therefore a quasi-good QR 7 -arc-coloring. Suppose that H i+1 admits a quasi-good QR 7 -arc-coloring f i+1 for 1 ≤ i < n; we claim that we can extend f i+1 to a quasi-good QR 7 -arc-coloring f i of H i as follows. To see that, let v i and w i be the two neighbors of u i which are ≤ 2-vertices in H i+1 . Therefore, we have

Therefore, any quasi-good QR 7 -arc-coloring of H n can be extended to H 0 = H, that is a contradiction. A minimal counter-example to Theorem 2 does not exist, that completes the proof. Currently, we cannot provide an oriented subcubic graph with oriented chromatic index 7. However, the oriented cubic graph G depicted in Figure 6 has oriented chromatic index 6.

Suppose we want to color G with five colors 1, 2, 3, 4, 5. Necessarily the colors of -→ vw, -→ xy and -→ zu are pairwise distinct and we may assume w.l.o.g. that f ( -→ vw) = 1, f ( -→ xy) = 2 and f ( -→ zu) = 3. Clearly, each of the colors 4 and 5 will appear at most once on -→ uv, -→ wx and -→ yz. Therefore, w.l.o.g. we may assume that f ( -→ yz) = 1, which implies w.l.o.g. that we must set f ( -→ ux) = 4. Thus, we must set f ( -→ yv) = 5, and then we have no remaining color to color f ( -→ wz).

Therefore, we have the following:

Proposition 18 Let C be the class of subcubic graphs. Then 6 ≤ χ ′ o (C) ≤ 7.