N
N

N

HAL

open science

Optimal mappings with minimun number of connected

components in tree-to-tree comparison problems

Pascal Ferraro, Christophe Godin

» To cite this version:

Pascal Ferraro, Christophe Godin. Optimal mappings with minimun number of connected components
in tree-to-tree comparison problems. Journal of Algorithms in Cognition, Informatics and Logic, 2003,

48, pp.385-406. hal-00306620

HAL Id: hal-00306620
https://hal.science/hal-00306620
Submitted on 1 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00306620
https://hal.archives-ouvertes.fr

An algorithm for comparing unordered tree graphs based on a
minimum cost mapping with a minimal connectivity

Pascal Ferraro*and Christophe Godin'

March 19, 2001

Abstract

This paper considers the problem of finding a minimum cost mapping between two un-
ordered trees with minimal connectivity. Based on the generalization of an algorithm for
computing an edit distance between trees, the proposed algorithm solves this problem in
sequential time O(|T1| x |T2| x (deg Ty + degT») x log,(deg Ty + degT5)).

1 Introduction

In this paper, we consider rooted and labeled trees (trees whose vertices are labeled). Unordered
trees are trees in which the ancestor relationship is the only significant order relationship between
vertices. In the following, we consider the problem of comparing unordered trees.

To compute distances between trees, edit distance metrics, initially introduced for string to
string comparison problem, were first extended to compare ordered trees |14, 13] and [15, 6] for a
review. Zhang recently proposed an algorithm for comparing unordered trees based on a similar
framework [18, 19]. Zhang’s distance is computed as the minimum cost of the mappings that
maps one tree onto the other. In general, this distance is achieved by more than one mapping.
Zhang’s algorithm computes this distance using an arbitrary optimal mapping.

However, to apply Zhang’s algorithm in the context of plant comparison [2, 3, 5|, we have
been led to look for particular types of optimal mappings. In this paper, we describe an extension
of Zhang’s algorithm that computes the optimal mapping which induces the minimal number
of mapped vertex groups (connected components) over the two compared trees. The algorithm
does not change the complexity of Zhang’s original algorithm.

2 Definitions and notations

A directed graph G = (V, E) consists of a set V' of vertices, a set of edges E, each edge being
represented by an ordered pair of vertices. The number of vertices of G is denoted by |G|. Let

“Department of Computer Science - University of Calgary - 2500 University Drive N.W., Calgary, Alberta,
T2N 1N4 Canada. Phone: (011) (403) 220 5114. e-mail ferraro@cpsc.ucalgary.ca

TPlant Modeling Program - CIRAD, TA/40E - 34398 Montpellier Cedex 5, France. Phone: (33) 4 67 59 38
62; Fax (33) 4 67 59 38 58; e-mail godin@Qcirad.fr

e = (v,w) be an edge in F, vertices v and w are called extremities of e, the vertex v is called
the father of w and the vertex w is called the son of v. The set of sons of v is represented by
son[v] and the size of son[v] is denoted by m,. For any k in {1..n,}, vg represents a son of v.
A vertex v is called an ancestor of an other vertex w and w is called a descendant of v if there
exists a sequence of vertices (z1,x2, ..., Ty), called a path, such that ; = v and z,, = w, and for
each consecutive pair of vertex (z;,x;t1), z; is the father of x; ;. The ancestor relationship is a
partial order relation which is denoted by v < w. The least common ancestor of two vertices v
and w, denoted by lca(v,w), is a common ancestor of v and w such that every common ancestor
z of v and w satisfies z < lca(v,w). The set of descendant of v is denoted by V[v] and contains
v itself. A sub-graph H = (W, F) of a directed graph G = (V, E) is a directed graph such that
W CVand F C E. Let G = (V,E) be a graph and W be a subset of V. Let Eyw be the
subset of ' made of edges having both extremities in W. We define G(W) = (W, Ey) as the
sub-graph generated by the set of vertices W. A directed graph is called connected if every pair of
its vertices are connected by a path. A connected component of a directed graph is a connected
sub-graph containing a maximum number of edges.

A labeled graph is a graph associated with a labeling function a which affects a label from
a finite or infinite set ¥ = {a, b, ¢, ...} to each vertex. A distance can be defined on vertices of a
labeled graph by using a distance on their labels. Let A be a unique symbol not in ¥ and let d
be a distance metric which assigns a non-negative real number d(a,b) to each pair of labels of
Y U{A} (a,b).

d is extended to assign to any pair of vertices a non negative real number : d(z,y) =
d(a(z),a(y)). The distance between the label of z and the label A is denoted : d(z,\) =
d(a(z), A) = d(X, ().

A rooted tree graph, is a graph in which every vertex except one, called the root, has only
one father vertex. The root has no father vertex. By extension, the particular graph 6 = (0,)
is a tree and is called the null tree. A sub-tree is a connected sub-graph of a tree. An unordered
rooted tree is a rooted tree in which the set of sons of each vertex is not ordered. An unordered
rooted tree is just a rooted tree. We use the term unordered to distinguish it from ordered
rooted trees. Unless otherwise stated, all trees, in this paper, are unordered labeled rooted
trees. A forest is a directed graph whose connected components are tree graphs. In this paper,
T, = (V1, E1) and Ty = (Va, E9) represent trees, respectively rooted in v andw). A sub-tree of T;
(¢ € {1,2}) rooted in z is denoted by T;[z| = (V;[x], E;[z]) and the sub-forest of T} rooted in z is
denoted by Fj[z] = G(V;[z]\{z}) (The set of vertices of Fj[z] is denoted by F'V;[z]). Particularly,
T [v] and Ty|w] represent the whole trees T} and T5.

