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Tree Automata and Dis
rete Distributed GamesJulien Bernet and David Janin ⋆LaBRI, Université de Bordeaux I351, 
ours de la Libération33 405 Talen
e 
edex FRANCE{bernet|janin}�labri.frAbstra
t. Distributed games, as de�ned in [6℄, is a re
ent multiplayerextension of dis
rete two player in�nite games. The main motivationfor their introdu
tion is that they provide an abstra
t framework fordistributed synthesis problems, in whi
h most known de
idable 
ases
an be en
oded and solved uniformly.In the present paper, we show that this unifying approa
h allows aswell a better understanding of the role played by 
lassi
al results fromtree automata theory (as opposed to adho
 automata 
onstru
tions) indistributed synthesis problems. More pre
isely, we use alternating treeautomata 
omposition, and simulation of an alternating automaton bya non-deterministi
 one, as two 
entral tools for giving a simple proof ofknown de
idable 
ases.Introdu
tionDistributed games, as de�ned in [6℄, is a re
ent multiplayer extension of dis
retetwo player in�nite games. The main motivation for their introdu
tion is thatthey provide an abstra
t framework for distributed synthesis problems, in whi
hmost known de
idable 
ases [1, 3�5, 10℄ 
an be en
oded and solved uniformly.In the present paper, we show that this unifying approa
h allows as well abetter understanding of the role played by 
lassi
al results from tree automatatheory in distributed synthesis problems.More pre
isely, in the above mentioned works, many de
ision algorithms rely(more or less impli
itly) on automata 
onstru
tions that are not expli
itly relatedto 
lassi
al automata theory.For instan
e, in [3℄, the main 
onstru
tion given by the authors to solve thepipeline synthesis problem �sounds� like the sequential 
omposition of two tree-automata. Similarly, one of the main 
onstru
tion (glue operation) de�ned in [6℄�sounds� like Muller and S
hupp simulation of an alternating automaton by anon deterministi
 one [7℄.The purpose of this paper is to validate this intuition, by expli
itly de�ningthe en
ountered automata (or their inputs) when they are missing in these works,and to apply known 
onstru
tions in order to reprove these synthesis results.
⋆ This work is partially supported by the European Commission Resear
h and TrainingNetwork �Games and Automata for Synthesis and Validation� (RTN GAMES)



This way, it is expe
ted that it will 
ontribute to the foundation of a 
ommonground into whi
h methods and approa
hes 
an be en
oded and 
ompared onewith the other.The te
hni
al relevan
e of our reformulation work is illustrated by the en-
oding and solving of the pipeline 
ase [3℄.Other Related WorksPeterson and Reif ([8℄, extended in [9℄) initiated the resear
h on multiplayergames of in
omplete information, 
onsidering �nite games, and introdu
ing thenotion of hierar
hi
al games: these games satisfy the property that one 
an lin-early order the set of players su
h that p1 ≤ p2 if and only if �p2 knows morethan p1�, or equivalently �p2 knows the state of p1�. They prove that these gamesare solvable, by iteratively removing the in
omplete information asso
iated withea
h player.Subsequent results on distributed synthesis (su
h as [10℄, [3℄) essentially usedthe same ideas and te
hniques, ex
ept in the fa
t that they 
onsider in�nite playsand/or bran
hing time spe
i�
ations.The 
ommon te
hnique is to 
ut out the last player from the game (i.e. the onethat knows the state of all the other), modifying in the pro
ess the spe
i�
ationso that it re�e
ts all moves that 
an be taken by this player, then do the samewith the last but one, et
. . . . until a �simple� 2-player game is left to solve.Our paper rely on the same prin
iple, making the automata 
onstru
tionsexpli
it.Organization of the PaperIn the �rst se
tion, after reviewing some of the notations used in this paper, we�x the de�nitions of trees, tree automata and in�nite two player games. Mullerand S
hupp non determinization theorem is stated, and a notion of sequential
omposition of tree automata is also de�ned and analyzed.Distributed games and distributed strategies are presented in the se
ond se
-tion. These games are played by a team of pro
ess players versus a single envi-ronment opponent. Ea
h pro
ess player only gets in
omplete information aboutthe position of the other pro
esses. The existen
e of a winning distributed strat-egy in a distributed game is shown to be unde
idable, even for simple winning
onditions su
h as safety and rea
hability.In the third se
tion, we �rst show that using an (external) tree-automatonin order to de�ne winning strategies in a (distributed) game is essentially equiv-alent to adding an additional pro
ess player (internalizing the automaton) intothe game. Then, 
onversely, we show that when a pro
ess player has enoughknowledge to dedu
e the positions of the other pro
esses, then its lo
al arena
an be externalized as a tree automaton reading the strategies of the remainingpro
esses, in whi
h non-deterministi
 
