Pierre Peterlongo
email: pierre.peterlongo@univ-mlv.fr

Julien Allali

Marie-France Sagot

The Gapped-Factor Tree

Keywords: suffix tree, k-factor factor tree, string index, gapped-factor, gapped-factor tree

We present a data structure to index a specific kind of factors, that is of substrings, called gapped-factors. A gapped-factor is a factor containing a gap that is ignored during the indexation. The data structure presented is based on the suffix tree and indexes all the gapped-factors of a text with a fixed size of gap, and only those. The construction of this data structure is done online in O(n × |Σ|) time and space, with n the length of the text and |Σ| the size of the alphabet. Such a data structure may play an important role in some pattern matching and motif inference problems, for instance in text filtration.

Introduction

The indexation and extraction of repeated short words (called k-factors 4 for words of length k) has become a widely used technique in many text algorithmic problems. One can mention their use in, for instance, fasta [START_REF] Lipman | Rapid and sensitive protein similarity searches[END_REF] and blast [START_REF] Altschul | Basic local alignment search tool[END_REF][START_REF] Altschul | Lipman: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[END_REF]. Indeed, many algorithms for efficiently computing string matches [START_REF] Gravano | Srivastava: Approximate string joins in a database (almost) for free[END_REF][START_REF] Navarro | Indexing text with approximate q-grams[END_REF][START_REF] Sutinen | On using q-gram locations in approximate string matching[END_REF] or alignments [START_REF] Brudno | LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA[END_REF][START_REF] Brudno | Fast and sensitive multiple alignment of large genomic sequences[END_REF][START_REF] Edgar | MUSCLE: Multiple sequence alignment with high accuracy and high throughput[END_REF][START_REF] Höhl | Efficient multiple genome alignment[END_REF][START_REF] Li | PatternHunter II: Highly sensitive and fast homology search[END_REF][START_REF] Ma | PatternHunter: Faster and more sensitive homology search[END_REF][START_REF] Michael | Siteblast rapid and sensitive local alignment of genomic sequences employing motif anchors[END_REF] use k-factors. In particular, filtration algorithms that have been created for quickly discarding large portions of the input before applying a more expensive algorithm on the remaining data are often based on the identification of such short repeated words [6-8, 15, 25, 26, 28].

Among the exact filtration algorithms (exact in the sense that they discard only portions of the text that can not be part of the final solution sought), some consider k-factors composed of non consecutive letters [START_REF] Burkhardt | Better filtering with gapped q-grams[END_REF][START_REF] Burkhardt | One-gapped q-gram filters for Levenshtein distance[END_REF][START_REF] Kucherov | Multiseed lossless filtration[END_REF][START_REF] Pevzner | Multiple filtration and approximate pattern matching[END_REF], or sets of k-factors [START_REF] Burkhardt | q-gram based database searching using a suffix array (QUASAR)[END_REF][START_REF] Peterlongo | Lossless filter for finding long multiple approximate repetitions using a new data structure, the bi-factor array[END_REF][START_REF] Rasmussen | Efficient q-gram filters for finding all εmatches over a given length[END_REF]. Both present advantages for filtering purposes in comparison with single k-factors with no letters skipped as shown in [START_REF] Burkhardt | Better filtering with gapped q-grams[END_REF][START_REF] Kärkkäinen | Computing the threshold for q-gram filters[END_REF][START_REF] Kucherov | Multiseed lossless filtration[END_REF].

In order to efficiently use such k-factors, one needs data structures to index them. Depending on the kind of k-factor adopted, different types of data structures may be considered. For instance, sets of k-factors may be indexed in a hash table or using a labelling technique as proposed in [START_REF] Iliopoulos | A first approach to finding common motifs with gaps[END_REF]. In this paper, we introduce a data structure designed for the indexation of sub-words composed of a k-factor, a gap of length d not taken into account during the indexation and a k ′ -factor. Such a sub-word is called a gapped-factor as it contains a unique gap.