3 Zhang’s algorithm

A considerable amount of works has been done on ordered tree comparison. Among various tree
metrics, Tai [14] and Selkow [13] proposed an edit distance metric between trees based on the
generalization of string comparison defined by Wagner and Fisher [17]. In these works, trees are
represented by ordered rooted tree, Zhang [18| extended these works in order to define a metric
between unordered rooted trees. We have shown [6, 7| that these algorithms differs only on the
constraints given in the definition of mappings and there exists a unified notation to present
these methods.

The tree-to-tree correction problem consists in determining the distance between two trees
measured by the minimum cost sequence of edit operations needed to transform one tree into

the other. Following Wagner and Fisher original definitions on sequences, three edit operations
are used: changing a vertex z into a vertex y means changing the label of z, deleting a vertex x
means making the sons of become the sons of the father of z and then removing x, inserting a
vertex x means that x becomes the son of a vertex y and be a subset of the sons of y becomes the
set of sons of z. Following [12], we call C(z,y) a changing operation, D(z) an deleting operation
and I(z) an inserting operation.

Let s be an edit operation, a cost = is assigned to each edit operation by letting : if s
changes x into y then y(s) = y(C(z,y)) = d(x,y), if s deletes x then y(s) = y(D(z)) = d(x, \)
and if s inserts the vertex x then y(s) = y(I(z)) = d(X,z). We extend y to a sequence of edit
operation S = (s1, 82, ...,8,) by letting v(S) = > ; v(s;). This makes it possible to define a
dissimilarity measure D(T,T5) from tree T} to tree T% is measured as the minimum cost of all
sequences of edit operations which transforms 77 into 75, i.e:

D(T[v], T2[w]) = min{y(S); S is a sequence of edit operations which transforms T}[v] into Thw]}

In order to characterize the effect of an edit operation sequence on a tree, Tai [14] introduced
the structure called mapping between trees similar to the notion of frace between sequences
of Wagner and Fisher [17]. A mapping is intuitively a description of how a sequence of edit
operations transforms 77 into 75, ignoring the order in which edit operations are applied. Let
T1[v] = (Vi[v], Er[v]) and Te[w] = (Va]w], Ex[w]) be two trees, a mapping M is a set of ordered
pairs of vertices (z,y) of T1[v] and Ta[w].

Let M be a mapping between two trees T1[v] and Th[w], we define :

M, = {z; € Vi[v];3ze € Valw], (z1,22) € M}
M, {z2 € Va[w]; Jz1 € Vi[v], (21,22) € M}

For any vertex z in M, U M,,, we will say that « has an image by M.
Similarly let M be a mapping from T}[v] to Th[w], M represents the set of vertices which
are not mapped in M:
M, = WVi[v\M,
Valw]\ M,

K

M represents the union M, U M,,.

Then a cost of M can be define as follows:

yM) = T dlay)+ Y d@ A+ Y d(Ay)

(w,y)eM €M, yEMy
= > dmy)+ > d(z,\)
(Iry)EM Q?EM

Remark that this last equation is true if and only if d is a distance metric.

A walid mapping is a mapping that must respect additional constraints. In most tree to
tree correction problem, at least two constraints must be satified:

e z € Vi[v] and y € Valw]

e For any pair (x1,z2), (y1,y2) in M:
T1 =Yl <& T2 = Y2 (Cl)

21 <Y1 w2 < Yo (C2)

The relation between a trace and a sequence of edit operations has been shown by Wagner
and Fisher [17]; Tai [14] generalized this result for mappings between trees. Given S, a sequence
of edit operations from T} [v] to Ty[w], there exists a mapping M from T)[v] to T[w] such that
v(M) < ~v(S). Conversely, for any valid mapping M from Ti[v] to Th[w], there exists a sequence
of edit operations such that (S) = v(M). Based on this results it can be shown that :

D(T[v], T2[w]) = min{y(M); M is a mapping from T}[v] to Th[w]} (1)

Tal [14] proved these results for ordered rooted tree graphs and mapping defined by con-
straints (C1) and (C2). Based on the results of Kilpelainen and Mannila [11]|, Zhang [20] showed
that finding D(T[v], T2[w]) in case of unordered rooted tree graphs and mapping defined from
constraints (C1) and (C2) is a problem MAX SNP-hard. He proved [18, 19] that the Tai’s results
can be generalized to unordered trees by adding a constraint (C3) to modify the definition of a
valid mapping.

A walid mapping M is a mapping satisfying C1, C2 and C3 such that for any triple (z1, z2),
(ylayZ)a (2’1,2’2) in M
lea(w1,y1) < 21 & lca(za,y2) < 22 (C3)

The dissimilarity measure D thus defined is shown to be a distance metric [18].

Zhang proposed a dynamic programming algorithm to compute the distance D (T1[v], T»[w]):

D(6,6) =0
D(Fi[v],0) = Z()D(Tl[vk],f?) D(T1[v],0) = D(Fi[v],0) + d(v, A)
D(9, Fylw]) = zmpmmW]mwmw:D@&mnwwm
wreEson(w
(D(F1[v], Falw]) + d(v,w)
D(Tl[U],TQ[U)]) — min D(OaTQ[w)]) + wkgslégw {D(Tl[v] T2[]) - D(97T2[wk])}
DTi[o).0) + min {D(Ty[]. Toul) - DTl 0)}

(min{d()}
D(Fy[v], F[w]) = min { w5[m+ o in AD(F[], Folw]) — D(O, Folwi])}
D(Fi[0).0) + min {D(Fifo], Falw]) — D(Filog]. 6)}

\ LESoOn

where R is a restricted mapping defining the optimum mapping between trees of two forests [19].