hoi
es 
orrespond to the moves of thepro
ess; this automaton 
an be 
omposed with any existing external winning
ondition. 2



Under su�
ient 
onditions, one 
an apply repeatedly this 
onstru
tion inorder to redu
e the number of pro
ess players and thus to solve the distributedgame.The long-term goal of this approa
h is to gain bene�t from the high levelof abstra
tion provided by game theory and, altogether, gain bene�t from well-known 
onstru
tions of automata theory (as it as been developed from Rabin'sseminal result [11℄), to help having a better understanding of the fundamentalobsta
les to the synthesis of distributed systems.1 Trees, Automata and GamesFor any alphabet A, let A∗ and Aω be the set of all �nite and in�nite wordswith letters from A. Let A∞ = A∗ ∪ Aω, and A? = {ǫ} + A. Standard nota-tions on words and languages of words are used. In parti
ular, given a language
L ⊆ A∗, we use the notations L+ and (when the empty word ǫ 6∈ L) Lω thatstand, respe
tively, for the set of words built by 
on
atenating �nitely many andin�nitely many �nite words of L. For any �nite word w = a1 . . . an, let |w| = nbe the length of w. For any in�nite word w, let inf(w) = {a ∈ A | w ∈ (A∗.a)ω}be the set of letters that o

ur in�nitely often in w.For any two sets A and X , for any word w ∈ A∗, de�ne πX(w) (the proje
tionof w over X) as the word obtained by deleting any letter that is not in X fromthe word representation of w.Given n numbered sets A1, . . . , An, given A = A1 × . . . × An, given any setof indi
es I = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < . . . < ik, we write A[I] forthe set A[I] = Ai1 × . . . Aik

, for any x = (a1, . . . , an) ∈ A, we write x[I] for theelements x[I] = (xi1 , . . . , xik
) ∈ A[I], and, for any P ⊆ A, we write P [I] for theset P [I] = {x[I] ∈ A[I] : x ∈ P}.In 
ase I = {i, i + 1, . . . , j} (where 1 ≤ i ≤ j ≤ n), these notations simplifyto A[i . . . j], x[i . . . j] and P [i . . . j] respe
tively (and even simplify to A[i], x[i]and P [i] when i = j). These notations also extend to words as follows: for anyword w = a1.a2. . . . ∈ A∞, for any I ⊆ {1, . . . , n}, w[I] = a1[I].a2[I].a3[I] . . .,and to relations: for any relation R ⊆ A × A, we write R[I] the relation on A[I]de�ned by R[I] = {(x[I], y[I]) ∈ A[I] × A[I] : (x, y) ∈ R}.Given two �nite alphabets D and Σ, a Σ-labeled D-tree (also 
alled D,Σ-tree)is a partial fun
tion D∗ → Σ whose domain is 
losed under pre�x operation. Inthe sequel, elements of Σ are 
alled labels and elements of D are 
alled dire
tions.For any tree t : D∗ → Σ, the fun
tion flatt : Dom(t) → Σ.(D.Σ)∗ is de�nedby: flatt(ǫ) = t(ǫ) and, for any w ∈ D∗ and d ∈ D su
h that w.d ∈ Dom(t),