The new data structure is an adaptation of the suffix tree [START_REF] Mccreight | A space-economical suffix tree construction algorithm[END_REF]. More precisely, the construction we describe in this paper is an adaptation of the construction of a k-factor tree [START_REF] Allali | The at most k-deep factor tree[END_REF], which itself is an extension of the Ukkonen construction of a suffix tree [START_REF] Ukkonen | On-line construction of suffix-trees[END_REF]. A k-factor tree is a tree indexing all k-factors of a text.

As indicated in Section 5, the new data structure, called a gapped-factor tree, allows to extract in linear time all the repeated gapped-factors of a text or of a set of texts. Furthermore, it offers the possibility to obtain in time O(k + k ′) the list of all the positions of a gapped-factor.

The paper is organised as follows. In Section 2, we provide the context and some definitions about text and trees. In Section 3, we formally introduce gapped-factors and the gapped-factor tree. In Section 4, we present the algorithm to construct a gapped-factor tree for indexing the gapped-factors of a text after recalling the Ukkonen construction of a suffix tree and the Allali construction of a k-factor tree. We end by indicating two basic uses of gapped-factor trees.

Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet Σ.

A text t of length n is denoted by t[0, n-1] = t 0 t 1 . . . t n-1 , where t i ∈ Σ for 0 ≤ i < n.
The length of t is denoted by |t|. A string w is a factor of t if t = uwv for u, v ∈ Σ * ; in this case, the string w occurs at position |u| in the string t. A k-factor denotes a factor of length k.

If t = uv for u, v ∈ Σ * then v is called a suffix of t. A suffix starting at position i in t is denoted by t i... .
A tree is a data structure composed of nodes connected together by edges. Except for a special node called the root, each node has exactly one father. Nodes with no children are called the leaves while all other nodes are called the internal nodes of the tree. An internal node having at least two children is called a branching node.

We call the depth of a node N the sum of the lengths of the edges that need to be traversed from the root of the tree to reach N . By definition, the depth of the root is thus 0.

Nodes and edges may be labelled. For instance, in Figure 1, edges are labelled with letters from a given alphabet. Let N be a node of a tree, we denote by path(N) the text corresponding to the concatenation of the letters from a given alphabet labelling the edges from the root to N .

For instance, if N 0 denotes the leftmost leaf of the tree presented in Figure 1, path(N 0) = AA.

The suffix trie of a text t is a tree with edges labelled with elements of Σ. For each factor of t, there exists a node N such that path(N) is equal to that factor. If t has an ending symbol, all nodes N for which the path from the root spells a suffix of t are leaves.

The implicit suffix tree of t is a tree with edges labelled by non-empty elements of Σ * . The suffix tree is a compressed version of the suffix trie. Each internal node N of the suffix trie that has only one child is deleted and its two adjacent edges are replaced by an edge that goes from the father of N to its child. The label of the new edge is equal to the concatenation of the label of the edge going from the father of N to N and of the label of the edge from N to its child. This tree is called implicit because not all suffixes of t lead to a leaf. The true suffix tree is obtained when a special ending symbol $ not in Σ is added at the end of t. A suffix tree indexes all the |t| suffixes of a text t.

Gapped-factor tree

A gapped-factor tree indexes gapped-factors that are defined as follows:

Definition 1 (Gapped-factor). A gapped-factor is a concatenation of a factor of length k, a gap of length d and another factor of length k ′ . A gapped-factor occurring at position i in a text

t is t[i, i+k -1].t[i+k +d, i+k +d+k ′ -1]. Such a gapped-factor is called a (k-d-k ′)-gapped-factor.
An example of a (2-1-3)-gapped-factor is given in Figure 2. We propose a new data structure, called a gapped-factor tree, to index all the (kd-k ′)-gapped-factors of a text or of a set of texts. This is a modification of the suffix tree [START_REF] Mccreight | A space-economical suffix tree construction algorithm[END_REF] data structure. The gapped-factor tree takes into account the gap of length d of the gapped-factors it indexes. This means that the tree contains a region up to which the k-factors are indexed as in a classical suffix tree, while below this region the second factors (of length k ′) of the (k-d-k ′)-gapped-factors starting with the same k-factor start from the same node. This region is called the invisible region.

