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An algorithm for 
omparing unordered tree graphs based on aminimum 
ost mapping with a minimal 
onne
tivityPas
al Ferraro�and Christophe GodinyMar
h 19, 2001Abstra
tThis paper 
onsiders the problem of �nding a minimum 
ost mapping between two un-ordered trees with minimal 
onne
tivity. Based on the generalization of an algorithm for
omputing an edit distan
e between trees, the proposed algorithm solves this problem insequential time O(jT1j � jT2j � (deg T1 + deg T2)� log2(deg T1 + degT2)).1 Introdu
tionIn this paper, we 
onsider rooted and labeled trees (trees whose verti
es are labeled). Unorderedtrees are trees in whi
h the an
estor relationship is the only signi�
ant order relationship betweenverti
es. In the following, we 
onsider the problem of 
omparing unordered trees.To 
ompute distan
es between trees, edit distan
e metri
s, initially introdu
ed for string tostring 
omparison problem, were �rst extended to 
ompare ordered trees [14, 13℄ and [15, 6℄ for areview. Zhang re
ently proposed an algorithm for 
omparing unordered trees based on a similarframework [18, 19℄. Zhang's distan
e is 
omputed as the minimum 
ost of the mappings thatmaps one tree onto the other. In general, this distan
e is a
hieved by more than one mapping.Zhang's algorithm 
omputes this distan
e using an arbitrary optimal mapping.However, to apply Zhang's algorithm in the 
ontext of plant 
omparison [2, 3, 5℄, we havebeen led to look for parti
ular types of optimal mappings. In this paper, we des
ribe an extensionof Zhang's algorithm that 
omputes the optimal mapping whi
h indu
es the minimal numberof mapped vertex groups (
onne
ted 
omponents) over the two 
ompared trees. The algorithmdoes not 
hange the 
omplexity of Zhang's original algorithm.2 De�nitions and notationsA dire
ted graph G = (V;E) 
onsists of a set V of verti
es, a set of edges E, ea
h edge beingrepresented by an ordered pair of verti
es. The number of verti
es of G is denoted by jGj. Let�Department of Computer S
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e = (v; w) be an edge in E, verti
es v and w are 
alled extremities of e, the vertex v is 
alledthe father of w and the vertex w is 
alled the son of v. The set of sons of v is represented byson[v℄ and the size of son[v℄ is denoted by nv. For any k in f1::nvg, vk represents a son of v.A vertex v is 
alled an an
estor of an other vertex w and w is 
alled a des
endant of v if thereexists a sequen
e of verti
es (x1; x2; :::; xn), 
alled a path, su
h that x1 = v and xn = w, and forea
h 
onse
utive pair of vertex (xi; xi+1), xi is the father of xi+1. The an
estor relationship is apartial order relation whi
h is denoted by v � w. The least 
ommon an
estor of two verti
es vand w, denoted by l
a(v; w), is a 
ommon an
estor of v and w su
h that every 
ommon an
estorx of v and w satis�es x � l
a(v; w). The set of des
endant of v is denoted by V [v℄ and 
ontainsv itself. A sub-graph H = (W;F ) of a dire
ted graph G = (V;E) is a dire
ted graph su
h thatW � V and F � E. Let G = (V;E) be a graph and W be a subset of V . Let EW be thesubset of E made of edges having both extremities in W . We de�ne G(W ) = (W;EW ) as thesub-graph generated by the set of verti
es W . A dire
ted graph is 
alled 
onne
ted if every pair ofits verti
es are 
onne
ted by a path. A 
onne
ted 
omponent of a dire
ted graph is a 
onne
tedsub-graph 
ontaining a maximum number of edges.A labeled graph is a graph asso
iated with a labeling fun
tion � whi
h a�e
ts a label froma �nite or in�nite set � = fa; b; 
; :::g to ea
h vertex. A distan
e 
an be de�ned on verti
es of alabeled graph by using a distan
e on their labels. Let � be a unique symbol not in � and let dbe a distan
e metri
 whi
h assigns a non-negative real number d(a; b) to ea
h pair of labels of� [ f�g (a; b).d is extended to assign to any pair of verti
es a non negative real number : d(x; y) =d(�(x); �(y)). The distan
e between the label of x and the label � is denoted : d(x; �) =d(�(x); �) = d(�; �(x)).A rooted tree graph, is a graph in whi
h every vertex ex
ept one, 
alled the root, has onlyone father vertex. The root has no father vertex. By extension, the parti
ular graph � = (;; ;)is a tree and is 
alled the null tree. A sub-tree is a 
onne
ted sub-graph of a tree. An unorderedrooted tree is a rooted tree in whi
h the set of sons of ea
h vertex is not ordered. An unorderedrooted tree is just a rooted tree. We use the term unordered to distinguish it from orderedrooted trees. Unless otherwise stated, all trees, in this paper, are unordered labeled rootedtrees. A forest is a dire
ted graph whose 
onne
ted 
omponents are tree graphs. In this paper,T1 = (V1; E1) and T2 = (V2; E2) represent trees, respe
tively rooted in v andw). A sub-tree of Ti(i 2 f1; 2g) rooted in x is denoted by Ti[x℄ = (Vi[x℄; Ei[x℄) and the sub-forest of Ti rooted in x isdenoted by Fi[x℄ = G(Vi[x℄nfxg) (The set of verti
es of Fi[x℄ is denoted by FVi[x℄). Parti
ularly,T1[v℄ and T2[w℄ represent the whole trees T1 and T2.3 Zhang's algorithmA 
onsiderable amount of works has been done on ordered tree 
omparison. Among various treemetri
s, Tai [14℄ and Selkow [13℄ proposed an edit distan
e metri
 between trees based on thegeneralization of string 
omparison de�ned by Wagner and Fisher [17℄. In these works, trees arerepresented by ordered rooted tree, Zhang [18℄ extended these works in order to de�ne a metri
between unordered rooted trees. We have shown [6, 7℄ that these algorithms di�ers only on the
onstraints given in the de�nition of mappings and there exists a uni�ed notation to presentthese methods.The tree-to-tree 
orre
tion problem 
onsists in determining the distan
e between two treesmeasured by the minimum 
ost sequen
e of edit operations needed to transform one tree into2



