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An algorithm for omparing unordered tree graphs based on aminimum ost mapping with a minimal onnetivityPasal Ferraro�and Christophe GodinyMarh 19, 2001AbstratThis paper onsiders the problem of �nding a minimum ost mapping between two un-ordered trees with minimal onnetivity. Based on the generalization of an algorithm foromputing an edit distane between trees, the proposed algorithm solves this problem insequential time O(jT1j � jT2j � (deg T1 + deg T2)� log2(deg T1 + degT2)).1 IntrodutionIn this paper, we onsider rooted and labeled trees (trees whose verties are labeled). Unorderedtrees are trees in whih the anestor relationship is the only signi�ant order relationship betweenverties. In the following, we onsider the problem of omparing unordered trees.To ompute distanes between trees, edit distane metris, initially introdued for string tostring omparison problem, were �rst extended to ompare ordered trees [14, 13℄ and [15, 6℄ for areview. Zhang reently proposed an algorithm for omparing unordered trees based on a similarframework [18, 19℄. Zhang's distane is omputed as the minimum ost of the mappings thatmaps one tree onto the other. In general, this distane is ahieved by more than one mapping.Zhang's algorithm omputes this distane using an arbitrary optimal mapping.However, to apply Zhang's algorithm in the ontext of plant omparison [2, 3, 5℄, we havebeen led to look for partiular types of optimal mappings. In this paper, we desribe an extensionof Zhang's algorithm that omputes the optimal mapping whih indues the minimal numberof mapped vertex groups (onneted omponents) over the two ompared trees. The algorithmdoes not hange the omplexity of Zhang's original algorithm.2 De�nitions and notationsA direted graph G = (V;E) onsists of a set V of verties, a set of edges E, eah edge beingrepresented by an ordered pair of verties. The number of verties of G is denoted by jGj. Let�Department of Computer Siene - University of Calgary - 2500 University Drive N.W., Calgary, Alberta,T2N 1N4 Canada. Phone: (011) (403) 220 5114. e-mail ferraro�ps.ualgary.ayPlant Modeling Program - CIRAD, TA/40E - 34398 Montpellier Cedex 5, Frane. Phone: (33) 4 67 59 3862; Fax (33) 4 67 59 38 58; e-mail godin�irad.fr 1



e = (v; w) be an edge in E, verties v and w are alled extremities of e, the vertex v is alledthe father of w and the vertex w is alled the son of v. The set of sons of v is represented byson[v℄ and the size of son[v℄ is denoted by nv. For any k in f1::nvg, vk represents a son of v.A vertex v is alled an anestor of an other vertex w and w is alled a desendant of v if thereexists a sequene of verties (x1; x2; :::; xn), alled a path, suh that x1 = v and xn = w, and foreah onseutive pair of vertex (xi; xi+1), xi is the father of xi+1. The anestor relationship is apartial order relation whih is denoted by v � w. The least ommon anestor of two verties vand w, denoted by la(v; w), is a ommon anestor of v and w suh that every ommon anestorx of v and w satis�es x � la(v; w). The set of desendant of v is denoted by V [v℄ and ontainsv itself. A sub-graph H = (W;F ) of a direted graph G = (V;E) is a direted graph suh thatW � V and F � E. Let G = (V;E) be a graph and W be a subset of V . Let EW be thesubset of E made of edges having both extremities in W . We de�ne G(W ) = (W;EW ) as thesub-graph generated by the set of verties W . A direted graph is alled onneted if every pair ofits verties are onneted by a path. A onneted omponent of a direted graph is a onnetedsub-graph ontaining a maximum number of edges.A labeled graph is a graph assoiated with a labeling funtion � whih a�ets a label froma �nite or in�nite set � = fa; b; ; :::g to eah vertex. A distane an be de�ned on verties of alabeled graph by using a distane on their labels. Let � be a unique symbol not in � and let dbe a distane metri whih assigns a non-negative real number d(a; b) to eah pair of labels of� [ f�g (a; b).d is extended to assign to any pair of verties a non negative real number : d(x; y) =d(�(x); �(y)). The distane between the label of x and the label � is denoted : d(x; �) =d(�(x); �) = d(�; �(x)).A rooted tree graph, is a graph in whih every vertex exept one, alled the root, has onlyone father vertex. The root has no father vertex. By extension, the partiular graph � = (;; ;)is a tree and is alled the null tree. A sub-tree is a onneted sub-graph of a tree. An unorderedrooted tree is a rooted tree in whih the set of sons of eah vertex is not ordered. An unorderedrooted tree is just a rooted tree. We use the term unordered to distinguish it from orderedrooted trees. Unless otherwise stated, all trees, in this paper, are unordered labeled rootedtrees. A forest is a direted graph whose onneted omponents are tree graphs. In this paper,T1 = (V1; E1) and T2 = (V2; E2) represent trees, respetively rooted in v andw). A sub-tree of Ti(i 2 f1; 2g) rooted in x is denoted by Ti[x℄ = (Vi[x℄; Ei[x℄) and the sub-forest of Ti rooted in x isdenoted by Fi[x℄ = G(Vi[x℄nfxg) (The set of verties of Fi[x℄ is denoted by FVi[x℄). Partiularly,T1[v℄ and T2[w℄ represent the whole trees T1 and T2.3 Zhang's algorithmA onsiderable amount of works has been done on ordered tree omparison. Among various treemetris, Tai [14℄ and Selkow [13℄ proposed an edit distane metri between trees based on thegeneralization of string omparison de�ned by Wagner and Fisher [17℄. In these works, trees arerepresented by ordered rooted tree, Zhang [18℄ extended these works in order to de�ne a metribetween unordered rooted trees. We have shown [6, 7℄ that these algorithms di�ers only on theonstraints given in the de�nition of mappings and there exists a uni�ed notation to presentthese methods.The tree-to-tree orretion problem onsists in determining the distane between two treesmeasured by the minimum ost sequene of edit operations needed to transform one tree into2



the other. Following Wagner and Fisher original de�nitions on sequenes, three edit operationsare used: hanging a vertex x into a vertex y means hanging the label of x, deleting a vertex xmeans making the sons of x beome the sons of the father of x and then removing x, inserting avertex x means that x beomes the son of a vertex y and be a subset of the sons of y beomes theset of sons of x. Following [12℄, we all C(x; y) a hanging operation, D(x) an deleting operationand I(x) an inserting operation.Let s be an edit operation, a ost  is assigned to eah edit operation by letting : if shanges x into y then (s) = (C(x; y)) = d(x; y), if s deletes x then (s) = (D(x)) = d(x; �)and if s inserts the vertex x then (s) = (I(x)) = d(�; x). We extend  to a sequene of editoperation S = (s1; s2; :::; sn) by letting (S) = Pni=1 (si). This makes it possible to de�ne adissimilarity measure D(T1; T2) from tree T1 to tree T2 is measured as the minimum ost of allsequenes of edit operations whih transforms T1 into T2, i.e:D(T1[v℄; T2[w℄) = minf(S); S is a sequene of edit operations whih transforms T1[v℄ into T2[w℄gIn order to haraterize the e�et of an edit operation sequene on a tree, Tai [14℄ introduedthe struture alled mapping between trees similar to the notion of trae between sequenesof Wagner and Fisher [17℄. A mapping is intuitively a desription of how a sequene of editoperations transforms T1 into T2, ignoring the order in whih edit operations are applied. LetT1[v℄ = (V1[v℄; E1[v℄) and T2[w℄ = (V2[w℄; E2[w℄) be two trees, a mapping M is a set of orderedpairs of verties (x; y) of T1[v℄ and T2[w℄.Let M be a mapping between two trees T1[v℄ and T2[w℄, we de�ne :Mv = fx1 2 V1[v℄;9x2 2 V2[w℄; (x1; x2) 2MgMw = fx2 2 V2[w℄;9x1 2 V1[v℄; (x1; x2) 2MgFor any vertex x in Mv [Mw, we will say that x has an image by M .Similarly let M be a mapping from T1[v℄ to T2[w℄, M represents the set of verties whihare not mapped in M : Mv = V1[v℄nMvMw = V2[w℄nMwM represents the union Mv [Mw.Then a ost of M an be de�ne as follows:(M) = X(x;y)2M d(x; y) + Xx2Mv d(x; �) + Xy2Mw d(�; y)= X(x;y)2M d(x; y) + Xx2M d(x; �)Remark that this last equation is true if and only if d is a distane metri.A valid mapping is a mapping that must respet additional onstraints. In most tree totree orretion problem, at least two onstraints must be sati�ed:� x 2 V1[v℄ and y 2 V2[w℄ 3



� For any pair (x1; x2), (y1; y2) in M :x1 = y1 , x2 = y2 (C1)x1 � y1 , x2 � y2 (C2)The relation between a trae and a sequene of edit operations has been shown by Wagnerand Fisher [17℄; Tai [14℄ generalized this result for mappings between trees. Given S, a sequeneof edit operations from T1[v℄ to T2[w℄, there exists a mapping M from T1[v℄ to T2[w℄ suh that(M) � (S). Conversely, for any valid mapping M from T1[v℄ to T2[w℄, there exists a sequeneof edit operations suh that (S) = (M). Based on this results it an be shown that :D(T1[v℄; T2[w℄) = minf(M); M is a mapping from T1[v℄ to T2[w℄g (1)Taï [14℄ proved these results for ordered rooted tree graphs and mapping de�ned by on-straints (C1) and (C2). Based on the results of Kilpelainen and Mannila [11℄, Zhang [20℄ showedthat �nding D(T1[v℄; T2[w℄) in ase of unordered rooted tree graphs and mapping de�ned fromonstraints (C1) and (C2) is a problem MAX SNP-hard. He proved [18, 19℄ that the Tai's resultsan be generalized to unordered trees by adding a onstraint (C3) to modify the de�nition of avalid mapping.A valid mapping M is a mapping satisfying C1, C2 and C3 suh that for any triple (x1; x2),(y1; y2), (z1; z2) in M la(x1; y1) < z1 , la(x2; y2) < z2 (C3)The dissimilarity measure D thus de�ned is shown to be a distane metri [18℄.Zhang proposed a dynami programming algorithm to ompute the distaneD(T1[v℄; T2[w℄):D(�; �) = 0D(F1[v℄; �) = Pvk2son(v)D(T1[vk℄; �) D(T1[v℄; �) = D(F1[v℄; �) + d(v; �)D(�; F2[w℄) = Pwk2son(w)D(�; T2[wk℄ D(�; T2[w℄) = D(�; F2[w℄) + d(�;w)
D(T1[v℄; T2[w℄) = min8>><>>: D(F1[v℄; F2[w℄) + d(v; w)D(�; T2[w)℄) + minwk2son(w) fD(T1[v℄; T2[w℄)�D(�; T2[wk℄)gD(T1[v℄; �) + minvk2son(v) fD(T1[v℄; T2[w℄) �D(T1[vk℄; �)gD(F1[v℄; F2[w℄) = min8>>><>>>: minR fd(R)gD(�; F2[w)℄) + minwk2son(w) fD(F1[v℄; F2[w℄) �D(�; F2[wk℄)gD(F1[v℄; �) + minvk2son(v) fD(F1[v℄; F2[w℄)�D(F1[vk℄; �)gwhere R is a restrited mapping de�ning the optimum mapping between trees of two forests [19℄.
