
HAL Id: hal-00306661
https://hal.science/hal-00306661v1

Submitted on 9 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel tree edit operations for RNA secondary structure
comparison

Julien Allali, Marie-France Sagot

To cite this version:
Julien Allali, Marie-France Sagot. Novel tree edit operations for RNA secondary structure comparison.
Workshop on Algorithms in Bioinformatics 2004, 2004, Bergen, Denmark. pp.412–425, �10.1007/978-
3-540-30219-3_35�. �hal-00306661�

https://hal.science/hal-00306661v1
https://hal.archives-ouvertes.fr

Novel tree edit operations for RNA secondary structure

comparison

Julien Allali1 and Marie-France Sagot2

1 Institut Gaspard-Monge, Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454
Marne-la-Vallée Cedex 2, France, allali@univ-mlv.fr

2 Inria Rhône-Alpes, Université Claude Bernard, Lyon I, 43 Bd du 11 Novembre 1918, 69622
Villeurbanne cedex, France, Marie-France.Sagot@inria.fr, and King’s College, London, UK

Abstract. We describe an algorithm for comparing two RNA secondary structures coded
in the form of trees that introduces two novel operations, called node fusion and edge fusion,
besides the tree edit operations of deletion, insertion and relabelling classically used in the
literature. This allows us to address some serious limitations of the more traditional tree edit
operations when the trees represent RNAs and what is searched for is a common structural
core of two RNAs. Although the algorithm complexity has an exponential term, this term
depends only on the number of successive fusions that may be applied to a same node, not
on the total number of fusions. The algorithm remains therefore efficient in practice and is
used for illustrative purposes on ribosomal as well as on other types of RNAs.

keywords: tree comparison, edit operation, distance, RNA, secondary structure

1 Introduction

RNAs are one of the fundamental elements of a cell. Their role in regulation has been shown
recently to be far more prominent than initially believed (20 December 2002 issue of Science,
which designated small RNAs with regulatory function as the scientific breakthrough of the year).
It is now known, for instance, that there is massive transcription of non-coding RNAs. Yet current
mathematical and computer tools remain mostly inadequate to identify, analyse and compare
RNAs.

An RNA may be seen as a string over the alphabet of nucleotides (also called bases), {A, C,
G, T}. Inside a cell, RNAs do not retain a linear form but instead fold in space. The fold is given
by the set of nucleotide bases that pair. The main type of pairing, called canonical, corresponds
to bonds of the type A − U and G − C. Other rarer types of bonds may be observed, most
frequent among them is G − U , also called the wobble pair. Figure 1 shows the sequence of a
folded RNA. Each box represents a consecutive sequence of bonded pairs, corresponding to a helix
in 3D space. The secondary structure of an RNA is the set of helices (or the list of paired bases)
making up the RNA. Pseudo-knots, which may be described as a pair of interleaved helices, are
in general excluded from the secondary structure of an RNA. RNA secondary structures can thus
be represented as planar graphs. An RNA primary structure is its sequence of nucleotides while
its tertiary structure corresponds to the geometric form the RNA adopts in space.

Apart from helices, the other main structural elements in an RNA are: 1. hairpin loops which
are sequences of unpaired bases closing a helix; 2. internal loops which are sequences of unpaired
bases linking two different helices; 3. bulges which are internal loops with unpaired bases on one
side only of a helix; 4. multi-loops which are unpaired bases linking at least three helices. Stems
are successions of one or more among helices, internal loops and/or bulges.

RNA secondary structure comparison is one of the main basic computational problems raised
by the study of RNAs. It is the problem we address in this paper. The motivations are many.
RNA structure comparison has been used in at least one approach to RNA structure prediction
that takes as initial data a set of unaligned sequences supposed to have a common structural
core [1]. For each sequence, a set of structural predictions are made (for instance, all suboptimal

Fig. 1. Primary and secondary structures of a transfer RNA.

structures predicted by an algorithm like Zucker’s MFOLD [9], or all suboptimal sets of compatible
helices or stems). The common structure is then found by comparing all the structures obtained
from the initial set of sequences, and identifying a substructure common to all, or to some of
the sequences. RNA structure comparison is also an essential element in the discovery of RNA
structural motifs, or profiles, or of more general models that may then be used to search for other
RNAs of the same type in newly sequenced genomes. For instance, general models for tRNAs and
introns of group I have been derived by hand [3] [5]. It is an open question whether models at least
as accurate as these, or perhaps even more accurate, could have been derived in an automatic
way. The identification of smaller structural motifs is an equally important topic that requires
comparing structures.