An intuitive idea of such a data structure is given in Figure 3.

00000000000000000 00000000000000000 00000000000000000 00000000000000000 11111111111111111 11111111111111111 11111111111111111 11111111111111111 0000000000000 1111111111111 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 A T A C A C A A A C C A A C A d k k' A C A C A A C A C A k k' Figure 3
. An intuitive view of a gapped-factor tree. Even if this is not the way the gappedfactor tree is constructed, a gapped-factor tree can be seen as a truncated suffix tree where a part has been removed, provoking merges in the lower part of the tree.

Definition 2 (Path in a Gapped-Factor Tree). Let w be a

(k-d-k ′)-gapped-factor starting at position i < |t| -k -d -k ′ that is indexed in such a tree. Let N be the node at depth z ≤ k + k ′ corresponding to this (k-d-k ′)-gapped-factor. Then: path(N) = t[i, i + z -1] if z ≤ k t[i, i + k -1].t[i + k + d, i + d + z -1] otherwise
An example of gapped-factor tree and of a path in such a tree is presented in Figure 4. In the next section, we present the algorithm which performs the online construction of a gapped-suffix tree.

A A G A C G G A A A G A A A A A C G A A C G C A G G A
The algorithm for constructing a gapped-factor tree is an extension of the algorithm for constructing a k-factor tree [START_REF] Allali | The at most k-deep factor tree[END_REF], which is itself an extension of the suffix tree construction algorithm due to Ukkonen [START_REF] Ukkonen | On-line construction of suffix-trees[END_REF]. Therefore, in the following, we start by presenting the construction of a suffix tree, then the one of a k-factor tree, and finally we describe the construction of a gapped-factor tree.

Ukkonen construction of the suffix tree

To present the Ukkonen algorithm, we follow the description given in [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences[END_REF]. This algorithm constructs a full suffix tree of a text t in O(|t|) time and space. An example of a suffix tree is given in the Figure 5. The algorithm is divided into |t| phases. The i th phase (for 0 ≤ i < |t|) consists in the insertion of all the i + 1 suffixes of t[0, i] into the tree. The naive approach divides each phase i into i + 1 steps, one step j (0 ≤ j < i) consisting in the insertion of the suffix t[j, i] into the tree. This naive version of the construction algorithm is presented in Algorithm 9. Clearly this algorithm is in O(|t| 3).

A $ G G A $ G $ A G $ $ G A G $ G A G G A G

Algorithm 9 Naive suffix tree construction algorithm

Require: A text t Ensure: The suffix tree ST (t) of t 1: for i from 0 to |t| -1 do 2: for j from 0 to i do 3: Add(ST (t),t[j, i]) 4: end for 5: end for The Ukkonen algorithm uses three tricks in order to reduce the time complexity to O(|t|).

Before we present those three tricks, we describe the encoding of a suffix tree. The suffix tree created by this algorithm does not store the text: each node N contains a couple of integers (s, e) corresponding to the starting and ending positions of the factor in the text that led to the creation of the node itself. In the following, we denote by N s,e such a node. Thus, by definition, in the suffix tree of a text t, path(N s,e) is equal to t[s, e].

The Ukkonen algorithm uses suffix links. A suffix link is an oriented link between two branching nodes of a suffix tree. Given a node N s,e , its suffix link is denoted by S l (N s,e) and the node pointed by S l (N s,e) is denoted by S n (N s,e). In this case, path (S n (N s,e)) = path(N s,e) 1, |path(N s,e)| . For instance, if path(N s,e) = AGGT , then, path(S n (N s,e)) = GGT .

In Figure 5, the suffix links are represented by dashed lines. We present the three ideas leading to a linear time complexity for constructing a suffix tree for the text t.