the other. Following Wagner and Fisher original de�nitions on sequen
es, three edit operationsare used: 
hanging a vertex x into a vertex y means 
hanging the label of x, deleting a vertex xmeans making the sons of x be
ome the sons of the father of x and then removing x, inserting avertex x means that x be
omes the son of a vertex y and be a subset of the sons of y be
omes theset of sons of x. Following [12℄, we 
all C(x; y) a 
hanging operation, D(x) an deleting operationand I(x) an inserting operation.Let s be an edit operation, a 
ost 
 is assigned to ea
h edit operation by letting : if s
hanges x into y then 
(s) = 
(C(x; y)) = d(x; y), if s deletes x then 
(s) = 
(D(x)) = d(x; �)and if s inserts the vertex x then 
(s) = 
(I(x)) = d(�; x). We extend 
 to a sequen
e of editoperation S = (s1; s2; :::; sn) by letting 
(S) = Pni=1 
(si). This makes it possible to de�ne adissimilarity measure D(T1; T2) from tree T1 to tree T2 is measured as the minimum 
ost of allsequen
es of edit operations whi
h transforms T1 into T2, i.e:D(T1[v℄; T2[w℄) = minf
(S); S is a sequen
e of edit operations whi
h transforms T1[v℄ into T2[w℄gIn order to 
hara
terize the e�e
t of an edit operation sequen
e on a tree, Tai [14℄ introdu
edthe stru
ture 
alled mapping between trees similar to the notion of tra
e between sequen
esof Wagner and Fisher [17℄. A mapping is intuitively a des
ription of how a sequen
e of editoperations transforms T1 into T2, ignoring the order in whi
h edit operations are applied. LetT1[v℄ = (V1[v℄; E1[v℄) and T2[w℄ = (V2[w℄; E2[w℄) be two trees, a mapping M is a set of orderedpairs of verti
es (x; y) of T1[v℄ and T2[w℄.Let M be a mapping between two trees T1[v℄ and T2[w℄, we de�ne :Mv = fx1 2 V1[v℄;9x2 2 V2[w℄; (x1; x2) 2MgMw = fx2 2 V2[w℄;9x1 2 V1[v℄; (x1; x2) 2MgFor any vertex x in Mv [Mw, we will say that x has an image by M .Similarly let M be a mapping from T1[v℄ to T2[w℄, M represents the set of verti
es whi
hare not mapped in M : Mv = V1[v℄nMvMw = V2[w℄nMwM represents the union Mv [Mw.Then a 
ost of M 
an be de�ne as follows:
(M) = X(x;y)2M d(x; y) + Xx2Mv d(x; �) + Xy2Mw d(�; y)= X(x;y)2M d(x; y) + Xx2M d(x; �)Remark that this last equation is true if and only if d is a distan
e metri
.A valid mapping is a mapping that must respe
t additional 
onstraints. In most tree totree 
orre
tion problem, at least two 
onstraints must be sati�ed:� x 2 V1[v℄ and y 2 V2[w℄ 3



