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ABSTRACT
We present a method to detect and visualize evolution patterns in
C++ source code. Our method consists of three steps. First, we ex-
tract an annotated syntax tree (AST) from each version of a given
C++ source code. Next, we hash the extracted syntax nodes based
on a metric combining structure and type information, and con-
struct matches (correspondences) between similar-hash subtrees.
Our technique detects code fragments which have not changed, or
changed little, during the software evolution. By parameterizing
the similarity metric, we can flexibly decide what is considered
to be identical or not during the software evolution. Finally, we
visualize the evolution of the code structure by emphasizing both
changing and constant code patterns. We demonstrate our tech-
nique on a versioned code base containing a variety of changes
ranging from simple to complex.

Categories and Subject Descriptors
I.3.8 [Computer Graphics]: Applications; D.2.8 [Distribution,
Maintenance and Enhancement]: Restructuring, reverse engi-
neering, and reengineering

Keywords
code structure evolution, syntax trees, software visualization

1. INTRODUCTION
Software configuration management (SCM) systems, such as CVS,

Subversion, ClearCase and Perforce, are an important part of the
management of large-scale software development projects. SCM
systems support tasks such as checking in and out different file ver-
sions in a software project, managing parallel development branches,
release scheduling, bug management, and collaborative teamwork.
At the lowest level, a SCM system supports these functions by
maintaining a history ofchangesof the software artifacts. Typi-
cally, these artifacts are source code (text) or binary files, and the
changes are recorded and managed by the SCM system at line or
character (byte) level.
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In the recent years, several tools and techniques emerged to aug-
ment the above basic functionality with more complex features.
These tools can be loosely classified intodata miningtools, which
extract various facts from code repositories, andvisualizationtools,
used to present and navigate both raw data and extracted facts. An
overview of such tools is presented in [17]. Such tools support
a wide range of tasks, such as identifying the developer network,
finding stable software releases, monitoring software quality and
debugging activity, and analyzing the software architecture evolu-
tion. The primary users of such tools are software architects, who
must manage large systems at medium or high abstraction levels,
and are not interested in all the minute code details.

In this paper, we focus on a subset of these activities. We are
interested to understand how the detailed structure of source code
changes during the evolution of a code project consisting of hun-
dreds of source code files, changed by tens of developers over sev-
eral years. Developers are interested to see which parts of the code
changed, and how. At a fine level-of-detail, this can be done by vi-
sualizing the evolution of each code line in one, or a few, files of in-
terest across all versions. Tools such as WinDiff and CVSscan sup-
port this task, using thediff operator of the underlying SCM sys-
tem to tell which lines have been changed, added, or deleted [18].
However useful to see small-scale, minute code changes, this ap-
proach has several limitations. First, one cannot detect and show
more complex code evolution patterns located at coarser levels of
details, such as the moving of a whole code block from one function
or class to another. Second, the line-based code evolution analy-
sis is sensitive to low-level changes such as reformatting, identifier
renaming, expression rewriting, or declaration order change. Such
changes are irrelevant to activities such as code refactoring, rearchi-
tecting, and generally when one works with software source code
at higher levels.

In this paper, we present a set of techniques to detect and visual-
ize structural code evolution patterns for C and C++ code reposito-
ries. We use a C++ parser [13] to extract a full abstract syntax tree
(AST) from every version of every file of interest in the repository.
Next, we augment an existing technique for detecting structurally
similar subtrees in a larger tree to detect structurally similar code
fragments in ASTs corresponding to consecutive versions. At the
core of our technique, we have a user-specified similarity metric
which combines semantic and structural information in order to
tell what is constant and what has changed. Finally, we propose
a visualization method to present the code structure evolution and
emphasize both constant and changing patterns.

This paper is structured as follows. In Section 2, we review
related work on detecting similar (evolving) code patterns. Sec-
tion 3 details our similar code pattern detection method. Section 4
presents our visualization method for code structure evolution. Sec-



tion 5 demonstrates our method on a C++ code base. Section 6
discusses our method. Section 7 concludes the paper and outlines
future work directions.