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The distane to the null tree is introdued for following lemmas. If the valid mappingbetween a tree T1[v℄ = (V1[v℄; E1[v℄) and the null tree � is represented by M , this valid mappingis obviously empty : M = ; and M = V1[v℄. Then :D(F1[v℄; �) = Px2V1[v℄nfvg d(x; �) D(T1[v℄; �) = Px2V1[v℄ d(x; �)D(�; F2[w℄) = Px2V2[w℄nfwgd(�; x) D(�; T2[w℄) = Px2V2[w℄d(�; x)The problem of �nding a restrited mapping is solved as a problem of �nding a minimumost maximum �ow in a network [19℄. The omplexity of Zhang's algorithm is due to the minimumost maximum �ow omputation. In Zhang's algorithm, this problem is solved by the Edmonsand Karp's [1℄ algorithm improved by Tarjan [16℄ whose omplexity is O(mjf�j log2 n), where m,n and jf�j represent respetively the number of edges, the number of verties and the value of amaximum �ow on the network. Finally, the omplexity is bounded by O(jT1j� jT2j� (deg(T1)+deg(T2)) � log2(deg(T1) + deg(T2))) where deg(Ti), for any i in f1; 2g, represents the numbermaximum of sons for any vertex in Ti.4 Extension of Zhang's algorithmIn general, there is not a unique optimal valid mapping orresponding to the distane D(T1; T2)de�ned by equation 1. In its original form, Zhang's algorithm enables us to ompute this distaneby exhibiting one arbitrary optimal mapping.To apply Zhang's algorithm in the ontext of omparing plants [4, 5℄, we have been led tolook for the optimal solution for whih the mapped verties are as muh grouped as possible.Figure 1 shows two optimal solutions (i.e. orresponding to the sameD(T1; T2)) induing di�erentnumbers of groups of mapped verties on T1 and T2. In this paper, we desribe an extensionof Zhang's algorithm that omputes the optimal solution whih indues the minimal number ofonneted omponents over the two ompared trees.4.1 Problem positionIn order to illustrate the property that there exists di�erent optimal valid mappings, onsidertwo trees T1 and T2 represented in �gure 1. We ompare both trees using Zhang's algorithmwith a loal distane de�ned as follows:� insertion and deletion ost = 1� mathing ost = 0Let us notie that the use of suh a loal distane relies on mathing as many verties aspossible by respeting the onstraints of mapping. The distane is then the number of vertieswhih ould not be mathed. We have represented on �gure 1 two di�erent valid mappings M1and M2 with same ost.A mapping M from T1 to T2 indues di�erent number of groups of mapped verties. Thedi�erent groups orresponding to our example are represented by a dotted line on the �gure 1.On eah tree struture T1 and T2, an indued graph is thus de�ned in the following way:5
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Figure 1: Two di�erent mappings having the same ost. The mapped verties are representedin blak. (a) optimal valid mapping (ost = 4) with 9 onneted omponents. (b) optimal validmapping (ost = 4) with 4 onneted omponents.� a vertex v belongs to the indued graph if and only if v has an image by M ;� an edge (x; y) belongs to the indued graph if and only if x and y have an image by M .The number of onneted omponents of the indued graph on T1 (resp. T2) is alled thenumber of onneted omponents of M on T1 (resp. on T2).The number of onneted omponentsofM is the sum of the onneted omponents on T1 and T2. The number of onneted omponentsof M is then neessarily equal to or higher than 2. In this paper, we are interested by optimalvalid mappings having a minimum number of onneted omponents. We have presented inthe previous setion a reursive algorithm whih alulates the ost of an optimum mapping byomparing various sub-tree strutures in an asending way (from leafs to the root). We will showin the following that it is possible to follow the same reursive sheme to determine the numberof onneted omponents of optimal mapping and to alulate that whih has the minimumnumber of onneted omponents.Let us illustrate the reursive alulation of the number of onneted omponents of avalid mapping on a simple example. Consider the omparison between T1 and T2. Let us assumean optimal mapping M is known at some stage of the reursion for a sub-tree T rooted in v.Its number of related omponents is denoted by . Let us determine the number of onnetedomponents of the mapping at the following stage, i.e. when we onsider the sub-tree T 0 of T1rooted in fat[v℄. 0 denotes the number of onneted omponents the new valid mapping M 0 .Two distint ases must be onsidered aording to whether v has or not an image by M (�gure2) :1. The root of T has no image : 6



(a) the inserted vertex has no image. Then the number of onneted omponents doesnot hange: 0 =  ;(b) the inserted vertex has an image then the number of onneted omponents is in-reased: 0 = + 1.2. The root of T has an image:(a) the inserted vertex has no image and then the number of onneted omponents doesnot hange: 0 =  ;(b) the inserted vertex has an image. This new vertex an be aggregate with the onnetedomponent of v, thus the number of onneted omponents is does not hange: 0 = .