� For any pair (x1; x2), (y1; y2) in M :x1 = y1 , x2 = y2 (C1)x1 � y1 , x2 � y2 (C2)The relation between a tra
e and a sequen
e of edit operations has been shown by Wagnerand Fisher [17℄; Tai [14℄ generalized this result for mappings between trees. Given S, a sequen
eof edit operations from T1[v℄ to T2[w℄, there exists a mapping M from T1[v℄ to T2[w℄ su
h that
(M) � 
(S). Conversely, for any valid mapping M from T1[v℄ to T2[w℄, there exists a sequen
eof edit operations su
h that 
(S) = 
(M). Based on this results it 
an be shown that :D(T1[v℄; T2[w℄) = minf
(M); M is a mapping from T1[v℄ to T2[w℄g (1)Taï [14℄ proved these results for ordered rooted tree graphs and mapping de�ned by 
on-straints (C1) and (C2). Based on the results of Kilpelainen and Mannila [11℄, Zhang [20℄ showedthat �nding D(T1[v℄; T2[w℄) in 
ase of unordered rooted tree graphs and mapping de�ned from
onstraints (C1) and (C2) is a problem MAX SNP-hard. He proved [18, 19℄ that the Tai's results
an be generalized to unordered trees by adding a 
onstraint (C3) to modify the de�nition of avalid mapping.A valid mapping M is a mapping satisfying C1, C2 and C3 su
h that for any triple (x1; x2),(y1; y2), (z1; z2) in M l
a(x1; y1) < z1 , l
a(x2; y2) < z2 (C3)The dissimilarity measure D thus de�ned is shown to be a distan
e metri
 [18℄.Zhang proposed a dynami
 programming algorithm to 
ompute the distan
eD(T1[v℄; T2[w℄):D(�; �) = 0D(F1[v℄; �) = Pvk2son(v)D(T1[vk℄; �) D(T1[v℄; �) = D(F1[v℄; �) + d(v; �)D(�; F2[w℄) = Pwk2son(w)D(�; T2[wk℄ D(�; T2[w℄) = D(�; F2[w℄) + d(�;w)
D(T1[v℄; T2[w℄) = min8>><>>: D(F1[v℄; F2[w℄) + d(v; w)D(�; T2[w)℄) + minwk2son(w) fD(T1[v℄; T2[w℄)�D(�; T2[wk℄)gD(T1[v℄; �) + minvk2son(v) fD(T1[v℄; T2[w℄) �D(T1[vk℄; �)gD(F1[v℄; F2[w℄) = min8>>><>>>: minR fd(R)gD(�; F2[w)℄) + minwk2son(w) fD(F1[v℄; F2[w℄) �D(�; F2[wk℄)gD(F1[v℄; �) + minvk2son(v) fD(F1[v℄; F2[w℄)�D(F1[vk℄; �)gwhere R is a restri
ted mapping de�ning the optimum mapping between trees of two forests [19℄.
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The distan
e to the null tree is introdu
ed for following lemmas. If the valid mappingbetween a tree T1[v℄ = (V1[v℄; E1[v℄) and the null tree � is represented by M , this valid mappingis obviously empty : M = ; and M = V1[v℄. Then :D(F1[v℄; �) = Px2V1[v℄nfvg d(x; �) D(T1[v℄; �) = Px2V1[v℄ d(x; �)D(�; F2[w℄) = Px2V2[w℄nfwgd(�; x) D(�; T2[w℄) = Px2V2[w℄d(�; x)The problem of �nding a restri
ted mapping is solved as a problem of �nding a minimum
ost maximum �ow in a network [19℄. The 
omplexity of Zhang's algorithm is due to the minimum
ost maximum �ow 
omputation. In Zhang's algorithm, this problem is solved by the Edmonsand Karp's [1℄ algorithm improved by Tarjan [16℄ whose 
omplexity is O(mjf�j log2 n), where m,n and jf�j represent respe
tively the number of edges, the number of verti
es and the value of amaximum �ow on the network. Finally, the 
omplexity is bounded by O(jT1j� jT2j� (deg(T1)+deg(T2)) � log2(deg(T1) + deg(T2))) where deg(Ti), for any i in f1; 2g, represents the numbermaximum of sons for any vertex in Ti.4 Extension of Zhang's algorithmIn general, there is not a unique optimal valid mapping 
orresponding to the distan
e D(T1; T2)de�ned by equation 1. In its original form, Zhang's algorithm enables us to 
ompute this distan
eby exhibiting one arbitrary optimal mapping.To apply Zhang's algorithm in the 
ontext of 
omparing plants [4, 5℄, we have been led tolook for the optimal solution for whi
h the mapped verti
es are as mu
h grouped as possible.Figure 1 shows two optimal solutions (i.e. 
orresponding to the sameD(T1; T2)) indu
ing di�erentnumbers of groups of mapped verti
es on T1 and T2. In this paper, we des
ribe an extensionof Zhang's algorithm that 
omputes the optimal solution whi
h indu
es the minimal number of
onne
ted 
omponents over the two 
ompared trees.4.1 Problem positionIn order to illustrate the property that there exists di�erent optimal valid mappings, 
onsidertwo trees T1 and T2 represented in �gure 1. We 
ompare both trees using Zhang's algorithmwith a lo
al distan
e de�ned as follows:� insertion and deletion 
ost = 1� mat
hing 
ost = 0Let us noti
e that the use of su
h a lo
al distan
e relies on mat
hing as many verti
es aspossible by respe
ting the 
onstraints of mapping. The distan
e is then the number of verti
eswhi
h 
ould not be mat
hed. We have represented on �gure 1 two di�erent valid mappings M1and M2 with same 
ost.A mapping M from T1 to T2 indu
es di�erent number of groups of mapped verti
es. Thedi�erent groups 
orresponding to our example are represented by a dotted line on the �gure 1.On ea
h tree stru
ture T1 and T2, an indu
ed graph is thus de�ned in the following way:5
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(b) M
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Figure 1: Two di�erent mappings having the same 
ost. The mapped verti
es are representedin bla
k. (a) optimal valid mapping (
ost = 4) with 9 
onne
ted 
omponents. (b) optimal validmapping (
ost = 4) with 4 
onne
ted 
omponents.� a vertex v belongs to the indu
ed graph if and only if v has an image by M ;� an edge (x; y) belongs to the indu
ed graph if and only if x and y have an image by M .The number of 
onne
ted 
omponents of the indu
ed graph on T1 (resp. T2) is 
alled thenumber of 
onne
ted 
omponents of M on T1 (resp. on T2).The number of 
onne
ted 
omponentsofM is the sum of the 
onne
ted 
omponents on T1 and T2. The number of 
onne
ted 
omponentsof M is then ne
essarily equal to or higher than 2. In this paper, we are interested by optimalvalid mappings having a minimum number of 
onne
ted 
omponents. We have presented inthe previous se
tion a re
ursive algorithm whi
h 
al
ulates the 
ost of an optimum mapping by
omparing various sub-tree stru
tures in an as
ending way (from leafs to the root). We will showin the following that it is possible to follow the same re
ursive s
heme to determine the numberof 
onne
ted 
omponents of optimal mapping and to 
al
ulate that whi
h has the minimumnumber of 
onne
ted 
omponents.Let us illustrate the re
ursive 
al
ulation of the number of 
onne
ted 
omponents of avalid mapping on a simple example. Consider the 
omparison between T1 and T2. Let us assumean optimal mapping M is known at some stage of the re
ursion for a sub-tree T rooted in v.Its number of related 
omponents is denoted by 
. Let us determine the number of 
onne
ted
omponents of the mapping at the following stage, i.e. when we 
onsider the sub-tree T 0 of T1rooted in fat[v℄. 
0 denotes the number of 
onne
ted 
omponents the new valid mapping M 0 .Two distin
t 
ases must be 
onsidered a

ording to whether v has or not an image by M (�gure2) :1. The root of T has no image : 6



(a) the inserted vertex has no image. Then the number of 
onne
ted 
omponents doesnot 
hange: 
0 = 
 ;(b) the inserted vertex has an image then the number of 
onne
ted 
omponents is in-
reased: 
0 = 
+ 1.2. The root of T has an image:(a) the inserted vertex has no image and then the number of 
onne
ted 
omponents doesnot 
hange: 
0 = 
 ;(b) the inserted vertex has an image. This new vertex 
an be aggregate with the 
onne
ted
omponent of v, thus the number of 
onne
ted 
omponents is does not 
hange: 
0 = 
.