2. PREVIOUS WORK
Showing constant and changing patterns in evolving code inher-

ently relates to clone detection and clone tracking methods. Given
two files fA andfB , which can be totally unrelated or two ver-
sions of the same filef , clone detection methods find a set of
code patternscA

i ∈ fA which closely resemble a set of patterns
cB

j ∈ fB . Several such methods exist. Baxteret al. extract
abstract syntax trees from the code, determine a hash code from
the entire tree structure, and compare same-hashcode trees using
a bottom-up matching algorithm [6]. Jianget al. compute fixed-
length vector descriptors of syntax tree nodes, recording the num-
ber of occurrences of each node type, and hash similar subtrees
based on the Euclidean distance between vectors [11]. Koschke
et al. use a suffix token tree approach, comparing syntax trees
by serializing the tree node types to strings, thereby combining
the speed of string approaches with the precision of tree-based ap-
proaches [12]. Wahleret al. use an XML-based syntax trees and
database queries to find code clones as frequent item-sets [19].
Ducasseet al. advocate a string-based clone detection, thereby
removing the need for heavyweight parsers [9]. Recently, Ekoko
and Robillard proposed a method to track code clones across sev-
eral versions of a code base, by reusing the SimScan clone detector
atop of a lightweight clone representation combining structural and
lexical clone information [8]. Clone detection methods are also
implemented in widely-used clone detection software, such as the
well-knownCCfindertool.

On a different track, several methods have been proposed to vi-
sualize code evolution patterns, at code line level [18, 13], interme-
diate (group-of-lines) level [1], and file and component level [14,
16].

3. TRACKING SIMILAR CODE
We are interested in detecting code evolution patterns at several

levels of detail, ranging from an identifier and expression up to a
whole function, class, or namespace. In the following, we consider
N versions of a given source code filef1, ..., fN . We proceed as
follows.

For each versionfi, we extract its complete annotated syntax tree
(AST) Ti using agcc-based C++ parser, following the approach
described in [13]. Next, we compare all successive treesTi with
Ti+1 and identify similar subtrees. For this, we extend the method
of Auber et al. to detect structurally similar subtrees [4, 7], by
adding semantic (type and code text) information extracted by our
parser. This allows us to flexibly specify what we consider ’similar’
and/or ’different’ during the code evolution.

Our method consists of two steps. In the first step, we group
all extracted AST nodes into equivalence classes, based on struc-
tural and semantic information (Sec. 3.1, 3.2). Same-class nodes
are likely to be similar, whereas nodes in different classes are not.
In the second step, we construct explicit correspondences between
similar subtrees rooted in the same class (Sec. 3.4). Finally, we
visualize these correspondences (Sec. 4).

3.1 Structural node classification
In the first step, we group AST nodes from version-consecutive

syntax treesTi and Ti+1 into equivalence classes. Same-class
nodes are roots of potentially similar subtrees. In the following,
we shall denote the subtree rooted at nodeu by R(u). We compute

equivalence classes using a distance metricd(u, v) which combines
structural and semantic information fromR(u) andR(v), as fol-
lows.

Following [7], we define the structural distance componentdstr(u, v)
as the difference between three topological invariant, graph-theoretic,
metrics onR(u) andR(v): The number of direct children, or de-
greeδ(u), of u; the sizeν(u) of R(u); and the Strahler number
σ(u) of R(u). The first two metrics are well-known. The Strahler
number is defined as follows

σ(u) =



1, u is a leaf
max1≤i≤k(σ(ui) + i), u hask childrenui

(1)

The Strahler number is used in graph theory to succinctly charac-
terize the topological complexity (e.g. ramification) of a tree or a
DAG. For further details, we refer the reader to the literature [15,
3].

With the above metricsδ, ν andσ, we define the structural dis-
tancedstr(u, v) as

d(u, v) = (δ̃(u)− δ̃(v))2+(ν̃(u)− ν̃(v))2+(σ̃(u)−σ̃(v))2 (2)

whereδ̃ denotes the normalized version of the metricδ, i.e. δ̃(u) =
δ(u)−δmin

δmax−δmin

, whereδmin andδmax are the minimal, respectively
maximal values ofδ over all nodes inTi andTi+1, and similarly
for the metricsν andσ.