The distance to the null tree is introduced for following lemmas. If the valid mapping
between a tree T7[v] = (Vi[v], E1[v]) and the null tree 6 is represented by M, this valid mapping
is obviously empty : M = () and M = V;[v]. Then :

D(Fl[v]ag) = E d($,>\) D(Tl[v]ag) = E d($,>\)
zeVi[v]\{v} zeVy[v]

D0, Folw]) = > d(Az) DO, Trw])= > dAz)
zeVo[w]\{w} zeVa[w]

The problem of finding a restricted mapping is solved as a problem of finding a minimum
cost maximum flow in a network [19]. The complexity of Zhang’s algorithm is due to the minimum
cost maximum flow computation. In Zhang’s algorithm, this problem is solved by the Edmons
and Karp’s [1] algorithm improved by Tarjan [16] whose complexity is O(m|f*|logy n), where m,
n and |f*| represent respectively the number of edges, the number of vertices and the value of a
maximum flow on the network. Finally, the complexity is bounded by O(|T}| x |T2| x (deg(T1) +
deg(Ts)) x logs(deg(T1) + deg(T2))) where deg(T;), for any ¢ in {1,2}, represents the number
maximum of sons for any vertex in T;.

4 Extension of Zhang’s algorithm

In general, there is not a unique optimal valid mapping corresponding to the distance D(T,T5)
defined by equation 1. In its original form, Zhang’s algorithm enables us to compute this distance
by exhibiting one arbitrary optimal mapping.

To apply Zhang’s algorithm in the context of comparing plants [4, 5], we have been led to
look for the optimal solution for which the mapped vertices are as much grouped as possible.
Figure 1 shows two optimal solutions (i.e. corresponding to the same D(T7,T%)) inducing different
numbers of groups of mapped vertices on 77 and T5. In this paper, we describe an extension
of Zhang’s algorithm that computes the optimal solution which induces the minimal number of
connected components over the two compared trees.

4.1 Problem position

In order to illustrate the property that there exists different optimal valid mappings, consider
two trees 17 and T represented in figure 1. We compare both trees using Zhang’s algorithm
with a local distance defined as follows:

e insertion and deletion cost = 1

e matching cost = 0

Let us notice that the use of such a local distance relies on matching as many vertices as
possible by respecting the constraints of mapping. The distance is then the number of vertices
which could not be matched. We have represented on figure 1 two different valid mappings M;
and Ms with same cost.

A mapping M from T3 to T induces different number of groups of mapped vertices. The
different groups corresponding to our example are represented by a dotted line on the figure 1.
On each tree structure 77 and 75, an induced graph is thus defined in the following way:

T T

M1
—
T1 T2
(b) M,
—

AVANFAVAN

Figure 1: Two different mappings having the same cost. The mapped vertices are represented
in black. (a) optimal valid mapping (cost = 4) with 9 connected components. (b) optimal valid
mapping (cost — 4) with 4 connected components.

e a vertex v belongs to the induced graph if and only if v has an image by M;

e an edge (z,y) belongs to the induced graph if and only if z and y have an image by M.

The number of connected components of the induced graph on T3 (resp. T%) is called the
number of connected components of M on Ty (resp. on Tb).The number of connected components
of M is the sum of the connected components on 77 and 7. The number of connected components
of M is then necessarily equal to or higher than 2. In this paper, we are interested by optimal
valid mappings having a minimum number of connected components. We have presented in
the previous section a recursive algorithm which calculates the cost of an optimum mapping by
comparing various sub-tree structures in an ascending way (from leafs to the root). We will show
in the following that it is possible to follow the same recursive scheme to determine the number
of connected components of optimal mapping and to calculate that which has the minimum
number of connected components.

Let us illustrate the recursive calculation of the number of connected components of a
valid mapping on a simple example. Consider the comparison between T} and T5. Let us assume
an optimal mapping M is known at some stage of the recursion for a sub-tree T' rooted in wv.
Its number of related components is denoted by c¢. Let us determine the number of connected
components of the mapping at the following stage, i.e. when we consider the sub-tree T of Ty
rooted in fat[v]. ¢ denotes the number of connected components the new valid mapping M "
Two distinct cases must be considered according to whether v has or not an image by M (figure
2) :

1. The root of T" has no image :

(a) the inserted vertex has no image. Then the number of connected components does
not change: ¢ =c;

(b) the inserted vertex has an image then the number of connected components is in-
creased: ¢ =c+ 1.

2. The root of T has an image:

(a) the inserted vertex has no image and then the number of connected components does
not change: ¢ =c;

(b) the inserted vertex has an image. This new vertex can be aggregate with the connected
component of v, thus the number of connected components is does not change: ¢ =c.

(1) ? @
@ @

(b)

(b)

Figure 2: Recursive determination of the number of connected components : case of a tree.
Vertices which have an image are represented in black. To study the connected components
resulting from the addition of a root vertex to an original tree, two cases need be considered
depending on whether the root of the original tree has an image or not (cases 1 and 2). Then,
from these original trees, two new different cases need be considered, depending on whether
the added vertex has or not an image (cases a and b). In case l.a, 2.a and 2.b the number of
connected components remains the same. In cases 1.b, the number of connected components
increases.