1. Let us assume that the suffix tree is constructed for t[0, i-1]. During the i th phase, all the leaves have to be lengthened by one in order to take the character t i into account. In other terms, the ending integer e of each leaf has to be incremented by one. Since by definition, all leaves have the same ending integer, the latter can be coded by a global variable that is incremented by one at each phase of the Ukkonen algorithm. This global variable is equal to i during phase i. Thus, the extension of the leaves is implicit and done in constant time. 2. (a) Fast Insertion: during the i th phase, let N s,e be the last branching node reached during the insertion of t[j, i]. By construction this node contains a suffix link. In this case, t[j, i] = path(N s,e).w.σ where w ∈ Σ * and σ ∈ Σ. In order to insert t[j + 1, i], w (which is necessarily already in the tree) is read from S n (N s,e) and σ is added if needed.

To avoid having to read all the letters of w from S n (N s,e), the following trick is used. At each branching node met during the reading of w, an edge is chosen depending on the current letter in w. Once the edge is identified, the node pointed by this edge is reached and we advance in the reading of w by the number of letters in the edge. The process is repeated while w is not totally read. Thus the complexity of the reading of w is related to the number of nodes traversed and not to |w|. If σ is added, a branching node is created. The suffix link of such a node points to the last branching node met during the next insertion (it can be a created one).

The pseudo-code of this algorithm is given in appendix in Figure 10. (b) During phase i, all the suffixes of t[0, i] have to be inserted. Yet if during the insertion of t[j, i], this word is already in the tree, then, by definition, all the words {t[k, i], k ∈ [j, i]} are already in the tree as well. In this case, the i th phase stops here. Similarly, the (i + 1) th phase can start inserting t[j, i + 1]: with the implicit extension of the leaves, the factors {t[k, i + 1], k ∈ [1, j -1]} are already in the tree.

A pseudo-code of this construction algorithm is given in appendix in Algorithm A. Each phase of the algorithm is not done in constant time. However the amortised construction time is linear with respect to the input text length. The demonstration of this complexity is given in [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences[END_REF]. It consists in bounding the overall number of nodes traversed during all insertions.

Construction algorithm of a k-factor tree

The k-factor tree, also called truncated suffix tree, has been presented in [START_REF] Na | Truncated suffix trees and their application to data compression[END_REF] and [START_REF] Allali | The at most k-deep factor tree[END_REF]. A k-factor tree is a suffix tree cut such that each word spelt from the root to a leaf has a length bounded by k. An example of k-factor tree is given in Figure 6. This structure finds applications in various areas such as data compression [START_REF] Na | Truncated suffix trees and their application to data compression[END_REF][START_REF] Na | Data compression with truncated suffix trees[END_REF] where the indexation is made over a sliding window, or string matching and computational biology [START_REF] Marsan | Extracting structured motifs using a suffix tree -algorithms and application to promoter consensus identification[END_REF][START_REF] Pisanti | RISOTTO: Fast extraction of motifs with mismatches[END_REF][START_REF] Thébault | Combining constraint processing and pattern matching to describe and locate structured motifs in genomic sequences[END_REF] where the length of the motifs searched for in the text is bounded.

The linear time construction algorithm we describe here is based on the Ukkonen suffix tree construction algorithm. For further details on implementation and proof of validity, the reader is referred to [START_REF] Allali | The at most k-deep factor tree[END_REF].

This algorithm is divided in two parts:

1. Build the suffix tree for t[0, k

-2]. 2. Add in |t| -k + 1 phases the suffixes of t[i -k, i] for i from k -1 to |t| -1.
The first part is achieved using the Ukkonen algorithm. During this part, the leaves created are added to a queue called queue ℓeaf .

In the second part, we have to modify the Ukkonen algorithm so that:

for each phase i, we start by inserting t[j, i] with j not smaller than ik + 1; -implicit leaf extensions are stopped when the length k is reached for the path of a leaf.

To do this last point, we use the queue queue ℓeaf .

During the whole construction, each leaf created is added at the end of queue ℓeaf . In the second part, for each phase i, there are two possibilities: either queue ℓeaf is empty or not.