3.2 Using type information
The distancedstr(u, v) effectively ’hashes’ structurally similar

subtrees [7, 4]. However, when comparing software code, we want
to consider the code semantics too. Each AST noden has a type
t(n), e.g. declaration, function, assignment,for statement, iden-
tifier, and so on. The C++ grammar our parser uses has approxi-
mately 150 such types. We use these types to enhance the structural
similarity, as follows.

First, it is not meaningful to compare totally unrelated types,e.g.
an arithmetic expressiona+b with, say, a declarationint x, even
though such constructs may have structurally similar ASTs1. We
model this by a second distancedtyp(u, v) which tells the differ-
ence between two node typest(u) andt(v). The simplest way is to
test strict type equality,i.e. usedtyp(u, v) = (t(u) == t(v)).
However, this distance is too strict. Often, one wishes to track
’fuzzier’ patterns over the code evolution,i.e. patterns which are
not exactly the same, but related, syntax types. To do this, we de-
fine several classes of type-equivalenceCi for C++ syntax node
types, based on what one considers to be a change during evolu-
tion. A classCi contains all types considered similar. Hence, the
distancedtyp is:

dtyp(u, v) =



0, t(u) andt(v) are in the same classCi

1, otherwise
(3)

Examples of useful type-equivalence classes are:for,while, and
do statements (if one is interested to track iterative constructs); and
classes, structures, and unions (if one is interested to track aggre-
gate types). Any classes can be defined, depending on what one
considers to be ’the same’ during the code evolution. In the above,
a C++class declaration that changes into astruct, but keeps
the same internal structure, is considered to be the same code. We
do not detail other classes here, as their exact definition depends on
the task at hand, but also on the specific C++ grammar used.

1The ASTs of these constructs are both a tree with two leafs,i.e.
the identifiersa andb for the expressiona+b, and the typeint
and the declaratorx for the declarationint x



The structural distancedstr and type distancedtyp yield our final
distanced(u, v):

d(u, v) = [1 + (w(u) + w(v))dtyp(u, v)] dstr(u, v) (4)

In Eqn 4,w(u) is a real-valuedweight, or importance, of the type
t(u) of a nodeu. If the types of the compared nodesu andv are
in the same type-class, thend(u, v) equals the structural distance
dstr(u, v). If not, i.e. dstr(u, v) = 1 then d(u, v) is larger if
the typest(u) andt(v) are considered to be more important. The
importance weight is useful to emphasize certain types of changes
during the code evolution. For example, if we are interested in
interface evolution, then everything having to do with global dec-
laration node types (e.g. functions, classes, etc) will be important,
whereas implementation-related node types (e.g. expressions, iter-
ative statements, assignments, etc), are irrelevant. We can achieve
this by setting a high weightw for nodes of the former types and a
low weightw for nodes of the latter types. For a neutral standpoint,
all weightsw for all AST node types are set to 1.

Note that the structural distancedstr and the type importancew
could have been merged in a single function. However, this means
defining aN by N matrix of real values, whereN is the number of
C++ node types. ForN = 150, this is impractical. By decoupling
the two concerns as discussed above, we use just twoN -valued
vectors: a set of disjoint type equivalence classesCi, and a real-
valued vector of type weightsw.

3.3 Labeling nodes
We use the distanced(u, v) from Eqn. 4 to distribute the nodes

in Ti and Ti+1 in equivalence classes, as stated at the begin of
Sec. 3.1. Each noden is labeled by its integer class-idλ(n), fol-
lowing the algorithm in Fig. 1. Essentially, all nodes which are
closer than a user thresholdεd are put in the same classλ. The
concrete values forεd depend, of course, on the range of the dis-
tance metricd (Eqn. 4), which further depends on the type weights
w. If we normalized between 0 and 1, we found that good values
for εd are in the range of 0.005 to 0.01, which put only strongly
similar nodes in the same class.

Clearly, the results may depend on the order the nodes are con-
sidered in, since not all distance pairs are computed. However, as
discussed in [7], the structure-and-type distance functiond (Eqn. 4)
is strongly discriminative, so in practice there are just few cases
when many nodes have similar distances to each other. A heuristic
that further improves the result is to consider nodes sorted in the de-
creasing order of their Strahler metricσ (Eqn. 1) (line 3 in Fig. 1).
This ensures that larger, more complex and thus more interesting,
code fragments are classified first, thereby limiting the impact of
the order nodes are treated in to the less interesting code fragments.