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Figure 2: Reursive determination of the number of onneted omponents : ase of a tree.Verties whih have an image are represented in blak. To study the onneted omponentsresulting from the addition of a root vertex to an original tree, two ases need be onsidereddepending on whether the root of the original tree has an image or not (ases 1 and 2). Then,from these original trees, two new di�erent ases need be onsidered, depending on whetherthe added vertex has or not an image (ases a and b). In ase 1.a, 2.a and 2.b the number ofonneted omponents remains the same. In ases 1.b, the number of onneted omponentsinreases.In general, the problem an be stated as follows: knowing the mapping of a forest F of T1,we have to ompute the number of onneted omponents. If the vertex v0 is inserted as rootof the tree strutures of the forest. Then, we an again onsider two ases aording to whether�the roots� of F have or not an image by mapping (�gure 3) :There exists r tree graphs respetively rooted in v1; v2; : : : ; vr of F suh that v1; v2; : : : ; vrhave an image by the mapping:1. the inserted vertex has no image and then the number of onneted omponents does nothange: 0 =  ;2. the inserted vertex has an image. This new vertex an then be aggregate with vertiesv1; v2; : : : ; vr and v0 in a unique onneted omponent, thus the number of onneted of Tis : 0 = � r + 1. 7
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Figure 3: An example of the reursive determination of onneted omponent number : aseof a forest. Verties whih have an image are represented in blak. To study the onnetedomponents resulting from the addition of a root vertex to an original forest, two ases need beonsidered, depending on whether the added vertex has or not an image (ases a and b). In asea, the number of onneted omponents is not a�eted by the addition of v'. In ase b, v1; v2and v0 an be grouped in the same onneted omponent, whih hanges the overall number ofonneted omponent in the resulting tree.In the following, based on a similar reasoning, we ompute the number of onneted om-ponents for any valid mapping.4.2 Formalization4.2.1 Notations and de�nitionsLet F1[v℄ (resp. F2[w℄) be a forest rooted in v (resp. w), M � V1[v℄ � V2[w℄ is a set of orderedpairs of verties (x; y) 2 V1[v℄nfvg�V2[w℄nfwg satisfying onstraints (C1), (C2) and (C3), whereV1[v℄nfvg (resp. V2[w℄nfwg) represents the set V1[v℄ (resp. V2[w℄) minus fvg (resp. fwg).The set of valid mappings from T1[v℄ to T2[w℄ (resp. from F1[v℄ to F2[w℄) is denoted byT (v; w) (resp. F(v; w)).Let M be a valid mapping in T (v; w) [ F(v; w). G(Mv) and G(Mw) are the graph re-spetively indued by the set of verties Mv and Mw. We denote by (Mv) (resp. (Mw)) thenumber of onneted omponents of G(Mv) (resp. G(Mw)). (M) = (Mv) + (Mw) is alledthe onneted omponent number of M .Let S[v℄ be a tree or a forest rooted at a vertex v, the set of roots of S[v℄ is denoted byroot[v℄. Thus, for example, if S[v℄ is a forest F [v℄ and if v1; v2; : : : ; vp are the p sons of v, thenroot[v℄ = fv1; v2; : : : ; vpg, and if S[v℄ is a tree T [v℄ then root[v℄ = fvg. The number of sons of v
8



(resp. w) whih have an image by M are respetively denoted by r(Mv) and r(Mw):r(Mv) = jroot[v℄ \Mvjr(Mw) = jroot[w℄ \Mwjr(M) represents the number of sons of v and w whih have an image by M :r(M) = r(Mv) + r(Mw)4.3 Properties of valid mappingTo determine reursive relations that will enable us to ompute an optimal valid mapping with aminimum number of onneted omponents, we now introdue several useful properties of validmappings.4.3.1 Case of treesLet T1[v℄ and T2[w℄ be two rooted trees and let M be a valid mapping from T1[v℄ to T2[w℄.Let us de�ne a partition of the set of valid mapping as follows: T (v; w):1. M = ; :� T (v; w);;; = fM 2 T (v; w) jM = ;g2. M 6= ; then :� T (v; w)�;= = fM 2 T (v; w) j v 2Mv and w =2Mwg� T (v; w)=;� = fM 2 T (v; w) j v =2Mv and w 2Mwg� T (v; w)=;= = fM 2 T (v; w) j v 2Mv and w 2Mwg� T (v; w)=;= = fM 2 T (v; w) j v =2Mv and w =2MwgSubsequent lemmas and propositions show properties of this partition that will enable usto designthe �nal algorithm.Proposition 1 Let M be a valid mapping in T (v; w) :1. M is in T (v; w)�;= if and only if there exist wk 2 son[w℄ and M 0 2 T (v; wk) suh thatM = M 0 and: (M) = (M 0) +D(�; T2[v℄)�D(�; T2[vk℄)2. M is in T (v; w)=;� if and only if there exist vk 2 son[v℄ and M 0 2 T (vk; w) suh thatM = M 0 and: (M) = (M 0) +D(T1[v℄; �)�D(T1[vk℄; �)3. M is in T (v; w)�;� if and only if there exists M 0 2 F(v; w) suh that M = M 0 and:(M) = (M 0) + d(v; �) + d(�;w)9



4. M is in T (v; w)=;= if and only if M� = M n f(v; w)g 2 F(v; w) and :(M) = (M�) + d(v; w)Proof : The proof of this proposition is given in [19℄. �Results of this proposition are represented in �gure 4.