Suppose queue ℓeaf contains at least one leaf. Let L s,e denote a leaf starting position s and ending position e. We then have queue ℓeaf = L 1 s 1 ,e . . . L p s p ,e . We start by fixing the end position of L 1 s 1 ,e to i, that is L 1 s 1 ,e becomes L 1 s 1 ,i . Indeed, we know that path(L 1 s 1 ,i) has a length of k. Suppose we are in phase i = k -1. Then queue ℓeaf contains at least one leaf which corresponds to the one created during the insertion of t[0] in the tree (first insertion of the first phase). This leaf is L 1 0,e . In phase i = k, the leaf is now L 1 0,k-1 , so its length is equal to k. If there is another leaf in the queue, it corresponds to L 1 1,e and it is clear that its length will be equal to k at the next phase. And so on, as the leaves L s,e are created with s incremented by one between two leaves.

Once the leaf at the beginning of queue ℓeaf is fixed, we apply again the Ukkonen algorithm from the last leaf in queue ℓeaf (the last created which can be the one we have just fixed). At the end of phase (i.e. no leaf created during the last insertion), we remove the leaf at the head of queue ℓeaf .

We describe now the case when there is no leaf in the queue. Suppose there were a leaf in the queue at the previous phase i -1. By fixing the end value of this leaf, we have fixed the leaf corresponding to t[ik, i -1]. Then we started by inserting t[ik + 1, i -1] in the tree. This insertion did not create a leaf (queue ℓeaf is empty in phase i) and lead to a position p in the tree that corresponds to the spelling of t[ik + 1, i -1]. In the current phase i, since queue ℓeaf is empty, we have to start by inserting t[ik + 1, i] in the tree. This can be done in constant time by trying to insert t[i] from the position p. If this insertion creates a leaf, its end value is directly set to i (not added in queue ℓeaf) and it is used to try to insert t[ik + 1, i]. If no leaf is created, then we continue by trying to insert t[ik + 1, i] from the leaf reached (we know that the insertion of t[ik, i] leads to a leaf since the path length of the leaves is bounded by k). If the insertion of t[ik + 1, i] does not create a leaf, we use the position reached in the tree to start the next phase.

A pseudo-code of this algorithm is given in appendix in Algorithm A.

The time and space complexities of the algorithm are linear in the size of the input text (see [START_REF] Allali | The at most k-deep factor tree[END_REF] for details).

A G G A G A $ G G A $ G A $ G G k=3 Figure 6
. Example of a k-factor tree for the text AGGAG$ with k = 3

Gapped-factor tree construction

We now present the construction algorithm of a gapped-factor tree (gft for short).

Once again, the construction algorithm is done online. As shown in Figure 4, a gft is composed of three different regions: the upper part of depth k, the invisible region corresponding to the gap of length d, and the lower part of depth k ′ :

1. During the construction of the gft, the first region is treated exactly as for a kfactor tree. The queue containing the leaves in extension is denoted by queue leaf up . 2. When a leaf reaches the depth k, it enters in the invisible region for d phases. To simulate this behaviour, a queue is created that contains the leaves in extension in the invisible region. This queue is denoted by queue invisible . Leaves entering queue invisible stay inside for d phases. During those phases, leaves inside the queue are ignored. After d phases, a leaf in the queue is virtually reaching the depth k + d. It is then removed from the queue. 3. The construction algorithm of the lower part of the tree is again very similar to the one of a k-factor tree. All the tricks applied for the suffix tree construction are still available. Once more a queue is used to store the leaves in extension in the lower part of the tree. This queue is denoted by queue leaf low . The ending integer of the leaves in extension in the queue is the global variable i. The leaves stay in the queue during k ′ phases before they become leaves that stay fixed, and contain the positions of the gapped-factors corresponding to the path leading to them from the root. However, for the construction of the lower part, the use made of suffix links is slightly different than in the upper part of the tree. This is due to the following particularity of the gapped-factor tree: a node in the lower part of the tree may have up to |Σ| suffix links. Indeed, one node in this tree may correspond to several paths. According to the first letter in the invisible region leading to a node, the suffix link to follow will not be the same. Figure 7 illustrates this observation.