1 i n t L := 1 ;
2 S := Ti

S

Ti+1 ;
3 s o r t S on d e c r e a s i n gσ ;
4 whi le (S = {n0, ..., nk} not empty )
5 {
6 u := n0 ; S := S \ {u} ;
7 λ(u) := L ;
8 f o r ( i :=1 ; i ≤ k ; i++)
9 i f (d(u, n1) < εd )

10 { λ(si) := L ; S := S \ {si} ; }
11 L := L + 1 ;
12 }
13 / / We have nowL e q u i v a l e n c e c l a s s e s1, ..., L

Listing 1: Node labeling algorithm

3.4 Correspondence construction
The first phase of our algorithm discussed so far distributes AST

nodes from each two consecutive versionsi andi + 1 into equiv-
alence classes (Sec. 3.1). The first phase can be seen as a hashing
which groups similar subtrees into the same equivalence class. Yet,
after the first phase, we do not know for sure which of the subtrees
in the same class are truly similar. The second phase performs an
in-depth analysis which findsandmarks those parts of all subtrees
in an equivalence class which are indeed similar.

The correspondence construction works recursively top-down.
For two nodesu andv in the same equivalence class,i.e. λ(u) =
λ(v), denoteF (u) andF (v) the sets of direct children ofu and
v in Ti andTi+1 respectively. For a given equivalence classl ∈
[1, L], denoteFl(u) all children ofu being in classl, i.e. having
λ(Fl(u)) = l, and similarlyFl(v) for v’s children. We say thatu
andv areD-similar if

D(u, v) =

L
X

l=1

abs(|(Fl(u))| − |Fl(v))|) < εD (5)

Here, |F | denotes the size of setF and ’abs’ the absolute value.
D(u, v) can be seen as a similarity metric based on the direct chil-
dren of two nodes in the same equivalence class. If we normalize
D by the total number of children of a node, good values forεD

are around 0.1.
The final step is to extend the similarity metricD, defined on the

children ofu andv, to a metric∆ on the full subtreesR(u) and
R(v), as follows. Ifu andv are notD-similar, then we sayR(u)
andR(v) are also not∆-similar. If u andv areD-similar, then we
recursively compare the subtrees rooted by their children within the
same equivalence classFl(u) andFl(v), for all classesl ∈ [1, L].
Denote the number of such subtrees which are found∆-similar by
κ(u) = κ(v). We sayu andv are∆-similar if

∆(u, v) =
κ(u) + κ(v)

|R(u)| + |R(v)|
< ε∆ (6)

i.e. if we found within the trees ofu andv a relative fraction of at
leastε∆ ∆-similar subtrees. The recursion ends when we compare
two leafs. These are always∆-similar, and always haveκ = 1.
In our experiments, we usedε∆ = 0.8. Higher values imply a
stricter matching, the maximum being 1, when a strict identity is
required. Lower values imply that less similar subtrees are consid-
ered to match.

The complete correspondence computation algorithm for two
treesTi and Ti+1 is shown in listings 2 and 3. For all equiva-
lence classesl, we check if the node pairs(s, s′) in the classl
are ∆-similar (Fig. 2). We only check trees rooted in the same
class, since only these have a fair chance to be structurally simi-
lar (Sec. 3.1). The functiondeltaSim checks the∆-similarity. If
two∆-similar subtrees are found, then all their nodes are marked as
being in the same pattern. We store the values ofκ(u), which store
for each nodeu the number of∆-similar subtrees rooted atu’s de-
scendants, in an auxiliary field.κ(u) is set to zero before each tree-
pair comparison (line 10, listing 2) and updated in bottom-up order
during the correspondence construction, following Eqn. 6 (line 27,
listing 3).

A simple heuristic that improves the chance of finding good cor-
respondences is as follows. When computing the∆-similarity, we
first sort the childrenFl andF ′

l of the current nodesn andn′ under
scrutiny before matching their subtrees (lines 13+14, listing 3). We
sort nodes in order of their C++ node types, and in order of their
code text for identical types. This ensures that nodes as similar as
possible are matched first.