T ’

T ’

T ’

T ’

(2)

TT

(1)

(a) (a)

(b)(b)

Figure 2: Re
ursive determination of the number of 
onne
ted 
omponents : 
ase of a tree.Verti
es whi
h have an image are represented in bla
k. To study the 
onne
ted 
omponentsresulting from the addition of a root vertex to an original tree, two 
ases need be 
onsidereddepending on whether the root of the original tree has an image or not (
ases 1 and 2). Then,from these original trees, two new di�erent 
ases need be 
onsidered, depending on whetherthe added vertex has or not an image (
ases a and b). In 
ase 1.a, 2.a and 2.b the number of
onne
ted 
omponents remains the same. In 
ases 1.b, the number of 
onne
ted 
omponentsin
reases.In general, the problem 
an be stated as follows: knowing the mapping of a forest F of T1,we have to 
ompute the number of 
onne
ted 
omponents. If the vertex v0 is inserted as rootof the tree stru
tures of the forest. Then, we 
an again 
onsider two 
ases a

ording to whether�the roots� of F have or not an image by mapping (�gure 3) :There exists r tree graphs respe
tively rooted in v1; v2; : : : ; vr of F su
h that v1; v2; : : : ; vrhave an image by the mapping:1. the inserted vertex has no image and then the number of 
onne
ted 
omponents does not
hange: 
0 = 
 ;2. the inserted vertex has an image. This new vertex 
an then be aggregate with verti
esv1; v2; : : : ; vr and v0 in a unique 
onne
ted 
omponent, thus the number of 
onne
ted of Tis : 
0 = 
� r + 1. 7
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Figure 3: An example of the re
ursive determination of 
onne
ted 
omponent number : 
aseof a forest. Verti
es whi
h have an image are represented in bla
k. To study the 
onne
ted
omponents resulting from the addition of a root vertex to an original forest, two 
ases need be
onsidered, depending on whether the added vertex has or not an image (
ases a and b). In 
asea, the number of 
onne
ted 
omponents is not a�e
ted by the addition of v'. In 
ase b, v1; v2and v0 
an be grouped in the same 
onne
ted 
omponent, whi
h 
hanges the overall number of
onne
ted 
omponent in the resulting tree.In the following, based on a similar reasoning, we 
ompute the number of 
onne
ted 
om-ponents for any valid mapping.4.2 Formalization4.2.1 Notations and de�nitionsLet F1[v℄ (resp. F2[w℄) be a forest rooted in v (resp. w), M � V1[v℄ � V2[w℄ is a set of orderedpairs of verti
es (x; y) 2 V1[v℄nfvg�V2[w℄nfwg satisfying 
onstraints (C1), (C2) and (C3), whereV1[v℄nfvg (resp. V2[w℄nfwg) represents the set V1[v℄ (resp. V2[w℄) minus fvg (resp. fwg).The set of valid mappings from T1[v℄ to T2[w℄ (resp. from F1[v℄ to F2[w℄) is denoted byT (v; w) (resp. F(v; w)).Let M be a valid mapping in T (v; w) [ F(v; w). G(Mv) and G(Mw) are the graph re-spe
tively indu
ed by the set of verti
es Mv and Mw. We denote by 
(Mv) (resp. 
(Mw)) thenumber of 
onne
ted 
omponents of G(Mv) (resp. G(Mw)). 
(M) = 
(Mv) + 
(Mw) is 
alledthe 
onne
ted 
omponent number of M .Let S[v℄ be a tree or a forest rooted at a vertex v, the set of roots of S[v℄ is denoted byroot[v℄. Thus, for example, if S[v℄ is a forest F [v℄ and if v1; v2; : : : ; vp are the p sons of v, thenroot[v℄ = fv1; v2; : : : ; vpg, and if S[v℄ is a tree T [v℄ then root[v℄ = fvg. The number of sons of v
8



(resp. w) whi
h have an image by M are respe
tively denoted by r(Mv) and r(Mw):r(Mv) = jroot[v℄ \Mvjr(Mw) = jroot[w℄ \Mwjr(M) represents the number of sons of v and w whi
h have an image by M :r(M) = r(Mv) + r(Mw)4.3 Properties of valid mappingTo determine re
ursive relations that will enable us to 
ompute an optimal valid mapping with aminimum number of 
onne
ted 
omponents, we now introdu
e several useful properties of validmappings.4.3.1 Case of treesLet T1[v℄ and T2[w℄ be two rooted trees and let M be a valid mapping from T1[v℄ to T2[w℄.Let us de�ne a partition of the set of valid mapping as follows: T (v; w):1. M = ; :� T (v; w);;; = fM 2 T (v; w) jM = ;g2. M 6= ; then :� T (v; w)�;= = fM 2 T (v; w) j v 2Mv and w =2Mwg� T (v; w)=;� = fM 2 T (v; w) j v =2Mv and w 2Mwg� T (v; w)=;= = fM 2 T (v; w) j v 2Mv and w 2Mwg� T (v; w)=;= = fM 2 T (v; w) j v =2Mv and w =2MwgSubsequent lemmas and propositions show properties of this partition that will enable usto designthe �nal algorithm.Proposition 1 Let M be a valid mapping in T (v; w) :1. M is in T (v; w)�;= if and only if there exist wk 2 son[w℄ and M 0 2 T (v; wk) su
h thatM = M 0 and: 
(M) = 
(M 0) +D(�; T2[v℄)�D(�; T2[vk℄)2. M is in T (v; w)=;� if and only if there exist vk 2 son[v℄ and M 0 2 T (vk; w) su
h thatM = M 0 and: 
(M) = 
(M 0) +D(T1[v℄; �)�D(T1[vk℄; �)3. M is in T (v; w)�;� if and only if there exists M 0 2 F(v; w) su
h that M = M 0 and:
(M) = 
(M 0) + d(v; �) + d(�;w)9