(3) wv

(2)w wv
(1)
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Figure 4: Reursive relations between EDMs following proposition 1. Verties whih have animage are represented in blak,verties whih have no image are represented in white, and vertiesin grey may have an image or not. A typial mapping in (1) T (v; w)�;=, (2) T (v; w)=;�, (3)T (v; w)=;=, (4)T (v; w)�;�The following lemmas give reursive relations for omputing T (v; w) and its assoiatedquantities r(M) and (M).Lemma 1 Let T1[v℄ = (V1[v℄; E1[v℄) and T2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping of T (v; w)�;= :9wk 2 son[w℄ and M 0 2 T (v; wk)jM = M 0 :(M) = (M 0)r(Mv) = 1r(Mw) = 0Proof : Aording to proposition 1, for any valid mapping M in T (v; w)�;=, there existswk, a son of w and a mapping M 0 in T (v; wk) suh that M = M 0 . Sine the root of T2[w℄ hasno image, r(Mw) = 0. The number of onneted omponents of M is then equal to the numberof onneted omponents from Mv onto T1[v℄ plus the number of onneted omponents fromMwk onto T2[wk℄ : (M) = (M 0)By de�nition of T (v; w)�;=, the vertex v has an image , then : r(Mv) = 1 (see �gure 2).�10



Lemma 2 Let T1[v℄ = (V1[v℄; E1[v℄) and T2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping in T (v; w)=;� :9wk 2 son[w℄ and M 0 2 T (vk; w)jM =M 0 :(M) = (M 0)r(Mv) = 0r(Mw) = 1Proof : This is the symmetri ase of lemma 1 �Lemma 3 Let T1[v℄ = (V1[v℄; E1[v℄) and T2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping in T (v; w)=;= :9M� 2 F(v; w) jM =M� [ f(v; w)g :(M) = (M�)� r(M�) + 2r(Mv) = 1r(Mw) = 1Proof : Aording to the de�nition of T (v; w)=;=, both v and w have an image by M , then:r(Mv) = 1r(Mw) = 1Aording to proposition 1, for any valid mapping M in T (v; w)=;=, there exists a validmapping M� in F(v; w) suh that M = M� [ f(v; w)g. Sine v has an image, v an be groupedwith the r(M�v ) roots of the trees of F1[v℄ whih have an image by M� in a single onnetedomponent (see �gure 3), therefore:(Mv) = (M�v )� r(M�v ) + 1We an establish the same result for (Mw), thus:(M) = (Mv) + (Mw)= (M�v )� r(M�v ) + 1 + (M�w)� r(M�w) + 1= (M�)� r(M�) + 2 �Let M be a mapping of T (v; w)�;�, and let M 0 be the maping : M [ f(v; w)g (M 0 isobviously a valid mapping of T (v; w)=;=). Furthermore (M) � (M 0) = d(v; �) + d(�;w) �d(v; w), and then using the triangular inequality of d, (M) � (M 0). The ost of a mapping Mof T (v; w)�;� is always higher than the ost of mapping M [ f(v; w)g of T (v; w)=;=. It is thusnot neessary to ompute the number of onneted omponent of these sub-optimal mapping.In the previous lemma, the omputation of the number of onneted omponents of amapping between forests appears as (M�). This omputation is studied in the next setion.
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4.3.2 Case of forestsLet F1[v℄ and F2[w℄ be two rooted forests and let M be a valid mapping from F1[v℄ to F2[w℄.We de�ne a partition of the set of valid mapping in three sets:� F(v; w)�;= = fM 2 F(v; w) j 8(x; y) 2My < wg� F(v; w)=;� = fM 2 F(v; w) j 8(x; y) 2My < wg� F(v; w)=;= = F(v; w) \ (F(v; w)�;= [ F(v; w)=;�)We an easily remark that these subsets form a partition of F(v; w).In the following, I and J denotes respetively the set of indexes of the sons of v and w :I = f1 : : : ng and J = f1 : : : mgProposition 2 Let M be a valid mapping in F(v; w):1. M is F�;=(v; w) if and only if there exist wk 2 son[w℄ and M 0 2 F(v; wk) suh thatM = M 0 and: (M) = (M 0) +D(�; F2[v℄)�D(�; F2[vk℄)2. M is F=;�(v; w) if and only if there exist vk 2 son[v℄ andM 0 2 F(vk; w) suh thatM = M 0and: (M) = (M 0) +D(F1[v℄; �)�D(F1[vk℄; �)3. M is F=;=(v; w) if and only if there exists a mappingK in I�J and a partition (Mk;l)(k;l)2Kof M where (Mk;l) 2 T (vk; wl) suh that : M = S(k;l)2K �Mk;l�, and:(M) = X(k;l)2K (Mk;l)4. M = ; and: (M) = D(F1[v℄; �) +D(�; F2[v℄)Proof : This result is a diret onsequene of the de�nition of valid mapping between forestsand the previous partition [19, 6℄. These results are represented by the �gure 5. �The following lemma gives reursive relations for omputing F(v; w) and its assoiatedquantities r(M) and (M).Lemma 4 Let F1[v℄ = (V1[v℄; E1[v℄) and F2[v℄ = (V2[v℄; E2[v℄) be two forests, and let M be avalid mapping of F(v; w)�;= :9wk 2 son[w℄ and M 0 2 F(v; wk) jM = M 0(M) = (M 0)r(Mw) = 0r(Mv) = r(M 0v)12