1 i n t α := 0 ;
2 f o r (n ∈ Ti

S

Ti+1 ) α(n) := 0 ;
3

4 f o r ( l := 1 ; l < L ; l++)
5 {
6 Sl := {n ∈ Ti |λ(n) = l}
7 S′

l := {n ∈ Ti+1|λ(n) = l}
8 f o r ( (s, s′) ∈ Sl × S′

l )
9 {

10 f o r (n ∈ R(s)
S

R(s′) ) κ(n) := 0 ;
11 i f ( de l t aS im (s ,s′ ,εD ,ε∆ ) )
12 {
13 α := α + 1 ;
14 f o r (n ∈ R(s) ) α(n) := α
15 f o r (n ∈ R(s′) ) α(n) := α
16 Sl := Sl \ {n ∈ Sl|α(n) = α}
17 S′

l := S′
l \ {n ∈ S′

l |α(n) = α}
18 }
19 }

Listing 2: Correspondence construction algorithm

The result of the entire algorithm is a labelingα of all nodes in the
input treesTi andTi+1. A valueα(n) = 0 means that noden is not
in a pattern which has a correspondence in the other tree. A value
α(n) > 0 means that noden is in the pattern with idα(n). Finally,
by applying the algorithm on all tree pairs(Ti, Ti+1), we obtain
the evolution patterns of all code fragments on the entire version
set considered.

1 bool de l t aS im ( Noden , Node n′ , f l o a t εD , f l o a t ε∆ )
2 {
3 i f (n and n′ a re l e a f s )
4 { κ(n) := 1 ; κ(n′) := 1 ; re turn t rue ; }
5

6 F := d i r e c t c h i l d r e n o f n
7 F ′ := d i r e c t c h i l d r e n o f n′

8

9 i f (D(n ,n′ )≥ εD ) re turn f a l s e ;
10

11 f o r ( l : = 1 ;l < L ; l++)
12 {
13 Fl := {s ∈ F |λ(s) = l} ; s o r t (Fl ) ;
14 F ′

l := {s ∈ F ′|λ(s) = l} ; s o r t (F ′
l ) ;

15

16 f o r ( (f, f ′) ∈ Fl × F ′
l ) i n s o r t e d o rd e r

17 i f ( de l t aS im (f ,f ′ ,εD ,ε∆ ) )
18 {
19 Fl := Fl \ {f}
20 F ′

l := F ′
l \ {f

′}
21 }
22 }
23

24 κ(n) := 1 +
P

u∈F κ(u) ;
25 κ(n′) := 1 +

P

u∈F ′ κ(u) ;
26

27 re turn κ(n)+κ(n′)
|R(n)|+|R(n)′|

> ε∆ ;
28 }

Listing 3: ∆-similarity computation algorithm

4. VISUALIZATION
After computing the correspondences between code fragments,

represented as AST subtrees, of a number of versions, we visual-
ize these. The goal is to visually emphasize important evolution

events, such as code refactoring, code drift, or interface and imple-
mentation changes.

4.1 Basic design

A

F

B C D E

G H I J K L

A

F

B D E

G M H I K L

tree T1 tree T2

version 1 version 2

Figure 1: Visualizing two code versions and their syntax trees
T1 and T2. Corresponding nodes are labeled with the same let-
ters. In the evolution,C and J are deleted, the subtreeM, N, O

is inserted, andH moves from parentB to D. Shaded cushions
emphasize both tree structure and correspondences.