The algorithm 15 given in appendix gives an overview of the whole gapped-factor tree construction algorithm. The node pointed by an arrow has two suffix links (in dotted line). One is labelled with an A and the other is labelled with a B. The correct suffix link to follow depends on the path that leads to the node. If the node is reached reading ABA.w (w ∈ Σ *), the correct suffix link to follow is the one labelled with an A; it goes to a node reachable reading the text BA.w. Any other suffix link leaving the node would be labelled differently and would reach a node corresponding to the text B.σ.w, with σ ∈ Σ and σ = A.

Complexity of the Gft construction

The algorithm for constructing a gft uses all the tricks employed by Ukkonen and Allali to lead to a linear time and memory complexity. However, the multiple suffix links add a multiplicative term in |Σ| to both complexities. Thus the total time and memory complexity for the construction of a gapped-factor tree for a text t is in O(|t| × |Σ|). One can notice that once the gapped-factor is constructed, the (multiple) suffix links are not useful anymore and can be removed. In this case, the memory complexity falls back to O(|t|).

Generalisation to more than one text As for the suffix tree or the k-factor tree, the gft can be extended to a generalised gapped-factor tree and accept a set of m > 1 texts t 0 , t 1 , . . . , t m-1 .

In this case, each text i ∈ [0, m -1] ends with a special character $ i and the leaves are labelled not only with the positions of a gapped-factor but also with the sequence number in [0, m-1] where the factors occur. The complexity for constructing a generalised gapped-factor tree is in

O m-1 i=0 |t i | × |Σ| .

Basic uses of a gapped-factor tree

To find all the positions where a (k-d-k ′)-gapped-factor occurs in a text given a (k-d-k ′)-gapped-factor tree for the text one needs to find the leaf corresponding to the given gapped-factor. This is done straightforwardly by traversing the gappedfactor tree from the root to the node as in a suffix tree. The list attached to the leaf corresponds to the positions of the occurrences of the gapped-factors. This algorithm takes a time proportional to the number of nodes traversed, which is in the worst case k + k ′ . Thus retrieving the positions of a given (k-d-k ′)-gappedfactor is done in O(k + k ′).

The gft data structure allows also to easily find all the repeated gapped-factors of a text or of a set of texts. If we are interested in finding all gapped-factors occurring at least r times in a text, for r a positive integer, we just have to visit the leaves. For each leaf, if the number of elements of the list attached to it is greater or equal to r, the corresponding gapped-factor is considered as repeated.

As the number of elements of each list may be stored in the leaves, this extraction is done in time proportional to the number of leaves. If n denotes the length of the indexed text, the number of leaves is no greater than n. The extraction is therefore done in time O(n).

In the generalised case, one may want to extract all gapped-factors occurring in at least r different texts. In this case, to each leaf is attached the number of different texts in which the corresponding gapped-factor occurs. Thus extracting all gappedfactors occurring in at least r different texts is done by checking each leaf in constant time leading to a complexity in O(

m i=1 |t i |).

Conclusion

We presented a new data structure used for indexing factors containing a gap (called the gapped-factors). This data structure is based on the suffix tree structure. Furthermore, we indicated an online construction algorithm of this data structure for a text t on an alphabet Σ in O(|t| × |Σ|) time and space. This algorithm is based on the Ukkonen algorithm for constructing a suffix tree. remove the leaf at the head of queue leaf and set its end value to i 16: end for 17: return R Algorithm 12 Function Phase (Suffix tree and k-factor tree construction) Require: R, t, k, i, queue leaf , lastLeaf Ensure: One phase of the construction of the suffix tree and of the k-factor tree. The underlined parts stand only for the k-factor tree construction. 1: endP hase ← f alse 2: repeat 3: f orward ← length(F ather(lastLeaf), lastLeaf) -1 4: if S l (F ather(lastLeaf)) is undefined and F ather(lastLeaf)! = R then 5:

A Pseudo-codes

f orward ← f orward + length(F ather(F ather(lastLeaf)), F ather(lastLeaf)) 6:

if F ather(F ather(lastLeaf)) is R then 7:

AddString(R,t,if orward + 1,i) 8: else 9:

AddString(S l (F ather(F ather(lastLeaf))),t,if orward,i)

Figure 1 .

 1 Figure1. Example of a tree labelled with letters from a given alphabet. Reading all paths from the root to the leaves, leads to the strings AA, AC, CA and CT .