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Figure 5: Reursive relations between EDMs following proposition 2. A typial mapping in(1) T (v; w)�;=, (2) T (v; w)=;�, (3) T (v; w)=;=, (4)T (v; w)�;�. Verties whih have no imageare represented in white olor. Verties whih an have or not an image by the mapping arerepresented in grey olor.Proof : Aording to proposition 2, for any valid mapping M in F(v; w)�;=, there exists wkson of w and M 0 a mapping in F(v; wk) suh that M = M 0 . In F(v; w)�;=, neither w nor anyof its sons an have an image and thus: r(Mw) = 0. Similarly the number of roots of F1[v℄whih have an image by M is neessarily equal to r(M 0v). Furthermore, the number of onnetedomponents of M is equal to the number of onneted omponents from M 0v in F1[v℄ plus thenumber of onneted omponents from M 0wk in F2[wk℄:(M) = (M 0) �Lemma 5 Let F1[v℄ = (V1[v℄; E1[v℄) and F2[v℄ = (V2[v℄; E2[v℄) be two trees, and let M be a validmapping in F(v; w)=;� :9vk 2 son[v℄ j 9M 0 2 F(vk; w) jM = M 0(M) = (M 0)r(Mv) = 0r(Mw) = r(M 0w)Proof : This is the symmetri ase of lemma 4 �Lemma 6 Let F1[v℄ = (V1[v℄; E1[v℄) and F2[v℄ = (V2[v℄; E2[v℄) be two forests, and let M be avalid mapping in F=;=(v; w) , then there exists a mapping K in I�J and a partition (Mk;l)(k;l)2K
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of M where (Mk;l) 2 T (vk; wl) suh that :(M) = X(k;l)2K (Mk;l)r(Mv) = X(k;l)2K r(Mk;lvk )r(Mw) = X(k;l)2K r(Mk;lwl )Proof : Aording to Zhang [19℄, if M is in F=;=(v; w) there exists a mapping K in I �Jand a partition (Mk;l)(k;l)2K of M where (Mk;l) 2 T (vk; wl) suh that : M = S(k;l)2K �Mk;l�.Then the number of onneted omponents of M is obviously equal to P(k;l)2K (Mk;l). Fur-thermore if the root vk of T1[vk℄ has an image by Mk;l (this means that vk 2Mk;lvk ), then vk hasan image by M (this means that vk 2Mv) and �nally:r(Mv) = X(k;l)2K r(Mk;lvk )The omputation of r(Mw) is done similarly. �5 Reursive omputation of the optimal valid mappingWe propose in this setion an algorithm that determines the optimal valid mapping with aminimum number of onneted omponents.In order to determine suh a partiular optimal valid mapping, we need to introdue forany valid mapping M , the following quantity: �!� (M) = � �(M)(M) �. The vetor �!� (M) is alledost vetor of the mapping M . The set of pairs of R2 is ordered in a lexiographi order:� x1y1 � < � x2y2 �, (x1 < x2) or (x1 = x2 and y1 < y2)In this way, a pair X with lower ost than Y will always be onsidered as lower than Y inR2 , whatever its number of onneted omponents de�ned in its seond oordinate. However, ifpairs X and Y have idential ost, the lowest pair is the one with minimum number of onnetedomponents.Using this order, we are looking for the valid mapping M verifying:�!D(T1[v℄; T2[w℄) = minM2T (v;w)n�!� (M)oIn order to give a reursive relation to ompute �!D(T1[v℄; T2[w℄) in the following lemma,we need to introdue the intermediate quantity: �!�0 (M) = � �(M)(M) � r(M) �.�!D0(F1[v℄; F2[w℄) denotes the minimum of this quantity on F(v; w):�!D0(F1[v℄; F2[w℄) = minM2F(v;w)f�!�0(M)g
14



Proposition 3 �!D(T1[v℄; T2[w℄) is reursively omputed using the following relation:�!D(T1[v℄; T2[w℄) = min8>>>><>>>>: �!D0(F1[v℄; F2[w℄) + � d(v; w)2 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o�!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �oProof : Using lemmas 1, 2, 3 and proposition 1, we dedue that if M is in T (v; w) thenM veri�es one and only one of the following assertions:1. 9wk 2 son[w℄ and M 0 2 T (v; wk) suh that M = M 0 :�!� (M) = � (M 0) +D(�; T2[w℄)�D(�; T2[wk℄)(M 0) �= � (M 0)(M 0) �+ � D(�; T2[w℄)0 �� � D(�; T2[wk℄)0 �= �!� (M 0) +�!D(�; T2[w℄) ��!D(�; T2[wk℄)2. 9vk 2 son[v℄ and M 0 2 T (vk; w) suh that M = M 0 :�!� (M) = � (M 0) +D(T1[v℄; �)�D(T1[vk℄; �)(M 0) �= �!� (M 0) +�!D(T1[v℄; �)��!D(T1[vk℄; �)3. (v; w) 2M and M� 2 F(v; w)�!� (M) = � (M�) + d(v; w)(M�)� r(M�) + 2 �= �!�0 (M�) + � d(v; w)2 �4. M 2 F(v; w) and M is neessarily the ost of M is sub-optimal.This is the results of our proposition. �>From this last result, in order to determine �!D(T1[v℄; T2(w)), we need to ompute�!D0(F1[v℄; F2[w℄) = minM2F(v;w)f�!�0(M)gFor any valid mapping M , the following quantities are introdued:�!�v(M) = � (M)(M)� r(Mv) � and �!�w(M) = � (M)(M)� r(Mw) �
15



The minimum of these quantities on T (v; w) and F(v; w) are denoted as follow:�!Dv(T1[v℄; T2[w℄) = minM2T (v;w)f�!�v(M)g�!Dw(T1[v℄; T2[w℄) = minM2T (v;w)f�!�w(M)g�!Dv(F1[v℄; F2[w℄) = minM2F(v;w)f�!�v(M)g�!Dw(F1[v℄; F2[w℄) = minM2F(v;w)f�!�w(M)gProposition 4 Quantities �!D0(F1[v℄; F2[w℄), �!Dv(F1[v℄; F2[w℄), �!Dw(F1[v℄; F2[w℄) and �!D(F1[v℄; F2[w℄)are reursively omputed using the following relations:�!D0(F1[v℄; F2[w℄) = min8>>>><>>>>: �!D(F1[v℄; �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄) ��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w)��!�0 (M)��!Dv(F1[v℄; F2[w℄) = min8>>><>>>: �!D(F1[v℄; �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄)��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w) n�!�v(M)o�!Dw(F1[v℄; F2[w℄) = min8>>><>>>: �!D(F1[v℄; �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄)��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w) n�!�w(M)o�!D(F1[v℄; F2[w℄) = min8>>><>>>: �!D(F1[v℄; �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄)��!D(F1[vk℄; �)o�!D(�; F2[w℄) + minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2[wk℄)ominM2F=;=(v;w) n�!� (M)oProof : Using lemmas 4, 5 and 6 and proposition 2, we dedue that if M is in F(v; w)then M veri�es one and only one of the following assertions:1. 9wk 2 son[w℄ and M 0 2 F(v; wk) suh that M = M 0 . In this ase, r(Mv) = r(M 0v) andr(Mw) = 0:�!� (M) = � (M 0) +D(�; F2[w℄)�D(�; F2[wk℄)(M 0 � r(M 0v)) �= � (M 0)(M 0 � r(M 0v)) �+ � D(�; F2[w℄)0 �� � D(�; F2[wk℄)0 �= �!�v(M 0) +�!D(�; F2[w℄) ��!D(�; F2[wk℄)16



2. 9vk 2 son[v℄ and M 0 2 F(vk; w) suh that M = M 0 . In this ase, r(Mw) = r(M 0w) andr(Mv) = 0: �!� (M) = � (M 0) +D(F1[v℄; �)�D(F1[vk℄; �)(M 0 � r(M 0w)) �= �!�w(M 0) +�!D(F1[v℄; �)��!D(F1[vk℄; �)The omputation of the minimum on F(v; w) gives the results of our proposition. The in-termediate quantities �!D0(F1[v℄; F2[w℄), �!Dv(F1[v℄; F2[w℄), �!Dw(F1[v℄; F2[w℄) and �!D(F1[v℄; F2[w℄)alulated in a similar fashion. �The method for omputing quantitiesminM2F=;=(v;w) n�!� (M)o,minM2F=;=(v;w) n�!�v(M)o,minM2F=;=(v;w) n�!�w(M)o and minM2F=;=(v;w)��!�0 (M)� is given in the following setion. Theseomputation is based on the omputation of �!D0(T1[v℄; T2[w℄), �!Dv(T1[v℄; T2[w℄), �!Dw(T1[v℄; T2[w℄)and �!D(T1[v℄; T2[w℄) alulated as follow.Proposition 5 �!D0(T1[v℄; T2[w℄) is reursively omputed using the following relation:�!D0(T1[v℄; T2[w℄) = min8>>>>>>>><>>>>>>>>:
�!D0(F1[v℄; F2[w℄) + � d(v; w)0 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o+ � 01 ��!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �o+ � 01 ��!Dv(T1[v℄; T2[w℄) = min8>>>>><>>>>>: �!D0(F1[v℄; F2[w℄) + � d(v; w)1 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o�!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �o+ � 01 ��!Dv(T1[v℄; T2[w℄) = min8>>>>><>>>>>: �!D0(F1[v℄; F2[w℄) + � d(v; w)1 ��!D(�; T2[w℄) + minwk2son(w) n�!D(T1[v℄; T2[wk℄)��!D(�; T2[wk℄)o+ � 01 ��!D(T1[v℄; �) + minvk2son(v) n�!D(T1[vk℄; T2[w℄) ��!D(T1[vk℄; �oProof : Similar to proposition 3 �6 Restrited MappingIn prop 3 and 4, all the quantities ab be reursively evaluated exept forminM2F=;=(v;w)��!�0 (M)�,minM2F=;=(v;w) n�!�v(M)o, minM2F=;=(v;w) n�!�w(M)o et minM2F=;=(v;w) n�!� (M)o. These quan-tities need to be omputed separetly, using a speial sheme.17



A solution for omputing minM2F=;=(v;w)��!�0 (M)�. Other similar quantities an be om-puted likewise. As shown by Zhang [18℄, this optimization problem an be modeled as a minimumost maximum bipartite mathing problemand solved using aweighted maximum mathing algo-rithm [1℄. However the ost used in our ase (setion 5.) is not a real non-negative number butis de�ned on R2 . To extend the minimum ost maximum bipartite mathing problem to osts inR2 we need to de�ne a total order on R2 . As in the previous setion, we use for this purpose alexiographi order, and eah ost is greater than (0; 0).