As we saw, the comparison of RNA structures may concern known RNA structures (that is,
structures that were experimentally determined) or predicted structures. The objective in both
cases is the same: to find the common parts of such structures.

In [6], Shapiro suggested to mathematically model RNA secondary structures without pseudo-
knots by means of trees. The trees are rooted and ordered, which means that the order among the
children of a node matters. This order corresponds to the 5’-3’ orientation of an RNA sequence. One
way to compare two RNA secondary structures is then to apply a number of tree edit operations in
one or both of the trees representing the RNAs until isomorphic trees are obtained. The tree edit
operations considered are derived from the operations classically applied to sequences: substitution,
deletion and insertion. In 1989, Zhang and Shasha proposed [8] a dynamic programming algorithm
for comparing two trees. Shapiro and Zhang then showed [7] how to use tree editing to compare
RNAs. The latter also proposed various tree models that could be used for representing RNA
secondary structures. Each suggested tree offers a more or less detailed view of an RNA structure.
Figure 2 (b) to (e) presents a few examples of such possible views for the RNA given in Figure 2
(a). In Figure 2, the nodes of the tree in (b) represent either unpaired bases (leaves) or paired
bases (internal nodes). Each node is labelled with, respectively, a base or a pair of bases. A node of
the tree in (c) represents a set of successive unpaired bases or of stacked paired ones. The label of a
node is an integer indicating, respectively, the number of unpaired bases or the height of the stack
of paired ones. The nodes of the tree in (d) represent elements of secondary structure: hairpin loop
(H), bulge (B), internal loop (I) or multi-loop (M). The edges correspond to helices. Finally, the
tree in (e) contains only the information concerning the skeleton of multi-loops of an RNA. The
last representation, though giving a highly simplified view of an RNA, is important nevertheless
as it is generally accepted that it is this skeleton which is usually the most constrained part of an
RNA. The last two models may be enriched with information concerning, for instance, the number
of (unpaired) bases in a loop (hairpin, internal, multi) or bulge, and the number of paired bases
in a helix. The first label the nodes of the tree, the second its edges. Other types of information
may be added (such as overall composition of the elements of secondary structure). In fact, one
could consider working with various representations simultaneously or in an interlocked, multi-
level fashion. This goes beyond the scope of this paper which is concerned with comparing RNA

secondary structures using one among the many tree representations possible. We shall however
comment further this multi-level approach later on.

Concerning the objectives of this paper, they are twofold. The first is to give some indications on
why the classical edit operations that have been considered so far in the literature for comparing
trees present some limitations when the trees stand for RNA structures. Three cases of such
limitations will be illustrated through examples in Section 3. In Section 4, we then introduce two
novel operations, so-called node-fusion and edge-fusion, that enable us to address some of these
limitations and then give a dynamic programming algorithm for comparing two RNA structures
with these two additional operations. Implementation issues and initial results are presented in
Section 5. Before that, we start by introducing some notation and by recalling in the next section
the basics about classical tree edit operations and tree mapping.

C G
C GC G

G C C G

C G

C G

G C

A U

A U

A U

G C
C G

U A

U A

G C
A U

U A

C G

AUAUUA

U
U
U
C G A A

U

G
G

C C AA

G
A C

GA
A
U A C

A

U A
CA

A
U

G
C

C
G

A
U A
U G

C
C U

U U

G

G
C
UA

A A U

G

U

A A AU U U C C A A

R

U U U A G G

G A A C A

C A A A A U U

G

GC U U U

−1

6 43

3 3 1 4 2

3 3 2

7

3 1

5

M

I B

H H

R R

M

H H

(b)(a) (c)

(e)(d)

Fig. 2. Example of different tree representations of a same RNA.

2 Tree editing and mapping

Let T be an ordered rooted tree, that is, a tree where the order among the children of a node mat-
ters. We define three kinds of operations on T : deletion, insertion and relabelling (corresponding
to a substitution in sequence comparison). The operations are shown in Figure 3. The deletion
(3 (b)) of a node u removes u from the tree. The children of u become the children of u’s father.
An insertion (3 (c)) is the symmetric of a deletion. Given a node u, we remove a consecutive (in
relation to the order among the children) set u1, . . . , up of its children, create a new node v, make
v a child of u by attaching it at the place where the set was, and, finally, make the set u1, . . . , up

(in the same order) the children of v. The relabelling of a node (3 (d)) consists simply in changing
its label.