In general, the problem can be stated as follows: knowing the mapping of a forest F' of 17,
we have to compute the number of connected components. If the vertex v is inserted as root
of the tree structures of the forest. Then, we can again consider two cases according to whether
“the roots” of F' have or not an image by mapping (figure 3) :

There exists r tree graphs respectively rooted in vy, vs,...,v, of F' such that vi,va,..., v,
have an image by the mapping:

1. the inserted vertex has no image and then the number of connected components does not
change: ¢ =c ;

2. the inserted vertex has an image. This new vertex can then be aggregate with vertices
v1,02,...,U, and v ina unique connected component, thus the number of connected of T’
is: ¢ =c—r+1.

2

Figure 3: An example of the recursive determination of connected component number : case
of a forest. Vertices which have an image are represented in black. To study the connected
components resulting from the addition of a root vertex to an original forest, two cases need be
considered, depending on whether the added vertex has or not an image (cases a and b). In case
a, the number of connected components is not affected by the addition of v’. In case b, v, v
and v’ can be grouped in the same connected component, which changes the overall number of
connected component in the resulting tree.

In the following, based on a similar reasoning, we compute the number of connected com-
ponents for any valid mapping.

4.2 Formalization
4.2.1 Notations and definitions

Let Fj[v] (resp. Fylw]) be a forest rooted in v (resp. w), M C Vi[v] x Vo[w] is a set of ordered
pairs of vertices (z,y) € Vi[v]\{v} x Va[w]\{w} satisfying constraints (C1), (C2) and (C3), where
Vi[v]\{v} (resp. Vo[w]\{w}) represents the set V[v] (resp. Vo[w]) minus {v} (resp. {w}).

The set of valid mappings from Ti[v] to Ta[w] (resp. from Fj[v] to Fa[w]) is denoted by
T (v,w) (resp. F(v,w)).

Let M be a valid mapping in 7 (v,w) U F(v,w). G(M,) and G(M,,) are the graph re-
spectively induced by the set of vertices M, and M,,. We denote by ¢(M,) (resp. ¢(My)) the
number of connected components of G(M,) (resp. G(My)). ¢(M) = ¢(M,) + ¢(M,,) is called
the connected component number of M.

Let S[v] be a tree or a forest rooted at a vertex v, the set of roots of S[v] is denoted by
root[v]. Thus, for example, if S[v] is a forest F'[v] and if vi,vo,...,v, are the p sons of v, then
root[v] = {v1,v2,...,vp}, and if S[v] is a tree T'[v] then root[v] = {v}. The number of sons of v

(resp. w) which have an image by M are respectively denoted by r(M,) and r(M,):

r(My) = |rootlv] N M,|
r(My) = |rootfw] N M,

r(M) represents the number of sons of v and w which have an image by M:

r(M) =r(M,) + r(My)

4.3 Properties of valid mapping
To determine recursive relations that will enable us to compute an optimal valid mapping with a

minimum number of connected components, we now introduce several useful properties of valid
mappings.

4.3.1 Case of trees

Let T1[v] and T3[w] be two rooted trees and let M be a valid mapping from T} [v] to Th[w].

Let us define a partition of the set of valid mapping as follows: T (v, w):

1. M=0:

° T(v,w)@,@ = {M c T(U,w) | M = @}

2. M # () then :
e T(v,w)c=={M € T(v,w)|v € M, and w ¢ M}
o T(v,w)=c ={M € T(v,w)|v ¢ M, and w € M}
o T(v,w)—— ={M € T(v,w)|v € M, and w € M}
o T(v,w)—= ={M € T(v,w)|v ¢ M, and w ¢ M}

Subsequent lemmas and propositions show properties of this partition that will enable us
to designthe final algorithm.

Proposition 1 Let M be a valid mapping in T (v,w) :
1. M is in T (v,w)c = if and only if there exist wy, € son[w] and M € T (v,wg) such that
M =M and:
V(M) =(M') + D(0, To[v]) — D(0, To[vx])
2. M is in T(v,w)=c if and only if there exist vy € son[v] and M € T (vg,w) such that
M =M and:
V(M) =~(M') + D(T1[v],0) — D(T1[ve], 0)
3. M isin T (v,w)c c if and only if there exists M' € F(v,w) such that M = M’ and:

y(M) = 7(M,) +d(v,) +d(\, w)

4. M isin T (v,w)== if and only if M* = M \ {(v,w)} € F(v,w) and :

V(M) =y(M") + d(v,w)

Proof : The proof of this proposition is given in [19]. O

Results of this proposition are represented in figure 4.

2 v w

Figure 4: Recursive relations between EDMs following proposition 1. Vertices which have an
image are represented in black,vertices which have no image are represented in white, and vertices
in grey may have an image or not. A typical mapping in (1) 7 (v,w)c =, (2) T(v,w)=c, (3)
T (v,w)==, ()T (v, w)c,c

The following lemmas give recursive relations for computing 7 (v, w) and its associated
quantities r(M) and ¢(M).

Lemma 1 Let Ty [v] = (Vi[v], E1[v]) and Tyv] = (Va[v], E2[v]) be two trees, and let M be a valid
mapping of T (v, w)c = -

wy € sonfw] and M € T(v,wp)|M =M :
(M) = ¢(M)
r(My) =
r(My) = 0

Proof : According to proposition 1, for any valid mapping M in T (v, w)c =, there exists
wy, a son of w and a mapping M in T (v,wy) such that M = M . Since the root of T2[w]| has
no image, r(My) = 0. The number of connected components of M is then equal to the number
of connected components from M, onto T}[v] plus the number of connected components from
M, onto Thlwy] :

’

c(M)=c(M)

By definition of 7 (v, w)c =, the vertex v has an image , then : r(M,) =1 (see figure 2).
|

10

Lemma 2 Let T\ [v] = (Vi[v], Ei[v]) and Ta[v] = (Va[v], E2[v]) be two trees, and let M be a valid
mapping in T (v,w)= c :