4. M is in T (v; w)=;= if and only if M� = M n f(v; w)g 2 F(v; w) and :
(M) = 
(M�) + d(v; w)Proof : The proof of this proposition is given in [19℄. �Results of this proposition are represented in �gure 4.
(3) wv

(2)w wv
(1)

v

v w(4)

Figure 4: Re
ursive relations between EDMs following proposition 1. Verti
es whi
h have animage are represented in bla
k,verti
es whi
h have no image are represented in white, and verti
esin grey may have an image or not. A typi
al mapping in (1) T (v; w)�;=, (2) T (v; w)=;�, (3)T (v; w)=;=, (4)T (v; w)�;�The following lemmas give re
ursive relations for 
omputing T (v; w) and its asso
iatedquantities r(M) and 
(M).Lemma 1 Let T1[v℄ = (V1[v℄; E1[v℄) and T2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping of T (v; w)�;= :9wk 2 son[w℄ and M 0 2 T (v; wk)jM = M 0 :
(M) = 
(M 0)r(Mv) = 1r(Mw) = 0Proof : A

ording to proposition 1, for any valid mapping M in T (v; w)�;=, there existswk, a son of w and a mapping M 0 in T (v; wk) su
h that M = M 0 . Sin
e the root of T2[w℄ hasno image, r(Mw) = 0. The number of 
onne
ted 
omponents of M is then equal to the numberof 
onne
ted 
omponents from Mv onto T1[v℄ plus the number of 
onne
ted 
omponents fromMwk onto T2[wk℄ : 
(M) = 
(M 0)By de�nition of T (v; w)�;=, the vertex v has an image , then : r(Mv) = 1 (see �gure 2).�10



Lemma 2 Let T1[v℄ = (V1[v℄; E1[v℄) and T2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping in T (v; w)=;� :9wk 2 son[w℄ and M 0 2 T (vk; w)jM =M 0 :
(M) = 
(M 0)r(Mv) = 0r(Mw) = 1Proof : This is the symmetri
 
ase of lemma 1 �Lemma 3 Let T1[v℄ = (V1[v℄; E1[v℄) and T2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping in T (v; w)=;= :9M� 2 F(v; w) jM =M� [ f(v; w)g :
(M) = 
(M�)� r(M�) + 2r(Mv) = 1r(Mw) = 1Proof : A

ording to the de�nition of T (v; w)=;=, both v and w have an image by M , then:r(Mv) = 1r(Mw) = 1A

ording to proposition 1, for any valid mapping M in T (v; w)=;=, there exists a validmapping M� in F(v; w) su
h that M = M� [ f(v; w)g. Sin
e v has an image, v 
an be groupedwith the r(M�v ) roots of the trees of F1[v℄ whi
h have an image by M� in a single 
onne
ted
omponent (see �gure 3), therefore:
(Mv) = 
(M�v )� r(M�v ) + 1We 
an establish the same result for 
(Mw), thus:
(M) = 
(Mv) + 
(Mw)= 
(M�v )� r(M�v ) + 1 + 
(M�w)� r(M�w) + 1= 
(M�)� r(M�) + 2 �Let M be a mapping of T (v; w)�;�, and let M 0 be the maping : M [ f(v; w)g (M 0 isobviously a valid mapping of T (v; w)=;=). Furthermore 
(M) � 
(M 0) = d(v; �) + d(�;w) �d(v; w), and then using the triangular inequality of d, 
(M) � 
(M 0). The 
ost of a mapping Mof T (v; w)�;� is always higher than the 
ost of mapping M [ f(v; w)g of T (v; w)=;=. It is thusnot ne
essary to 
ompute the number of 
onne
ted 
omponent of these sub-optimal mapping.In the previous lemma, the 
omputation of the number of 
onne
ted 
omponents of amapping between forests appears as 
(M�). This 
omputation is studied in the next se
tion.
11



4.3.2 Case of forestsLet F1[v℄ and F2[w℄ be two rooted forests and let M be a valid mapping from F1[v℄ to F2[w℄.We de�ne a partition of the set of valid mapping in three sets:� F(v; w)�;= = fM 2 F(v; w) j 8(x; y) 2My < wg� F(v; w)=;� = fM 2 F(v; w) j 8(x; y) 2My < wg� F(v; w)=;= = F(v; w) \ (F(v; w)�;= [ F(v; w)=;�)We 
an easily remark that these subsets form a partition of F(v; w).In the following, I and J denotes respe
tively the set of indexes of the sons of v and w :I = f1 : : : ng and J = f1 : : : mgProposition 2 Let M be a valid mapping in F(v; w):1. M is F�;=(v; w) if and only if there exist wk 2 son[w℄ and M 0 2 F(v; wk) su
h thatM = M 0 and: 
(M) = 
(M 0) +D(�; F2[v℄)�D(�; F2[vk℄)2. M is F=;�(v; w) if and only if there exist vk 2 son[v℄ andM 0 2 F(vk; w) su
h thatM = M 0and: 
(M) = 
(M 0) +D(F1[v℄; �)�D(F1[vk℄; �)3. M is F=;=(v; w) if and only if there exists a mappingK in I�J and a partition (Mk;l)(k;l)2Kof M where (Mk;l) 2 T (vk; wl) su
h that : M = S(k;l)2K �Mk;l�, and:
(M) = X(k;l)2K 
(Mk;l)4. M = ; and: 
(M) = D(F1[v℄; �) +D(�; F2[v℄)Proof : This result is a dire
t 
onsequen
e of the de�nition of valid mapping between forestsand the previous partition [19, 6℄. These results are represented by the �gure 5. �The following lemma gives re
ursive relations for 
omputing F(v; w) and its asso
iatedquantities r(M) and 
(M).Lemma 4 Let F1[v℄ = (V1[v℄; E1[v℄) and F2[v℄ = (V2[v℄; E2[v℄) be two forests, and let M be avalid mapping of F(v; w)�;= :9wk 2 son[w℄ and M 0 2 F(v; wk) jM = M 0
(M) = 
(M 0)r(Mw) = 0r(Mv) = r(M 0v)12