Given two trees T and T ′, we define S = {s1 . . . se} to be a series of edit operations such that
if we apply successively the operations in S to the tree T , we obtain T ′ (i.e., T and T ′ become

isomorphic). A series of operations like S realizes the editing of T into T ′ and is denoted by T
S
→ T ′.

We define a function cost from the set of possible edit operations (deletion, insertion, rela-
belling) to the integers (or the reals) such that costs is the score of the edit operation s. If S is a
series of edit operations, we define by extension that costS is

∑

s∈S
costs. We can define the edit

distance between two trees as the series of operations that performs the editing of T into T ′ and

such that its cost is minimal: distance(T, T ′) = {min(costS)|T
S
→ T ′}.

A

B

C

D

E F

G

H

D

E F

G

H

A

B

C

I

A

B

C E F

G

H

B

C

D

E F

G

H

K

(c) (d)(b)(a)

Fig. 3. Edit operations: (a) the original tree T , (b) deletion of node labelled D, (c) insertion of the node
labelled I and (d) relabelling of a node in T (the label A of the root is changed into K).

EC

D

B
G

C E

D

F
A Let an insertion or a deletion cost one and the relabelling

of a node cost zero if the label is the same and one other-
wise. For the two trees of the figure on the left, the series
relabel(A → F).delete(B).insert(G) realizes the editing of
the left tree into the right one and costs 3. Another possibil-
ity is the series delete(B).relabel(A → G).insert(F) which
also costs 3. The distance between these two trees is 3.

Given a series of operations S, let us consider the nodes of T that are not deleted (in the
initial tree or after some relabelling). Such nodes are associated with nodes of T ′. The mapping

MS relative to S is the set of couples (u, u′) with u ∈ T and u′ ∈ T ′ such that u is associated with
u′ by S.

The operations described above are the “classical tree edit operations” that have been com-
monly used in the literature for RNA secondary structure comparisons. We now present a few
results obtained using such classical operations that will allow us to illustrate a few limitations
they may present when used for comparing RNA structures.

3 Limitations of classical tree edit operations for RNA comparison

As suggested in [7], the tree edit operations recalled in the previous section can be used on any
type of tree coding of an RNA secondary structure.

Figure 4 shows two RNAsePs extracted from the database [2] (they are found, respectively,
in Thermotoga maritima and Streptococcus gordonii). For the example we discuss now, we code
the RNAs using the tree representation indicated in Figure 2 (b) where a node represents a base
pair and a leaf an unpaired base. After applying a few edit operations to the trees, we obtain
the result indicated in Figure 2, with deleted/inserted bases in grey. We have surrounded a few
regions that match in the two trees. Bases in the box at the bottom of the RNA on the left are thus
associated with bases in the rightmost box of the RNA on the right. Such matches illustrate one
of the main problems with the classical tree edit operations: bases in one RNA may be mapped
to identically labelled bases in the other RNA to minimise the total cost, while such bases should
not be associated in terms of the elements of secondary structure to which they belong. In fact,
such elements are often distant from one another along the common RNA structure. We call this
problem the “scattering effect”. It is related to the definition of tree edit operations. In the case of
this example and of the representation adopted, the problem might have been avoided if structural
information had been used. Indeed, the problem appears also because the structural location of
an unpaired base is not taken into account. It is therefore possible to match, for instance, an
unpaired base from a hairpin loop with an unpaired base from a multi-loop. Using another type
of representation, as we shall do, would, however, not be enough to solve all problems as we see
next.

Indeed, to compare the same two RNAs, we can also use a more abstract tree representation
such as the one given in Figure 2 (d). In this case, the internal nodes represent a multi-loop,

Fig. 4. Result of the matching of the two RNAs in Figure 4 using the model (b) given in Figure 2.

internal-loop or bulge, the leaves code for hairpin loops and edges for helices. The result of the
edition of T into T ′ for some cost function is presented in Figure 5 (we shall come back later to
the cost functions used in the case of such more abstract RNA representations; for the sake of this
example, we may assume an arbitrary one is used).