=,

Jwy € sonfw] and M € T(vg,w)|M =M

Proof : This is the symmetric case of lemma 1 U

Lemma 3 Let T\ [v] = (Vi[v], Ei[v]) and Ta[v] = (Va[v], E2[v]) be two trees, and let M be a valid
mapping in T (v, w)

=,=

AM* € Fv,w) | M = M*U{(v,w)}:

(M) = c¢(M*)—r(M*)+2
1
r(My) = 1

ﬁ
~—~~
5
SN
I

r(M,) = 1
r(My) = 1
According to proposition 1, for any valid mapping M in 7 (v,w)= —, there exists a valid

mapping M* in F(v,w) such that M = M* U {(v,w)}. Since v has an image, v can be grouped
with the r(M)) roots of the trees of Fj[v] which have an image by M™* in a single connected
component (see figure 3), therefore:

c(My) = c(My) —r(M,) +1

We can establish the same result for ¢(M,,), thus:

c(M) = c(My)+c(My)
= (M) = r(My) + 1+ c(My) —r(M,) +1
= ¢(M*)—r(M*)+2

g

Let M be a mapping of 7 (v,w)c,c, and let M’ be the maping : M U {(v,w)} (M' is
obviously a valid mapping of 7 (v,w)=-). Furthermore y(M) — y(M') = d(v,\) + d(\, w) —
d(v,w), and then using the triangular inequality of d, y(M) > 'y(M'). The cost of a mapping M
of T (v, w)c c is always higher than the cost of mapping M U {(v,w)} of T (v, w)= —. It is thus
not necessary to compute the number of connected component of these sub-optimal mapping.

In the previous lemma, the computation of the number of connected components of a
mapping between forests appears as ¢(M*). This computation is studied in the next section.

11

4.3.2 Case of forests

Let Fy[v] and Fylw] be two rooted forests and let M be a valid mapping from Fi[v] to Faw].
We define a partition of the set of valid mapping in three sets:

o Flv,w)c=={M € F(v,w) |VY(z,y) € My < w}
o Flv,w)=c ={M € F(v,w)|V(z,y) € My < w}

’

o Flv,w)== = F(v,w) N (F(v,w)c,= UF(v,w)=)

’ =

We can easily remark that these subsets form a partition of F (v, w).

In the following, I and J denotes respectively the set of indexes of the sons of v and w :
I={1l...n}and J={1...m}

Proposition 2 Let M be a valid mapping in F(v,w):

1. M is Fe—(v,w) if and only if there exist wy € son[w] and M € F(v,wy) such that
M =M and:
V(M) =~(M') + D(0, Fy[v]) — D(0, Fz[vg])

2. M is F— (v, w) if and only if there exist vy, € sonfv] and M' € F(vg,w) such that M = M’
and:

(M) = (M) + D(F1[v],8) — D(Fi[vg),)

3. M is F— —(v,w) if and only if there exists a mapping K in IxJ and a partition (Mk’l)(k,l)eK
of M where (M*') € T (vy,w;) such that : M = Ukpex (M*1), and:

y(M)= Y ()

(k))EK

4. M =0 and:
v(M) = D(Fi1[v],0) + D(0, F»[v])

Proof: This result is a direct consequence of the definition of valid mapping between forests
and the previous partition [19, 6]. These results are represented by the figure 5. O

The following lemma gives recursive relations for computing F(v,w) and its associated
quantities r(M) and ¢(M).

Lemma 4 Let Fi[v] = (Vi[v], E1[v]) and Fa[v] = (Va[v], Ea[v]) be two forests, and let M be a
valid mapping of F(v,w)c = :

Jwy, € son[w] and M € F(v,w)|M =M

r(My) = 0

12

(@) v, N ® Y 'Y
4 b e 4y
AAAA ANN AaAA AAA

(4) s | e 4) v &

) o
» RN
AN AN

O

N
v

Figure 5: Recursive relations between EDMs following proposition 2. A typical mapping in
(1) T(w,w)c =, (2) T(v,w)=c, 3) T(v,w)=—, (4)T (v,w)c,c. Vertices which have no image
are represented in white color. Vertices which can have or not an image by the mapping are
represented in grey color.

Proof : According to proposition 2, for any valid mapping M in F(v,w)c =, there exists wy
son of w and M’ a mapping in F(v,wy,) such that M = M. Tn F(v,w)c —, neither w nor any
of its sons can have an image and thus: r(M,) = 0. Similarly the number of roots of F}[v]
which have an image by M is necessarily equal to ’I“(M;,) Furthermore, the number of connected
components of M is equal to the number of connected components from M;} in Fj[v] plus the
number of connected components from M;Uk in Fylwg]:

g

Lemma 5 Let Fy[v] = (Vi[v], E1[v]) and Fy[v] = (Va[v], E2[v]) be two trees, and let M be a valid
mapping in F(v,w)=c :

vy € sonfv] | IM € F(op,w)|M = M’

(M) = M)
r(M,) = 0
r(My) = r(M,)
Proof : This is the symmetric case of lemma 4 O

Lemma 6 Let Fi[v] = (Vi[v], E1[v]) and Fylv] = (Va[v], E2[v]) be two forests, and let M be a
valid mapping in F= —(v,w) , then there exists a mapping K in I xJ and a partition (Mk’l)(k,l)eK

13

of M where (M*1) € T (v, w;) such that :
o(M) = D (MM

(keK
r(M,) = Y r(M)

(keK
r(My) = Y r(Mgh

(k,)eEK

Proof : According to Zhang [19], if M is in F— _(v, w) there exists a mapping K in I x J
and a partition (M*) ek of M where (M*') € T (v, w;) such that : M = Utknyex (MF1).
Then the number of connected components of M is obviously equal to Y- e x c(M k). Fur-

thermore if the root vy, of T [v;] has an image by M*! (this means that vy € Mf,;l), then vy has
an image by M (this means that vy € M,) and finally:

r(M,) = Y r(My)
(keK

The computation of r(M,) is done similarly. O

5 Recursive computation of the optimal valid mapping

We propose in this section an algorithm that determines the optimal valid mapping with a
minimum number of connected components.