(1)
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(4)
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v wwv

Figure 5: Re
ursive relations between EDMs following proposition 2. A typi
al mapping in(1) T (v; w)�;=, (2) T (v; w)=;�, (3) T (v; w)=;=, (4)T (v; w)�;�. Verti
es whi
h have no imageare represented in white 
olor. Verti
es whi
h 
an have or not an image by the mapping arerepresented in grey 
olor.Proof : A

ording to proposition 2, for any valid mapping M in F(v; w)�;=, there exists wkson of w and M 0 a mapping in F(v; wk) su
h that M = M 0 . In F(v; w)�;=, neither w nor anyof its sons 
an have an image and thus: r(Mw) = 0. Similarly the number of roots of F1[v℄whi
h have an image by M is ne
essarily equal to r(M 0v). Furthermore, the number of 
onne
ted
omponents of M is equal to the number of 
onne
ted 
omponents from M 0v in F1[v℄ plus thenumber of 
onne
ted 
omponents from M 0wk in F2[wk℄:
(M) = 
(M 0) �Lemma 5 Let F1[v℄ = (V1[v℄; E1[v℄) and F2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping in F(v; w)=;� :9vk 2 son[v℄ j 9M 0 2 F(vk; w) jM = M 0
(M) = 
(M 0)r(Mv) = 0r(Mw) = r(M 0w)Proof : This is the symmetri
 
ase of lemma 4 �Lemma 6 Let F1[v℄ = (V1[v℄; E1[v℄) and F2[v℄ = (V2[v℄; E2[v℄) be two forests, and let M be avalid mapping in F=;=(v; w) , then there exists a mapping K in I�J and a partition (Mk;l)(k;l)2K
13



of M where (Mk;l) 2 T (vk; wl) su
h that :
(M) = X(k;l)2K 
(Mk;l)r(Mv) = X(k;l)2K r(Mk;lvk )r(Mw) = X(k;l)2K r(Mk;lwl )Proof : A

ording to Zhang [19℄, if M is in F=;=(v; w) there exists a mapping K in I �Jand a partition (Mk;l)(k;l)2K of M where (Mk;l) 2 T (vk; wl) su
h that : M = S(k;l)2K �Mk;l�.Then the number of 
onne
ted 
omponents of M is obviously equal to P(k;l)2K 
(Mk;l). Fur-thermore if the root vk of T1[vk℄ has an image by Mk;l (this means that vk 2Mk;lvk ), then vk hasan image by M (this means that vk 2Mv) and �nally:r(Mv) = X(k;l)2K r(Mk;lvk )The 
omputation of r(Mw) is done similarly. �5 Re
ursive 
omputation of the optimal valid mappingWe propose in this se
tion an algorithm that determines the optimal valid mapping with aminimum number of 
onne
ted 
omponents.In order to determine su
h a parti
ular optimal valid mapping, we need to introdu
e forany valid mapping M , the following quantity: �!� (M) = � �(M)
(M) �. The ve
tor �!� (M) is 
alled
ost ve
tor of the mapping M . The set of pairs of R2 is ordered in a lexi
ographi
 order:� x1y1 � < � x2y2 �, (x1 < x2) or (x1 = x2 and y1 < y2)In this way, a pair X with lower 
ost than Y will always be 
onsidered as lower than Y inR2 , whatever its number of 
onne
ted 
omponents de�ned in its se
ond 
oordinate. However, ifpairs X and Y have identi
al 
ost, the lowest pair is the one with minimum number of 
onne
ted
omponents.Using this order, we are looking for the valid mapping M verifying:�!D(T1[v℄; T2[w℄) = minM2T (v;w)n�!� (M)oIn order to give a re
ursive relation to 
ompute �!D(T1[v℄; T2[w℄) in the following lemma,we need to introdu
e the intermediate quantity: �!�0 (M) = � �(M)
(M) � r(M) �.�!D0(F1[v℄; F2[w℄) denotes the minimum of this quantity on F(v; w):�!D0(F1[v℄; F2[w℄) = minM2F(v;w)f�!�0(M)g
14