The problem we wish to illustrate in this case is shown by the boxes in the figure. Consider
the boxes at the bottom. In the left RNA, we have a helix made up of 13 base pairs. In the right
RNA, the helix is formed by 7 base pairs followed by an internal loop and another helix of size
5. By definition (see Section 2), the algorithm can only associate one element in the first tree to
one element in the second tree. In this case, we would like to associate the helix of the left tree
to the two helices of the second tree since it seems clear that the internal loop represents either
an inserted element in the second RNA, or the unbonding of one base pair. This, however, is not
possible with classical edit operations.

A third type of problem one can meet when using only the three classical edit operations to
compare trees standing for RNAs is similar to the previous one but concerns this time a node
instead of edges in the same tree representation. Often, an RNA may present a very small helix
between two elements (multi-loop, internal-loop, bulge or hairpin-loop) while such helix is absent
in the other RNA. In this case, we would therefore have liked to be able to associate one node in
a tree representing an RNA with two or more nodes in the tree for the other RNA. Once again,
this is not possible with any of the classical tree edit operations. An illustration of this problem is
shown in Figure 11 (see Section 5).

We shall use RNA representations that take the elements of the structure of an RNA into
account to avoid some of this scattering effect. Furthermore, in addition to considering informa-
tion of a structural nature, labels are attached, in general to both nodes and edges of the tree
representing an RNA. Such labels are numerical values (integers or reals). They represent in most
cases the size of the corresponding element, but may also further indicate its composition etc. Such
additional information is then incorporated into the cost functions for all three edit operations.

It remains now to deal with the last two problems that are a consequence of the one-to-
one associations between nodes and edges enforced by the classical tree edit operations. To that
purpose, we introduce two novel tree edit operations, called the edge fusion and the node fusion.

Fig. 5. Result of the matching of the two RNAs using the model (d) given in Figure 2.

4 Introducing novel tree edit operations

4.1 Edge fusion and node fusion

In order to address some of the limitations of the classical tree edit operations that were illustrated
in the previous section, we need to introduce two novel operations. These are the edge fusion and
the node fusion. They may be applied to any of the tree representations given in Figure 2(c) to
(e).

An example of edge fusion is shown in Figure 6. Let eu be an edge leading to a node u, ci a
child of u and eci

the edge between u and ci. The edge fusion of eu and eci
consists in replacing

eci
and eu with a new single edge e. The edge e links the father of u to ci. Its label then becomes

a function of the (numerical) labels of eu, u and eci
. For instance, if such labels indicated the size

of each element (e.g. for a helix, the number of its stacked pairs, and for a loop, the min, max or
the average of its unpaired bases on each side of the loop), the label of e could be the sum of the
sizes of eu, u and eci

. Observe that merging two edges implies deleting all subtrees rooted at the
children cj of u for j different from i. The cost of such deletions is added to the cost of the edge
fusion.

Fig. 6. On the left, an example of edge fusion. On the right, an example of node fusion.

;)TDist(

For each Child

+ TDist(;)

+ TDist(;)

;

;

= MIN

FDist(

FDist(

FDist(

; + DEL)

;) + INS

; + MATCH)

TDist(;) + EFus

For each Child

TDist(;) + NFus

TDist(;)

+ TDist(;)

TDist()

+ TDist(;)

+ NSpl

+ ESpl

Fig. 7. Zhang and Sasha’s dynamic programming algorithm: the tree distance part. The right box corre-
sponds to the additional operations added to take fusion into account.

+ DEL

+ INS

;)

;)

;) + ;)

FDist(

FDist(

FDist(TDist(

)FDist(= MIN;

Fig. 8. Zhang and Sasha’s dynamic programming algorithm: the forest distance part.

An example of node fusion is given in Figure 6. Let u be a node and ci one of its children.
Performing a node fusion of u and ci consists in making u the father of all children of ci and in
relabelling u with a value that is a function of the values of the labels of u, ci and of the edge
between them.

Observe that a node fusion may be simulated using the classical edit operations by a deletion
followed by a relabelling. However, the difference between a node fusion and a deletion/relabelling
is in the cost associated with both operations. We shall come back to this point later.

Obviously, like insertions or deletions, edge fusions and node fusions have of course symmetric
conuterparts, which are the edge split and the node split.

We now present an algorithm to compute the tree edit distance between two trees using the
classical tree edit operations plus the two operations just introduced.