In order to determine such a particular optimal valid mapping, we need to introduce for

(M) :
o(M)] The vector ?(M) is called

cost vector of the mapping M. The set of pairs of R? is ordered in a lexicographic order:

any valid mapping M, the following quantity: ?(M) = [

[xl] <[362]<:>(a:1<x2)0r(x1:xgandy1<y2)
Y1 Y2

In this way, a pair X with lower cost than Y will always be considered as lower than Y in
R? | whatever its number of connected components defined in its second coordinate. However, if
pairs X and Y have identical cost, the lowest pair is the one with minimum number of connected
components.

Using this order, we are looking for the valid mapping M verifying:

D(T\[v], To[w]) = min {?(M)}

MeT (v,w)

In order to give a recursive relation to compute B(Tl [v], To[w]) in the following lemma,
=
we need to introduce the intermediate quantity: I" (M) = [

%
D' (Fy[v], Fy[w]) denotes the minimum of this quantity on F(v,w):

— —
/(R Bul) = | min (T'(0))

14

Proposition 3 B(Tl [v], To[w]) is recursively computed using the following relation:

D/(Fi[o], Falw]) + [e]

D(2i[o], Tofw) = min{ B9, Tyfu]) + miny,csmn) (DT[], lw]) - DO, Tolun))
D(Ti[v), 0) + miny, coony { D (Ti[on], Tolw]) — D(Ti[or], 0}

Proof : Using lemmas 1, 2, 3 and proposition 1, we deduce that if M is in 7 (v, w) then
M verifies one and only one of the following assertions:

1. Jwy, € son[w] and M' € T (v, wy) such that M = M

T = [V(MU + DO.Tifu) - D0 i)]
_ [)] . [Do, Tl] . [D6, T]

= T(M)+ DO, Ta[w)) — DO, Tolwy))

2. Juy € sonfv] and M’ € T (vy, w) such that M = M

3. (v,w) € M and M* € F(v,w)

(M*) + d(v, w)
T = [(M) = (M) 12]

=
- T+ [A w)]
4. M € F(v,w) and M is necessarily the cost of M is sub-optimal.
This is the results of our proposition.

>From this last result, in order to determine B(Tl [v], To(w)), we need to compute
D(Fifol, Fofu) = | min {T7(M)}
LBl = i,

For any valid mapping M, the following quantities are introduced:

(M)] and T(M) = (M)

15

The minimum of these quantities on 7 (v, w) and F(v,w) are denoted as follow:

DY)) = | min (F¥(a))
DUTp D) = | min {T7(0))
DUR[, Bw) = | min ((M)
DA Blul) = | min {T7(0)

Proposition 4 Quantities D' (Fi[v], Fy[w]), DY (Fi[v], Folw]), D(Fi[o], Fafw]) and B (Fi[v], Fy[w))

are recursively computed using the following relations:
[D(Fi[e], 0) + ming, coons) {Wm [ka s[w]) — D(Fifoe].6)}
B(Fl[v], Fy[w]) = min < B(G’FQ[W]) + minwkEson (w) {ﬁ [wk]) - 3(0, FQ[wk])}

minME}—:,:(v,w) {E,)(M)}
(B(E1[0],0) + miny, coney { D(Filon], Fafw]) — D(Falug],0) }
DYF[o], Fofu]) = min § B0, Fafuw]) + ming, e sonuy { D (Fi[0], Folug]) — DO, Fofuor])
| mingser o {T70M) |

D(F1[0],0) + mity, coony { DV (Fi[og], Fafuw]) — D(Filug], 6) }
DU [o], Fyfw]) = min D6, Fofuw]) + ity ooy { D(Falo], Boluw]) — DO, Falun) }
minyrer_ o {T7(M) }

D(Fi[o), 0) + mity, coon(e) { D(Filon], Boluw]) - D(Fi[ox],0)}
D(Fi[o], Bolw]) = min{ DO, Ffw]) + min, conuy { D(Fi[e], Foluwg]) — DO, Fafuon])
minyrer_) { T (M)}

Proof : Using lemmas 4, 5 and 6 and proposition 2, we deduce that if M is in F(v,w)
then M verifies one and only one of the following assertions:

1. 3wy, € sonfw] and M' € F(v,w;) such that M = M'. In this case, r(M,) = r(M,) and
r(My) = 0:
D(0, Fy[w]) — D(0, Fy[wy])
?(M) |: ’Y M 2 (M;) 2[WEk :|
|: :| |: H,FQ[U)]) :| . |: D(e,FQ[UJk;]) :|
0 0
— M +B 0, Folw)) — D (0, Fafwg])

16

2. Jug € sonfv] and M € F(vj,w) such that M = M . In this case, r(M,) = r(M,,) and
r(My) = 0:

V(M) + D(Fi[o],6) ~ D(Fi[o],0)

c(M —r(M,)

w

— M)+ B(Fi[v],0) — D(Fi[vg], 0)

T(M) =

~

The computation of t}le> minimum on F(v,w) gives the results of our proposition. The in-
termediate quantities D' (F1[v], Fy[w]), DP(Fy[v], Fo[w]), D (F1[v], Fy[w]) and D (F) [v], Fy[w))
calculated in a similar fashion. O

The method for computing quantities minysez _ (y,uw) {?(M) }, Minpyer_ _(vw) {ﬁ(M) },

_?
minyser_ _(v,w) {IW(M)} and minycr_ _(p,w) { (M)} is given in the following section. These

_)
computation is based on the computation of D'(T: [v], To[w]), DY (T [v], Ta[w]), D™ (Ty[v], Ta[w))

and B(Tl [v], To[w]) calculated as follow.