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v5[ ],θ)Figure 6: Restrited mapping and modelisation as a network �owGiven F1[v℄ and F2[w℄, we onstrut a graph G(v; w) = (V;E) as follows (�gure 6:1. vertex set : V = fs; t; ev; ewg [ son[v℄ [ son[w℄, where s is the soure, t is the sink, and evand ew represent two empty trees;2. edge set : (s; vk), (s; ev), (ew; t), (wl; t) with a ost (0; 0), (vk; wl) with ost�!D(T1[vk℄; T2[wl℄),(vk; ev) with ost �!D(T1(vk); �), (ew; wl) with ost�!D(�; T2(wl)), and (ev; ew) with ost (0; 0).All the edges have apaity one exept (s; ev), (ev; ew) and (ew; t) whih apaities are nv,maxfnv; nwg �minfnv; nwg, and nw, respetively.
18



G is a graph whose edges are labeled with integer apaities, non-negative osts in R2, andthe maximum �ow f� = nv + nw [19℄.When the ost is a real, Zhang [19℄ showed that the ost of the minimum ost maximum�ow the is exatly minM2F=;=(v;w) f�! (M)g. In our ase, using a similar sheme we have shown[5℄ that the ost of the minimum ost maximum �ow the is exatly minM2F=;=(v;w)��!�0 (M)�.The omputation of the other quantities is similar and used the same modeling by the minimumost maximum bipartite mathing problem.7 Algorithm and ComplexityThe detailed algorithm is depited in algorithms 7.1 and 7.2. The general struture of thealgorithm is similar to that of Zhang's algorithm exept that at eah step of the reursion,additional tests are performed whih enable us to hoose one solution with minimum number ofonneted omponents when several equivalent optimal solutions are available.Algorithm 7.1 Initialization: omputation of the distanes between trees and empty tree�!D(�; �) = 0�!Dv(�; �) = 0�!Dw(�; �) = 0�!D0(�; �) = 0For any x 2 T1, ompute�!D(F1[x℄; �) = Xxk2son(x)�!D(T1[xk℄; �) and �!D(F1[x℄; �) = �!D(F1[x℄; �) + (d(x; �); 0)For any y 2 T2, ompute�!D(�; F2[y℄) = Xyk2son(y)D(�; T2[yk℄) and �!D(�; F2[y℄) = D(�; F2[y℄) + (d(�; y); 0)The �nal time omplexity is thus that of Zhang's algorithm [19℄:O(jT1j � jT2j � (deg T1 + deg T2)� log2(deg T1 + deg T2))8 ConlusionUsing the de�nition of a distane metri between unordered labeled trees proposed by Zhang, wehave presented an algorithm for omputing an optimal mathing between rooted trees minimizingthe number of onneted omponents indued by the mapping. This algorithm extends Zhang'salgorithm by proposing a haraterization of an optimal mapping. This algorithm does notinrease Zhang's algorithm omplexity and omputes a mapping with the minimum ost andhaving a minimum onnetivity.
19



Algorithm 7.2 Optimal valid mapping with a minimum number of onneted omponentsInitialization algorithm.For any v 2 T1 do and For any w 2 T2 do:(A) Computation of restrited mappings:minM2F=;=(v;w)n�!� (M)o � minM2F=;=(v;w)n�!�v(M)ominM2F=;=(v;w)n�!�w(M)o � minM2F=;=(v;w)��!�0 (M)�(B) First optimization step�!D(F1[v℄; F2[w℄) = min8>>><>>>: �!D(�; F2(w)) + minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄)��!D(F1(vk); �)ominM2F=;=(v;w) n�!� (M)o(C) Intermediate optimization step using step (B)�!Dv(F1[v℄; F2[w℄) = min8>>><>>>: �!D(�; F2(w)) + minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!D(F1[vk℄; F2[w℄) ��!D(F1(vk); �)ominM2F=;=(v;w) n�!�v(M)o�!Dw(F1[v℄; F2[w℄) = min8>>><>>>: �!D(�; F2(w)) +minwk2son(w) n�!D(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄)��!D(F1(vk); �)ominM2F=;=(v;w) n�!�w(M)o(D) Intermediate optimization step using step (C)�!D0(F1[v℄; F2[w℄) = min8>>>><>>>>: �!D(�; F2(w)) +minwk2son(w) n�!Dv(F1[v℄; F2[wk℄)��!D(�; F2(wk))o�!D(F1(v); �) + minvk2son(v) n�!Dw(F1[vk℄; F2[w℄)��!D(F1(vk); �)ominM2F=;=(v;w)��!�0 (M)�(E) Main optimization�!D(T1[v℄; T2[w℄) = min8>>><>>>: �!D0(F1[v℄; F2[w℄) + (d(v; w); 2)�!D(�; T2[w)℄) + minwk2son(w) n�!D(T1[v℄; T2[w℄)��!D(�; T2[wk℄)o�!D(T1[v℄; �) + minvk2son(v) n�!D(T1[v℄; T2[w℄) ��!D(T1[vk℄; �o
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The work presented here is part of projet to develop a set of tools for analyzing plantswhih are modeled by rooted tree graphs [8℄. The proposed algorithms and their implementationare urrently integrated into this tool set [9, 10, 4℄.
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