Proposition 3 �!D(T1[v℄; T2[w℄) is re
ursively 
omputed using the following relation:�!D(T1[v℄; T2[w℄) = min8>>>><>>>>: �!D0(F1[v℄; F2[w℄) + � d(v; w)2 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o�!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �oProof : Using lemmas 1, 2, 3 and proposition 1, we dedu
e that if M is in T (v; w) thenM veri�es one and only one of the following assertions:1. 9wk 2 son[w℄ and M 0 2 T (v; wk) su
h that M = M 0 :�!� (M) = � 
(M 0) +D(�; T2[w℄)�D(�; T2[wk℄)
(M 0) �= � 
(M 0)
(M 0) �+ � D(�; T2[w℄)0 �� � D(�; T2[wk℄)0 �= �!� (M 0) +�!D(�; T2[w℄) ��!D(�; T2[wk℄)2. 9vk 2 son[v℄ and M 0 2 T (vk; w) su
h that M = M 0 :�!� (M) = � 
(M 0) +D(T1[v℄; �)�D(T1[vk℄; �)
(M 0) �= �!� (M 0) +�!D(T1[v℄; �)��!D(T1[vk℄; �)3. (v; w) 2M and M� 2 F(v; w)�!� (M) = � 
(M�) + d(v; w)
(M�)� r(M�) + 2 �= �!�0 (M�) + � d(v; w)2 �4. M 2 F(v; w) and M is ne
essarily the 
ost of M is sub-optimal.This is the results of our proposition. �>From this last result, in order to determine �!D(T1[v℄; T2(w)), we need to 
ompute�!D0(F1[v℄; F2[w℄) = minM2F(v;w)f�!�0(M)gFor any valid mapping M , the following quantities are introdu
ed:�!�v(M) = � 
(M)
(M)� r(Mv) � and �!�w(M) = � 
(M)
(M)� r(Mw) �
15



The minimum of these quantities on T (v; w) and F(v; w) are denoted as follow:�!Dv(T1[v℄; T2[w℄) = minM2T (v;w)f�!�v(M)g�!Dw(T1[v℄; T2[w℄) = minM2T (v;w)f�!�w(M)g�!Dv(F1[v℄; F2[w℄) = minM2F(v;w)f�!�v(M)g�!Dw(F1[v℄; F2[w℄) = minM2F(v;w)f�!�w(M)gProposition 4 Quantities �!D0(F1[v℄; F2[w℄), �!Dv(F1[v℄; F2[w℄), �!Dw(F1[v℄; F2[w℄) and �!D(F1[v℄; F2[w℄)are re
ursively 
omputed using the following relations:�!D0(F1[v℄; F2[w℄) = min8>>>><>>>>: �!D(F1[v℄; �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄) ��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w)��!�0 (M)��!Dv(F1[v℄; F2[w℄) = min8>>><>>>: �!D(F1[v℄; �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄)��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w) n�!�v(M)o�!Dw(F1[v℄; F2[w℄) = min8>>><>>>: �!D(F1[v℄; �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄)��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w) n�!�w(M)o�!D(F1[v℄; F2[w℄) = min8>>><>>>: �!D(F1[v℄; �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄)��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w) n�!� (M)oProof : Using lemmas 4, 5 and 6 and proposition 2, we dedu
e that if M is in F(v; w)then M veri�es one and only one of the following assertions:1. 9wk 2 son[w℄ and M 0 2 F(v; wk) su
h that M = M 0 . In this 
ase, r(Mv) = r(M 0v) andr(Mw) = 0:�!� (M) = � 
(M 0) +D(�; F2[w℄)�D(�; F2[wk℄)
(M 0 � r(M 0v)) �= � 
(M 0)
(M 0 � r(M 0v)) �+ � D(�; F2[w℄)0 �� � D(�; F2[wk℄)0 �= �!�v(M 0) +�!D(�; F2[w℄) ��!D(�; F2[wk℄)16



2. 9vk 2 son[v℄ and M 0 2 F(vk; w) su
h that M = M 0 . In this 
ase, r(Mw) = r(M 0w) andr(Mv) = 0: �!� (M) = � 
(M 0) +D(F1[v℄; �)�D(F1[vk℄; �)
(M 0 � r(M 0w)) �= �!�w(M 0) +�!D(F1[v℄; �)��!D(F1[vk℄; �)The 
omputation of the minimum on F(v; w) gives the results of our proposition. The in-termediate quantities �!D0(F1[v℄; F2[w℄), �!Dv(F1[v℄; F2[w℄), �!Dw(F1[v℄; F2[w℄) and �!D(F1[v℄; F2[w℄)
al
ulated in a similar fashion. �The method for 
omputing quantitiesminM2F=;=(v;w) n�!� (M)o,minM2F=;=(v;w) n�!�v(M)o,minM2F=;=(v;w) n�!�w(M)o and minM2F=;=(v;w)��!�0 (M)� is given in the following se
tion. These
omputation is based on the 
omputation of �!D0(T1[v℄; T2[w℄), �!Dv(T1[v℄; T2[w℄), �!Dw(T1[v℄; T2[w℄)and �!D(T1[v℄; T2[w℄) 
al
ulated as follow.Proposition 5 �!D0(T1[v℄; T2[w℄) is re
ursively 
omputed using the following relation:�!D0(T1[v℄; T2[w℄) = min8>>>>>>>><>>>>>>>>:
�!D0(F1[v℄; F2[w℄) + � d(v; w)0 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o+ � 01 ��!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �o+ � 01 ��!Dv(T1[v℄; T2[w℄) = min8>>>>><>>>>>: �!D0(F1[v℄; F2[w℄) + � d(v; w)1 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o�!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �o+ � 01 ��!Dv(T1[v℄; T2[w℄) = min8>>>>><>>>>>: �!D0(F1[v℄; F2[w℄) + � d(v; w)1 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o+ � 01 ��!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �oProof : Similar to proposition 3 �6 Restri
ted MappingIn prop 3 and 4, all the quantities 
ab be re
ursively evaluated ex
ept forminM2F=;=(v;w)��!�0 (M)�,minM2F=;=(v;w) n�!�v(M)o, minM2F=;=(v;w) n�!�w(M)o et minM2F=;=(v;w) n�!� (M)o. These quan-tities need to be 
omputed separetly, using a spe
ial s
heme.17