-
Proposition 5 D (T[v], To[w]) is recursively computed using the following relation:
(

DL R + | 5 |

. 0
B (Tl) — min 4. BTl + s, oty { B Telan)) - Bo. Tlan)} +| | |

\

D(T1[v], 0) + ming, cyon(o) {B(T1 (og], Tolw]) — D (T [vg], o)+ [(1)]
([Di(# L], Fofw) + [(v, w)]

DY), Tofw]) = min { B0, Tofw]) + miny, coon(u) { B (Ti (0], Tolown]) — B (6, Tofu) }

D(T1[v],0) + ming, ¢ son(v) {_D) (T1[v], To[w]) — B(Tl[“k]’e} * [(1)]

(DanLaw)+ |
D[], Tolw]) = min{ B (o, Tyfu]) + i, sonu) { D (T1[0], Tolwn]) = D (0, Tolwy)) } + [(1’]

| DUTi6),6) + miny, coonco) { D(@ilonl, Tofu]) — DT3[, 0

Proof : Similar to proposition 3 O

6 Restricted Mapping
In prop 3 and 4, all the quantities cab be recursively evaluated except for minycr _(yw) 4 T (M) ¢,

minpre - _(v,w) {I?(M)}, Minpser_ _(v,w) {IW(M)} et minyer_ _(v,w) {?(M)} These quan-
tities need to be computed separetly, using a special scheme.

17

!

A solution for computing minyser _(p0) I (M)} Other similar quantities can be com-

puted likewise. As shown by Zhang [18], this optimization problem can be modeled as a minimum
cost maximum bipartite matching problemand solved using aweighted maximum matching algo-
rithm [1]. However the cost used in our case (section 5.) is not a real non-negative number but
is defined on R?. To extend the minimum cost maximum bipartite matching problem to costs in
R? we need to define a total order on R?. As in the previous section, we use for this purpose a
lexicographic order, and each cost is greater than (0,0).

G
w

a G
\
A) N\

b) L[D(T v, T fw)]

15T {4.6)

Figure 6: Restricted mapping and modelisation as a network flow

Given Fj[v] and Fy[w], we construct a graph G(v,w) = (V, F) as follows (figure 6:

1. vertex set : V = {s,t, ey, ey} Uson[v] U son[w], where s is the source, ¢ is the sink, and e,
and e,, represent two empty trees;

2. edge set : (s,vg), (S, ey), (€w,t), (w,t) with a cost (0,0), (vg, w;) with cost B(Tl [vg], To[wy]),
(vg, €y) with cost D (T (vg),), (ew,w;) with cost D (0, T2(w;)), and (ey, e,,) with cost (0,0).
All the edges have capacity one except (s, ey), (€y,€y) and (ey,t) which capacities are ny,
max{ny, ny} —min{n,, n,}, and n,,, respectively.

18

G is a graph whose edges are labeled with integer capacities, non-negative costs in R?, and
the maximum flow f* =mn, + n, [19].

When the cost is a real, Zhang [19] showed that the cost of the minimum cost maximum
flow the is exactly minyrer_ _(y,w) {7 (M)}. In our case, using a similar scheme we have shown

[5] that the cost of the minimum cost maximum flow the is exactly miny;er_ _(yuw) F’(M)}.

The computation of the other quantities is similar and used the same modeling by the minimum
cost maximum bipartite matching problem.

7 Algorithm and Complexity

The detailed algorithm is depicted in algorithms 7.1 and 7.2. The general structure of the
algorithm is similar to that of Zhang’s algorithm except that at each step of the recursion,
additional tests are performed which enable us to choose one solution with minimum number of
connected components when several equivalent optimal solutions are available.

Algorithm 7.1 Initialization: computation of the distances between trees and empty tree

D(6,0) =0

DY(0,0) =0
D¥(9,6) =0
_>

D'(6,0) =0

For any z € T|, compute

D(Rel,0)= Y. D(Tile],0) and D(Fi[a].0) = D(Fifa],0) + (d(z,\),0)

z Eson(x)

For any y € T, compute

BO,RY) = Y DOyl and DO, FRly)) = DO, Bly) + (d,y),0)
yrEson(y)

The final time complexity is thus that of Zhang’s algorithm [19]:

O(|T1| x |Ty| x (deg Ty + degTy) x logy(deg T + degT3))

8 Conclusion

Using the definition of a distance metric between unordered labeled trees proposed by Zhang, we
have presented an algorithm for computing an optimal matching between rooted trees minimizing
the number of connected components induced by the mapping. This algorithm extends Zhang’s
algorithm by proposing a characterization of an optimal mapping. This algorithm does not
increase Zhang’s algorithm complexity and computes a mapping with the minimum cost and
having a minimum connectivity.