4.2 Algorithm

The method we introduce is a dynamic programming algorithm based on the one proposed by
Zhang and Shasha. Their algorithm is divided in two parts: they first compute the edit distance
between two trees (this part is denoted by TDist) and then the distance between two forests (this
part is denoted by FDist). Figure 7 illustrates in pictorial form the part TDist and Figure 8 the
FDist part of the computation.

In order to take our two new operations into account, we need to compute a few more things in
the TDist part. Indeed, we must add the possibility for each tree to have a node fusion (inversely,
node split) between the root and one of its children, or to have an edge fusion (inversely edge split)
between the root and one of its children. These additional operations are indicated in the right
box of Figure 7.

We present now a formal description of the algorithm. Let T be an ordered rooted tree with
|T | nodes. We denote by ti the ith node in a postfix order. For each node ti, l(i) is the index

of the leftmost child of the subtree rooted at ti. Let T (i . . . j) denote the forest composed by
the nodes ti . . . tj (T ≡ T (0 . . . |T |)). To simplify notation, from now on, when there is no am-
biguity, i will refer to the node ti. In this case, distance(i1 . . . i2, j1 . . . j2) will be equivalent to
distance(T (i1 . . . i2), T

′(j1 . . . j2)).
The algorithm of Zhang and Sasha is fully described by the following recurrence formula:

distance(i1 . . . i2, j1 . . . j2) =

if ((i1 == l(i2)) and (j1 == l(j2)))

MIN

distance(i1 . . . i2 − 1 , j1 . . . j2) + costdel(i2)
distance(i1 . . . i2 , j1 . . . j2 − 1) + costins(j2)
distance(i1 . . . i2 − 1 , j1 . . . j2 − 1) + costmatch(i2, j2)

(1)

else

MIN

distance(i1 . . . i2 − 1 , j1 . . . j2)) + costdel(i2)
distance(i1 . . . i2) , j1 . . . j2 − 1) + costins(j2)
distance(i1 . . . l(i2) − 1 , j1 . . . l(j2) − 1)

+distance(l(i2) . . . i2 , l(j2) . . . j2)

(2)

Part (1) of the formula corresponds to Figure 7 while part (2) corresponds to Figure 8. In
practice, the algorithm stores in a matrix the score between each subtree of T and T ′. The space
complexity is therefore O(|T | ∗ |T ′|). To reach this complexity, the computation must be done
in a certain order (see [8] for further details). The time complexity of the algorithm is O(|T | ∗
min(leaf(T), height(T))∗|T ′|∗min(leaf(T ′), height(T ′))) where leaf(T) and height(T) represent,
respectively, the number of leaves and the height of a tree T .

Follows now the formula to compute the edit score allowing for both node and edge fusions.

distance({i1, . . . , ik}, path, {j1, . . . , jk′}, path′) =

if ((i1 ≥ l(ik)) and (j1 ≥ l(jk′)))

MIN

distance({i1 . . . ik−1} , ∅ , {j1 . . . jk′} , path′) + costdel(ik)
distance({i1 . . . ik} , path , {j1 . . . jk′−1} , ∅) + costins(jk′)
distance({i1 . . . ik−1} , ∅ , {j1 . . . jk′−1} , ∅) + costmatch(ik, jk′)
for each child ic of ik in {i1, . . . , ik}, set il = l(ic)

distance({i1 . . . ic−1, ic+1 . . . ik}, path.(u, ic), {j1 . . . jk′}, path′)
+costnode fusion(ic, ik) note: ik data are changed

distance({il . . . ic−1, ik}, path.(e, ic), {j1 . . . jk′}, path′)
+costedge fusion(ic, ik) + distance({i1 . . . il−1}, ∅, ∅, ∅)
+distance({ic+1 . . . ik − 1, ∅, ∅, ∅) note: ik data are changed

for each child jc′ of jk′ in {j1, . . . , jk′}, set jl′ = l(jc′)
distance({i1 . . . ik}, path, {j1 . . . jc′−1, jc′+1 . . . jk′ , path′.(u, jc′))

+costnode split(jc′ , jk′) note: jk′ data are changed
distance({i1 . . . ik}, path, {jl′ . . . jc′ , jk′ , path′.(e, jc′))