A solution for 
omputing minM2F=;=(v;w)��!�0 (M)�. Other similar quantities 
an be 
om-puted likewise. As shown by Zhang [18℄, this optimization problem 
an be modeled as a minimum
ost maximum bipartite mat
hing problemand solved using aweighted maximum mat
hing algo-rithm [1℄. However the 
ost used in our 
ase (se
tion 5.) is not a real non-negative number butis de�ned on R2 . To extend the minimum 
ost maximum bipartite mat
hing problem to 
osts inR2 we need to de�ne a total order on R2 . As in the previous se
tion, we use for this purpose alexi
ographi
 order, and ea
h 
ost is greater than (0; 0).
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D1, (T 1[v1],T 2[w2])[ ]

D1, (T 1[v4],T 2[w1])[ ]

1, D(T 1[v4],T 2[w3])

v5[ ],θ)Figure 6: Restri
ted mapping and modelisation as a network �owGiven F1[v℄ and F2[w℄, we 
onstru
t a graph G(v; w) = (V;E) as follows (�gure 6:1. vertex set : V = fs; t; ev; ewg [ son[v℄ [ son[w℄, where s is the sour
e, t is the sink, and evand ew represent two empty trees;2. edge set : (s; vk), (s; ev), (ew; t), (wl; t) with a 
ost (0; 0), (vk; wl) with 
ost�!D(T1[vk℄; T2[wl℄),(vk; ev) with 
ost �!D(T1(vk); �), (ew; wl) with 
ost�!D(�; T2(wl)), and (ev; ew) with 
ost (0; 0).All the edges have 
apa
ity one ex
ept (s; ev), (ev; ew) and (ew; t) whi
h 
apa
ities are nv,maxfnv; nwg �minfnv; nwg, and nw, respe
tively.
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G is a graph whose edges are labeled with integer 
apa
ities, non-negative 
osts in R2, andthe maximum �ow f� = nv + nw [19℄.When the 
ost is a real, Zhang [19℄ showed that the 
ost of the minimum 
ost maximum�ow the is exa
tly minM2F=;=(v;w) f�!
 (M)g. In our 
ase, using a similar s
heme we have shown[5℄ that the 
ost of the minimum 
ost maximum �ow the is exa
tly minM2F=;=(v;w)��!�0 (M)�.The 
omputation of the other quantities is similar and used the same modeling by the minimum
ost maximum bipartite mat
hing problem.7 Algorithm and ComplexityThe detailed algorithm is depi
ted in algorithms 7.1 and 7.2. The general stru
ture of thealgorithm is similar to that of Zhang's algorithm ex
ept that at ea
h step of the re
ursion,additional tests are performed whi
h enable us to 
hoose one solution with minimum number of
onne
ted 
omponents when several equivalent optimal solutions are available.Algorithm 7.1 Initialization: 
omputation of the distan
es between trees and empty tree�!D(�; �) = 0�!Dv(�; �) = 0�!Dw(�; �) = 0�!D0(�; �) = 0For any x 2 T1, 
ompute�!D(F1[x℄; �) = Xxk2son(x)�!D(T1[xk℄; �) and �!D(F1[x℄; �) = �!D(F1[x℄; �) + (d(x; �); 0)For any y 2 T2, 
ompute�!D(�; F2[y℄) = Xyk2son(y)D(�; T2[yk℄) and �!D(�; F2[y℄) = D(�; F2[y℄) + (d(�; y); 0)The �nal time 
omplexity is thus that of Zhang's algorithm [19℄:O(jT1j � jT2j � (deg T1 + deg T2)� log2(deg T1 + deg T2))8 Con
lusionUsing the de�nition of a distan
e metri
 between unordered labeled trees proposed by Zhang, wehave presented an algorithm for 
omputing an optimal mat
hing between rooted trees minimizingthe number of 
onne
ted 
omponents indu
ed by the mapping. This algorithm extends Zhang'salgorithm by proposing a 
hara
terization of an optimal mapping. This algorithm does notin
rease Zhang's algorithm 
omplexity and 
omputes a mapping with the minimum 
ost andhaving a minimum 
onne
tivity.
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Algorithm 7.2 Optimal valid mapping with a minimum number of 
onne
ted 
omponentsInitialization algorithm.For any v 2 T1 do and For any w 2 T2 do:(A) Computation of restri
ted mappings:minM2F=;=(v;w)n�!� (M)o � minM2F=;=(v;w)n�!�v(M)ominM2F=;=(v;w)n�!�w(M)o � minM2F=;=(v;w)��!�0 (M)�(B) First optimization step�!D(F1[v℄; F2[w℄) = min8>>><>>>: �!D(�; F2(w)) + minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄)��!D(F1(vk); �)ominM2F=;=(v;w) n�!� (M)o(C) Intermediate optimization step using step (B)�!Dv(F1[v℄; F2[w℄) = min8>>><>>>: �!D(�; F2(w)) + minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄) ��!D(F1(vk); �)ominM2F=;=(v;w) n�!�v(M)o�!Dw(F1[v℄; F2[w℄) = min8>>><>>>: �!D(�; F2(w)) +minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄)��!D(F1(vk); �)ominM2F=;=(v;w) n�!�w(M)o(D) Intermediate optimization step using step (C)�!D0(F1[v℄; F2[w℄) = min8>>>><>>>>: �!D(�; F2(w)) +minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄)��!D(F1(vk); �)ominM2F=;=(v;w)��!�0 (M)�(E) Main optimization�!D(T1[v℄; T2[w℄) = min8>>><>>>: �!D0(F1[v℄; F2[w℄) + (d(v; w); 2)�!D(�; T2[w)℄) + minwk2son(w) n�!D(T1[v℄; T2[w℄)��!D(�; T2[wk℄)o�!D(T1[v℄; �) + minvk2son(v) n�!D(T1[v℄; T2[w℄) ��!D(T1[vk℄; �o
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The work presented here is part of proje
t to develop a set of tools for analyzing plantswhi
h are modeled by rooted tree graphs [8℄. The proposed algorithms and their implementationare 
urrently integrated into this tool set [9, 10, 4℄.
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