Our visualization uses the design sketched in Fig. 1. Each syntax
treeTi for each versioni in the evolution of a considered code file is
drawn using a space-filling technique similar with so-called icicle
plot [5]. A tree appears as a vertical strip, with the root to the left
and the leafs to the right. Figure 2 shows the principle for a syntax
tree for a small function. The syntax tree is shown using a classical
tree layout (a) and using our space-filling visualization (b). ASTs of
typical C++ source files of thousands of lines are very broad (tens of
thousands of nodes) but not too deep (10..40 levels). Hence, trees
appear as thin, tall vertical strips. The varying syntax tree depth
(not to be mismatched for the code indentation depth) is shown by
the strip’s width (see Figs. 3 and 4 for actual snapshots). Wider
strip portions indicate deeper, thus typically more complex, syn-
tactic constructs, while thin strip portions show constructs which
are shallow nested,i.e. close to the C++ global file scope. Addi-
tionally, we use shaded cushions as an effective means of empha-
sizing the structure, similar to other software visualization appli-
cations [18, 10]. The cushions, implemented as one-dimensional
textures storing a parabolic luminance profile, are blended atop of
the rectangular nodes, an operation which is very efficiently done in
OpenGL. The entire visualization is implemented using the Tulip
graph visualization system which offers sophisticated mechanisms
for customized layout, rendering, interactive navigation, and level-



a) b)

Figure 2: Syntax tree visualized in classical manner (a) and using shaded cushions (b). Labels indicate the syntax node types.

of-detail techniques for large trees and graphs up to hundreds of
thousands of nodes [2].

After drawing all trees for all considered file versions, we draw
the correspondences. As explained in Sec. 3, givenN treesT1..., TN

for the file versionsf1, ..., fN , we compute only correspondences
between subtrees in consecutive versionsTk andTk+1. For each
correspondence, we connect the rectangles of the corresponding
(matched) nodes from the neighboring tree strips using tube-like
shapes, as shown in Fig. 1. The tubes are easy to interpret. Straight,
horizontal tubes show code regions which stay constant during the
evolution. This is so because the extracted syntax trees are ordered,
so constant code corresponds to constant subtrees at the same place.
Inclined tubes indicate code fragments which change places in the
syntax tree. Crossing tubes indicate code block swapping. Since
the top-to-bottom order of nodes in the tree view matches the order
of code fragments in a program listing, long tubes indicate frag-
ments which moved considerably during the evolution. Inserted
and deleted fragments appear as regions in the tree which are not
connected with tubes. Finally, the tubes’ thickness indicate the
amount of code in the corresponding pattern.

Tubes can be drawn in two different ways. In the first way, shown
for nodesF, ..., I in Fig. 1, tubes are drawn from the right edge of
the node in versioni to the left edge of theparentof its correspond-
ing node in versioni+1. In the second way, shown for nodeE, the
tube is drawn to cover the two matched nodes and all their children
(K, L), using a constant transparency value. We found the second
method better as it clearly indicates node grouping in patterns. The
second way for drawing the tubes has a more subtle advantage. If
we look at the two nodes markedH in Fig. 1, the tube connecting
them seems to end too low at its right end. Actually, this is a rather
surprising optical illusion due to the shaded cushions. The second
way for drawing the tubes, using superimposed cushions, corrects
this problem.

Figure 3 shows the visualization design on two versions of a
file of approximately 850 C++ lines. In the left image, no cush-
ions are used. The nodes are colored with hues that indicate their
C++ construct types, using different user-selected hues for classes,
functions, methods, expressions, declarations, iterative statements,
and conditional statements. The tubes are colored using a slightly

darker hue of the correspondent nodes they connect2. The right im-
age shows the same dataset. This time, both nodes and tubes are
colored using a different hue for each identified patternα (Sec. 3.4).
Tubes are drawn using the transparency design explained earlier in
this section. Deleted or inserted, thus unpaired, code fragments are
colored in gray.

Figure 3 b clearly shows several evolution events: FragmentC

is deleted, except a tiny code piece indicated by the red filament
in the middle. FragmentsA andB are swapped in an unchanged
state. FragmentsD andE stay constant.

We see here a limitation of our method. Although fragmentsD

andE stay constant, they are identified (and drawn) as a multitude
of blocks instead of one single block, as in the case ofA or B.
The reason is thatA andB are single subtrees in the syntax tree,
whereasD andE consist of sets of subtrees which do not share a
constant parent. Actually,A andB are two global C++ scope meth-
ods, whileD andE are sets of sibling nodes representingseveral
same-scope declarations. Since our method only matches single
subtree roots, some amount of fragmentation occurs. Note that, if
desired, this can be easily removed by applying a postprocessing
pass that groups sets of contiguous matched sibling nodes into the
same pattern. We preferred to show the individual node correspon-
dences, as these represent actual syntactic code fragments.