+costedge split(jc′ , jk′) + distance(∅, ∅, {j1 . . . jl′−1}, ∅)
+distance(∅, ∅, jc′+1 . . . jk′−1, ∅) note: jk′ data are changed

(3)

else set il = l(ik) and jl′ = l(jk′)

MIN

distance({i1 . . . ik−1} , ∅ , {j1 . . . jk′} , path′) + del(ik)
distance({i1 . . . ik} , path , {j1 . . . jk′−1} , ∅) + ins(jk′)
distance({i1 . . . il−1} , ∅ , {j1 . . . jl′−1} , ∅)

+distance({il . . . ik} , path , {jl′ . . . jk′} , path′)

(4)

Given two nodes u and v such that v is a child of u, node fusion(u, v) is the fusion of node v

with u and edge fusion(u, v) is the edge fusion between the edges leading to, respectively, nodes u

and v. The symmetric operations are denoted by, respectively, node split(u, v) and edge split(u, v).

The distance computation takes two new parameters path and path′. These are sets of pairs
(e or u, v) which indicate, for node ik (resp. jk), the series of fusions that were done. Thus a pair
(e, v) indicates that an edge fusion has been perfomed between ik and v, while for (u, v) a node
v has been merged with node ik. The notation path.(e, v) indicates that the operation (e, v) has
been performed in relation to node ik and the information is thus concatenated to the set path of
pairs currently linked with ik.

Observe that the computation of the forest distance does not change in relation to the original
algorithm. We therefore need a matrix to store all edit scores between (i, path) and (j, path′).

Let d be the maximum degree of the two trees. Then each node has O((2d)l) different ways
of participating in l consecutive fusions (that is, in fusions with successive nodes along a same
branch). If we limit the number of consecutive fusions to l, the total memory complexity of our
algorithm is O(n(2d)l). By using the same arguments as in [8], we prove that the time complexity of
the new algorithm to be O((2d)l ∗|T |∗min(leaf(T), height(T))∗|T ′|∗min(leaf(T ′), height(T ′))).

This complexity suggests that the fusion operations may be used only for reasonable trees
(typically, less than 100 nodes) and small values of l (typically, less then 4). It is however impor-
tant to observe that the overall number of fusions one may perform can be much greater than
l without affecting the worst-case complexity of the algorithm. Indeed, any number of fusions
can be made while still retaining the bound of O((2d)l ∗ |T | ∗ min(leaf(T), height(T)) ∗ |T ′| ∗
min(leaf(T ′), height(T ′))) so long as one does not realize more than l consecutive fusions for each
node.

In general also, most interesting tree representations of an RNA are of small enough size as
will be shown next, together with some initial results obtained in practice.

5 Implementation and results

The algorithm presented in the previous section has been coded using C++. An online version is
available at http://www-igm.univ-mlv.fr/~allali/migal/.

We recall that RNAs are relatively small molecules with sizes limited to a few kilobases. For
instance, the small ribosomal subunit of Sulfolobus acidocaldarius (D14876) is made up of 1147
bases. Using the representation shown in Figure 2 (b), the tree obtained contains 440 internal nodes
and 567 leaves, that is 1007 nodes overall. Using the representation 2 (d), the tree is composed of
78 nodes. Finally, the tree obtained using the representation given in Figure 2 (e) contains only 48
nodes. We therefore see that even for large RNAs, any of the known abstract tree-representations
(that is, representations which take the elements of the secondary structure of an RNA into
account) that we can use leads to a tree of manageable size for our algorithm. In fact, for small
values of l (2 or 3), the tree comparison takes reasonable time (a few minutes) and memory (less
than 1Gb).

As we already mentioned, a fusion (resp. split) can be viewed as an alternative to a deletion
(resp. insertion) followed by a relabelling. Therefore, the cost function for a fusion must be chosen
carefully.

Let us assume that the cost function returns a real value between zero and one. If we want
to compute the cost of a fusion between two nodes u and v, the aim is to give to such fusion
a cost slightly greater than the cost of deleting v and relabelling u; that is, we wish to have
costnode fusion(u, v) = min(del(v) + t, 1). The parameter t is a tuning parameter for the fusion.
Suppose that the new node w resulting from the fusion of u and v matches with another node z.
The cost of this match is costmatch(w, z). If we do not allow for node fusions, the algorithm will first
match u with z, then will delete v. If we compare the two possibilities, on one hand we have a total
cost of costnode fusion(u, v) + costmatch(w, z) for the fusion, that is del(v) + t + costmatch(w, z),
on the other hand a cost of del(v) + costmatch(u, z). Thus t represents the gain that must be
obtained by costmatch(w, z) with regard to costmatch(u, z), that is by a match without fusion.
This is illustrated in Figure 9.