19

Algorithm 7.2 Optimal valid mapping with a minimum number of connected components
Initialization algorithm.
For any v € T} do and For any w € T, do:
(A) Computation of restricted mappings:

Mefm,in(v,w){?(M)} B Mefm,in(u,w){ﬁ(M)}
wein (Fon} = i {Fon)

(B) First optimization step
B0, Fa(w)) + iy, coon(u) { D(Frlo], Bxlug)) — DO, Fa(w)
D(F[o], Fofuw]) = min{ D(F1(0),0) + miny, coon(e) { D(Filon], Polw]) — D(Fa(ve),0) |
minMEf:,:(v,w) {?(M)}

(C) Intermediate optimization step using step (B)
B0, Fo(w)) + iy, c.onuy { D' (F[0], Folun]) = D0, Faluy) }
DY [o], Pofw]) = min{ B(Fi(0), 0) + miny, coono) { D(Fi[o], Fow]) — D(Fi(0r),0)}
minMEf:,:(v,w) {E(M) }

B0, Fo(w)) + mitky, c.onuy { D (Fi[0], Folun]) = D0, Fawy) }
DY (R[], Fyfuw]) = min{ B(F)(0),0) + min, cooney { DV (F [vkl Foluw]) = D(Fi(0r),0) }
minMEf:,:(v,w) {W(M)}

(D) Intermediate optimization step using step (C)

D6, Fo(w)) + mity, coonuy { D (Fi [v], Faluwn]) = D (0, Fy(w) }
D' (Bl Pufw]) = mind D(F1(0),0) + mity, coongey { DV (Fi[on), Fafuw]) — D(Fi(wx),0)}
_>
winger. o {700}

(E) Main optimization

ﬁ(Fl[]7 v, w 72)
B(Ti[o], [w]) = min{ D0, Tulw))) +mmwkeson w) éB o], To[w]) - B(e,Tz[ka}
D(T1[0], 6) + it csoney { D(Ta[o], Tefuw]) — D (Taluw], 0}

20

The work presented here is part of project to develop a set of tools for analyzing plants
which are modeled by rooted tree graphs [8|. The proposed algorithms and their implementation
are currently integrated into this tool set [9, 10, 4].

21

References

1]

2]

3]

[4]

[5]

6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the Association for Computing Machinery, 19:248-264,
1972.

P. Ferraro and C. Godin. A distance measure between plant architectures based on the
comparison of their topological structures. In Second International Workshop on Functional-
Structural Trees Models, Clermont-Ferrand (France), October 12-15 1998.

P. Ferraro and C. Godin. Un algorithme de comparaison d’arborescences non ordonnées
appliqué a la comparaison de la structure topologique des plantes. In SFC’98, Recueil Des
Actes, pages 7781, Montpellier (France), September 21-23 1998.

P. Ferraro and C. Godin. An algorithm for comparing unordered tree graphs based on a
minimum cost mapping with a minimal connectivity. In Third International Conference on
Orders, Algorithms and Applications, Montpellier (France), August 24-27 1999.

P. Ferraro and C. Godin. A distance measure between plant architectures. Annals of Forest
Science, june 2000.

Pascal Ferraro. Méthodes algorithmiques de comparaison d’arborescences. Applications a la
comparaison de [’architecture des plantes. PhD thesis, Institut National Polytechnique de
Toulouse (France), 2000.

Pascal Ferraro and Christophe Godin. An unified point of view on tree graph comparison.
222 Submitted in 2001.

Christophe Godin and Yves Caraglio. A multiscale model of plant topological structures.
Journal of theoretical biology, 191:1-46, 1998.

Christophe Godin, Evelyne Costes, and Yves Caraglio. Exploring plant topological structure
with the amapmod software: an outline. Silva Fennica, 31:355-366, 1997.

Christophe Godin, Yann Guédon, Evelyne Costes, and Yves Caraglio. Measuring and an-
alyzing plants with the amapmod software. In M. Michalewicz, editor, Advances in com-
putational life sciences, Vol I : Plants to ecosystems, volume January, pages 63-94. Csiro,
Australia, 1997. chapitre 4.

Pekka Kilpellainen and H. Mannila. The tree inclusion problem. In Proc. Internat. Joint
Conf. on the Theory and Practice of Software, volume 1, pages 202214, 1991.

Andrew S. Noetzel and Stanley M. Selkow. An analysis of the general tree-editing prob-
lem. In David Sankoff and Joseph B. Kruskal, editors, Time Wraps, Strings Edits, and
Macromolecules: the theory and practice of sequence comparison, chapter 8, pages 237—
252 ,. Addison-Wesley Publishing Company Inc, University of Montreal, Montreal, Quebec,
Canada, 1983.

Stanley M. Selkow. The tree-to-tree editing problem. Information processing letters, pages
184-186, 1977.

Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the Association for Com-
puting Machinery, pages 422-433, 1979.

22

[15]

[16]

[17]

[18]

[19]

[20]

E. Tanaka and K. Tanaka. The tree-to-tree editing problem. International journal Pattern
Recognition And Atificial Intelligency, 2(2):221-240, 1988.

Robert Endre Tarjan. Data Structures and Network Algorithms. CBMS-NFS - Regional
Conference Series In Applied Mathematics, 1983.

Robert A. Wagner and Michael J. Fisher. The string-to-string correction problem. Journal
of the association for computing machinery, 21:168-173, 1974.

Kaizhong Zhang. A new editing-based distance between unordered trees. In Combinatorial
Pattern Matching, 4th Ann. Symp., pages 254-265, Padala (Italy), 1993. CPM’93.

Kaizhong Zhang. A constrained edit distance between unordered labeled trees. Algorithmica,
15:205-222, 1996.

Kaizhong Zhang and Tao Jiang. Some max snp-hard results concerning unordered labeled
trees. Information Processing Letters, 49:249-254, 1994.

23