4.2 Visual enhancements
Several enhancements can be added atop of the above basic vi-

sualization. First, the user can choose thelevel of detailat which
the syntax trees are shown. Given a level of detail, only syntax
nodes up to that level, and associated correspondences, are drawn.
This lets one simplify the visualization by removing fine code de-
tails which appear as those vertical strips at the right of the version
visualizations (e.g.nodesF, G, ..., L in version 2 in Fig. 1). A sim-
ilar effect can be achieved by adapting the structural distance func-
tion dstr (Sec. 3.1). The difference is that changing the distance
function potentially determines finding different evolution patterns,
whereas culling finer detail from the visualization simply shows
less correspondences from an already computed set.

2We strongly recommend viewing these figures in full color. See
http://www.win.tue.nl/∼alext/CPPDIFF
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(C), block swapping (A,B), and constant codeD.

5. EXAMPLE APPLICATION
We applied our structural code evolution visualization on several

versioned C++ code bases. Due to space limitations, we present
here just one example. The considered versioned code base is a
complete C++ image processing program of approximately 5000
lines of code. From discussions with the developers, we know the
versions correspond to successive small-scale system refactorings.
After parsing each version, we keep in its AST all nodes origi-
nating from application code sources and headers, but eliminate
nodes coming from system headers, as we are not interested to see
changes at that level (if any). Figure 4 a shows a visualization of
six versions of one file containing about 1500 lines from our C++
code base. Node colors indicate syntax construct types. Edges have
the colors of the matched nodes they connect.

We quickly recognize a few zones in the code where important
changes occurred (marked b-f in Fig. 4). For the rest of the code,
the skewed parallel tubes running left-to-right in the overview im-
age (Fig. 4 a) indicate constant or near-constant code regions. Over-

all, we see that the code gradually shrunk during evolution to about
80% in version 6 as compared to version 1.

Let us now concentrate on the detail views (Fig. 4 b-f). Figure 4 b
shows two deletions that occurred when passing from version 1 to
version 2. The top one is afor loop (approx. 30 code lines), the
bottom one is a set of local variable declarations (10 code lines).
The tube which separates the two deleted blocks corresponds to
a code block which stays indeed unchanged, located between the
deleted fragments. Figure 4 c shows a more complex modification
pattern involving two functionsf1 andf2. The matching has de-
tected a scope block{...} in f1 and a largeif statement inf2
respectively which are constant. We also notice a small code block
which moved fromf1 to f2. Moreover, we see several small code
blocks at the lower end off2 and also just below theif block in
f2 which are matched. However, we see no tubes connecting the
whole extents off1 andf2 in the two versions: Although several
blocks within are matched, the two functions are found too differ-
ent to be set in correspondence.

Figure 4 d shows a functionf which is split into two functions
g andh. Most off’s code from version 2 moves intog in version
3. However, the code indicated by the downward running diagonal
tube and the thin horizontal tubes at the bottom off moves intoh.
Figure 4 e shows a classc which undergoes several modifications
from version 3 to 4. The thin downward running diagonal tubes in-
dicate class members which stay the same. However, just as in the
case of the functionsf1 andf2 in Fig. 4 c, the entire class is not
matched because there are too many additional changes,e.g. sev-
eral newly inserted methods and data members. In the same image,
we see also a template classt which undergoes massive code dele-
tion when going from version 3 to 4. Finally, Figure 4 f shows the
evolution of a part of a function implementationF which under-
goes several low-level changes, such as insertion and deletion of
local variables, changes of terms in arithmetic expressions, and re-
placement of(a<b)? a:b expressions byif-else statements.
Although such changes are quite intricate, they are reliably found
by the matching algorithm and shown by the visualization method.