The tuning parameter t is thus an important parameter that allows us to control fusions.
Always considering a cost function that produces real values between 0 and 1, if t is equal to 0.1,

Fig. 9. Illustration of the gain that must be obtained using a fusion instead of a deletion/relabelling.

a fusion will be performed only if it improves the score by 0.1. In practice, we use values of t

between 0 and 0.2.

We have applied the new algorithm on the two RNAs shown in Figure 5 (these are eukaryotic
nuclear P RNAs from Saccharomyces uvarum and Saccharomyces kluveri) and coded using the
same type of representation as in Figure 2 (d). We have limited the number of consecutive fusions
to one (l = 1). The computation of the edit distance between the two trees taking node and edge
fusions into account besides deletions, insertions and relabelling has taken less than a second. The
total cost allowing for fusions is 6.18 with t = 0.05 against 7.42 without fusions. As indicated in
Figure 10, the last two problems discussed in Section 3 disappear thanks to some edge fusions
(represented by the boxes).

An example of node fusions required when comparing two “real” RNAs is given in Figure 11.
The RNAs are coded using the same type of representation as in Figure 2 (d). The figure shows
part of the mapping obtained between the small sub-units of two ribosomal RNAs retrieved from
[4] (from Bacillaria paxillifer and Calicophoron calicophorum). The node fusion has been circled.

6 Further work and conclusion

We have proposed an algorithm that addresses two main limitations of the classical tree edit
operations for comparing RNA secondary structures. Its complexity is high in theory if many
fusions are applied in succession to any given (the same) node, but the total number of fusions
that may be performed is not limited. In practice, the algorithm is fast enough for most situations
one can meet in practice.

To provide a more complete solution to the problem of the scattering effect, we propose the
following scheme. Given an RNA, we build four tree representations for it instead of just one.
Each tree corresponds to a different level of abstraction of the secondary structure of the RNA.
The higher level represents the multi-loop skeleton while the lower level represents the sequence
of paired and unpaired bases. For each tree except the one at the lowest level, there is a one-to-
many relation between nodes, that is, a node of the tree at a given level is related with at least
one node in the tree at the levels below. Two elements at the lowest level of abstraction, that
is, two bases or base pairs can be matched only if they are part of a same structural element,
the correspondence between such elements having being identified at a previous step by using
the algorithm for comparing two structural tree representations introduced in this paper. Such
approach thus allows us to address the problem of the scattering effect in an efficient way. A full
description and practical consequences of such 4-level comparison method will be the subject of
another paper.

Fig. 10. Result of the editing between the two RNAs shown in the Figure 4 allowing for node and edge
fusions. The boxes represent edge fusions.

Fig. 11. Part of a mapping between two rRNA small sub-units. The node fusion is circled.

References

1. D. Bouthinon and H. Soldano. A new method to predict the consensus secondary structure of a set of
unaligned RNA sequences. Bioinformatics, 15(10):785–798, 1999.

2. James W. Brown. The ribonuclease p database. Nucleic Acids Research, 24(1):314, 1999.
3. N. el Mabrouk and F. Lisacek. Very fast identification of RNA motifs in genomic DNA. application to

tRNA search in the yeast genome. J. Mol. Biol., 264(1):46–55, 1996.
4. T. Winkelmans J. Wuyts, Y. Van de Peer and R. De Wachter. The european database on small subunit

ribosomal rna. Nucleic Acids Research, 30(1):183–185, 2002.
5. F. Lisacek, Y. Diaz, and F. Michel. Automatic identification of group I intron cores in genomic DNA

sequences. J. Mol. Biol., 235(4):1206–1217, 1994.
6. B. Shapiro. An algorithm for multiple rna secondary structures. Comput. Appl. Biosci., 4(3):387–393,

1988.
7. B. A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using tree comparisons.

Comput. Appl. Biosci., 6(4):309–318, 1990.
8. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and related

problems. SIAM J. Comput., 18(6):1245–1262, 1989.
9. M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res.,

31(13):3406–3415, 2003.