Figure 2 .

 2 Figure 2. Example of a (2-1-3)-gapped-factor. The first factor length is k = 2, the gap is of length d = 1 and the second factor has a length k ′ = 3. It occurs at position 1 in the text. With these parameters, the content of the gapped-factor occurring at position 1 is GGGAG composed by GG and GAG.

Figure 4 .

 4 Figure 4. Example of gapped-factor tree. The input sequence is AGGAGAGACAA. The dashed lines correspond to the invisible region of the tree. In this case, the gapped factors indexed are (2-1-3)-gapped-factors. The information attached to one of the leaves corresponds to the starting positions of a gapped-factor in the text.

Figure 5 .

 5 Figure 5. Example of a suffix tree for the text AGGAG$. The dashed lines represent the suffix links.

Figure 7 .

 7 Figure 7. Example of multiple suffix links. The node pointed by an arrow has two suffix links (in dotted line). One is labelled with an A and the other is labelled with a B. The correct suffix link to follow depends on the path that leads to the node. If the node is reached reading ABA.w (w ∈ Σ *), the correct suffix link to follow is the one labelled with an A; it goes to a node reachable reading the text BA.w. Any other suffix link leaving the node would be labelled differently and would reach a node corresponding to the text B.σ.w, with σ ∈ Σ and σ = A.

 Algorithm 10 Fast InsertionRequire: N ,t,start,end Ensure: Insert a string t start...end from a node N assuming that the tree is already constructed for t start...end-1 from N 1: endJump ← f alse 2: while (not endJump) and ((endstart) = 0) do 3: set child to the child of N that starts with the lettert start 4: if (endstart) ≥ length(N , child) then if (endstart) = 0and N has not a child for letter t end then 12: add a child to N with edge label start equal to end 13: end if 14: e ←the label of the edge between N and child 15: if e end-start+1 = s end then 16: split e at position endstart 17: add a leaf with start position equal to end to the new node 18: end if Algorithm 11 Factor Tree Require: R, t , k , queue leaf Ensure: The k-factor tree of t 1: do the first k -1 phases using Suffix Tree algorithm, filling queue leaf with each new leaf created 2: for i from k to |t| do 3: if queue leaf is not empty then 4: set lastLeaf to the leaf at the end of queue leaf Phase (R, t , k, i, queue leaf , lastLeaf) 15:

	5:	start ← start + length(N , child)
	6:	N ← child
	7: else
	8:	endJump ← true
	9: end if
	10: end while
	11: 5: else
	6:	add t i from last position reached during the last insertion
	7:	if a leaf is created then
	8:	add this leaf at the end of queue leaf
	9:	set lastLeaf to this leaf
	10:	else
	11:	set lastLeaf to the leaf reached
	12:	end if
	13:	end if
	14:	

 Ensure: The suffix tree of t 1: Add to R a leaf L with edge label t 0 2: lastLeaf ← L 3: for i from 1 to |t| -1 do 4: Phase (R, t , k, i, lastLeaf) 5: end for 6: return R

	10:	end if
	11:	else
	12:	if F ather(lastLeaf) is R then
	13:	AddString(R,t,i -f orward + 1,i)
	14:	else
	15:	AddString(S l (F ather(lastLeaf)),t,i -f orward,i)
	16:	end if
	17:	end if
	18:	if a node was created during the previous step then
	19:	set the suffix link of this node to the last node reached during the insertion
	20:	end if
	21:	if a leaf was created in the call to AddString then
	22:	set lastLeaf to this leaf
	23:	add this leaf at the end of queue leaf
	24:	end if
	25:	if no node was created during the call to AddString then
	26:	endP hase ← true
	27:	end if
	28: until not endP hase
	Algorithm 13 Suffix Tree
	Require: t

Proceedings of the Prague Stringology Conference '06

⋆ Supported by the ACI Nouvelles Interfaces des Mathématiques π-vert project of the French Ministry of Research, the ARC BIN project from the INRIA, and the ANR project REGLIS. 4 for designing k-factors is q-grams