6. DISCUSSION
To validate results, we applied our complete method on differ-

ent code files extracted from different C++ projects, and checked
the detected evolution patterns by manually inspecting the code
changes, version by version, using a standard text editor. Con-
versely, we took a given C++ project and manually performed edit-
ing operations, ranging from simple ones,e.g. text reformatting,
comment changes, identifier renaming, and declaration order chang-
ing) to complex ones,e.g. factoring out fragments of a large func-
tion into a separate function, code fragment swapping, random dele-
tions and insertions of code fragments ranging between 1 and 50
lines, and changing(a<b)? a:b expressions intoif-else state-
ments, to mention just a few examples. It surprised us that the
correspondence computation algorithm (Sec. 3) worked perfectly
in all examined cases,i.e. found identical fragments in consecu-
tive versions, even in presence of complex changes. By changing
theεd,εD andε∆ parameters, we could filter out different types of
low-level, less important, changes, such as minute modifications of
expressions. This is useful when one is interested in larger-scale
evolution patterns, such as changes of signatures of global objects
or compositions of class declarations.

Our method has several conceptual similarities with existing code
clone detection techniques. First of all, our method is insensi-
tive to any lexical, code formatting, comments, and identifier name
changes. Many clone detectors do not exhibit such properties, as
they do not generate a parse tree but work at a lower, lexical level.



The closest method to ours seems to be that of Baxteret al., who
also extract and hash syntax nodes prior to tree comparison in their
clone detection [6]. While they use only the node types in their hash
function, we use a combination of structural parameters (node de-
gree, tree size, and Strahler number) and node types (Sec. 3.1, 3.2).
Our hash function seems to be weaker than the one in [6]. We
actually cannot tell this for sure as [6] does not include full im-
plementation details. This allows our method match subtrees more
freely, a step which Baxteret al. solve by adding a separate ”clone
sequence” processing phase. Jianget al. compute one fixed-length
vector of type occurrences per subtree and use locally sensitive
hashing (LSH) to group similar vectors, which is conceptually sim-
ilar but differently implemented from our structure+type hashing.
Their Euclidean distance used to compare vectors is, again, concep-
tually similar to our distance functiondtyp and importance weights
(Sec. 3.2), but has a quite different implementation.

Let us stress again that our aim is to identify small up to medium-
scale evolution patterns in consecutive file versions, which is a very
specific case of finding similar code fragments in files of moderate
size (up to thousands of lines/file) exhibiting a moderate amount of
change. While our methodcouldbe in principle used to detect and
visualize code clones, this was not our purpose. Code cloning de-
tectors stress scalability, performance, detection of certain pattern
types, and do not typically focus on visualizing the detected corre-
spondences. Whether our method can be further optimized and/or
parameterized in the context of clone detection is a subject of future
research.

Considering performance: The matching of six versions of a
code base of approximately 5000 code lines per version took about
12 minutes on a 2 GHz PC running Linux. We are aware that
our current implementation could be further optimized to yield the
higher speed needed to analyze large code bases. However, since
our target scenario is to interactively visualizesmall-scale, minute
code modifications, typically at the level of a single file across sev-
eral versions, we are less constrained by high performance require-
ments ase.g. code clone detection methods that run in automatic
mode on full industry-size repositories.

7. CONCLUSIONS
We have presented a method to compute and visualize evolu-

tion patterns in C++ source code. At the center of our method is a
structure-and-type matching technique running on the abstract syn-
tax trees of consecutive versions. The matched subtrees are visual-
ized using dense pixel layout and rendering methods. Our method
is useful to detect and browse small to medium-scale changes dur-
ing source code evolution, such as function and class-level refactor-
ing code editing. Hence, our work fills the gap between line-level
evolution analysis tools, like WinDiff and CVSscan, and file and
architecture-level tools, like sv3D and CVSgrab.

We envisage several directions of our work. First of all, the pre-
sented visualization is just a first attempt to display the syntactic
correspondences. Different variants of the basic idea should be
tried out, such as leaving out the unchanged code fragments and
showing only the added, modified, and deleted ones. Second, dif-
ferent distance functions can be designed to incorporate additional
information beyond syntax tree structure and types,e.g. project or
user-specific data like variable naming conventions, to detect dif-
ferent types of code evolution events of interest for specific refac-
toring tasks and filter out others. Third, the proposed evolution
visualization can be enhanced to scale to show more versions of
larger amounts of code, as well as more code attributes than just
construct type. Finally, both the similar code detection and the vi-
sualization method may have the potential to be used in the context

of finding and understanding software code clones.
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Figure 4: Visualization of six versions of a C++ software system. a) overview; b-f) details. See the individual captions and text for
more details.