flatt(w.d) = flatt(w).d.t(w.d). Observe that Dom(t) and flatt(Dom(t)) or-dered by the pre�x ordering are isomorphi
, and, as a 
onsequen
e, flatt(Dom(t))uniquely determines tree t.The following de�nition is a variation on Muller and S
hupp's original def-inition of alternating automaton [7℄. Our goal is to have a tree-transdu
er likeautomaton de�nition, even for alternating automaton.3



De�nition 1 (Alternating tree automaton). A �nite (D, Σ)-alternatingtree automaton is a tuple:
A = 〈Q = Q∀ ⊎ Q∃, D, Σ, q0, δ = δ∀ ∪ δ∃, Acc ⊆ Qω〉where Q is a �nite set of states, q0 ∈ Q∃ is the initial state, δ∀ : Q∀×D → P(Q∃)and δ∃ : Q∃ × Σ → P(Q∀) are the transition fun
tions, and the ω-rationallanguage Acc is the in�nitary a

eptan
e 
riterion.Automaton A is a non deterministi
 automaton (also 
alled non alternating)when |δ∀(q, d)| ≤ 1 (for any q ∈ Q∀, d ∈ D).De�nition 2 (Runs). A run of an automaton A = 〈Q, D, Σ, i, δ, Acc〉 over a

Σ-labeled D-tree t : D∗ → Σ is a Q∀-labeled (D×Q∃) tree ρ : (D×Q∃)∗ → Q∀su
h that:� ρ(ǫ) ∈ δ∃(q0, t(ǫ)),� for all w ∈ Dom(ρ), if ρ(w) = q, then for any dire
tion d ∈ D su
h that
a = t(w[1].d) is de�ned, and for any existential state q1 ∈ δ∀(q, d), thereexists a universal state q2 ∈ δ∃(q1, a) su
h that ρ(w.(d, q1)) = q2.For any in�nite bran
h w of a run ρ of A over t, statesρ(w) is the sequen
eof (universal and existential) states en
ountered along w. A tree t is a

eptedby A if and only if there exists a run ρ of A over t su
h that for any in�nitebran
h w in ρ: statesρ(w) ∈ Acc. Denote by L(A) the language of all trees thatare a

epted by A. The size of an automaton A is denoted by |A|.Observe that these tree automata (both alternating and non alternating), ifslightly unusual, have the same expressive power as their standard 
ounterpart,as in [7℄. In parti
ular:Theorem 1 (Simulation [7℄). Any alternating tree automaton A is equiva-lent to a non deterministi
 tree automaton A′, with |A′| ≤ 22

|A| (with Mullera

eptan
e 
ondition).Sin
e the runs of an automaton on trees are themselves trees, automata a
tas tree transdu
ers and 
an be sequentially 
ombined.De�nition 3 (Automata Composition). Given two tree automata A1 =
〈Q1, D1, Σ1, q0,1, δ1, Acc1〉 and A2 = 〈Q2, D2, Σ2, q0,2, δ2, Acc2〉, su
h that au-tomaton A2 is non deterministi
 with D2 = D1 × Q∃

1 and Σ2 = Q∀
1 , we de�nethe 
omposition of A1 followed by A2 to be the automaton

A2 ◦ A1 = 〈Q̃, D1, Σ1, q̃0, δ̃, Ãcc〉de�ned as follows:� Q̃∃ = Q∃
1 × Q∃

2 ; Q̃∀ = Q∀
1 × Q∀

2 ;� q0 = (q0,1, q0,2), 4



� (q′1, q
′
2) ∈ δ̃∀((q1, q2), d) ⇔

{
q′1 ∈ δ∀(q1, d)
{q′2} = δ∀2 (q2, (d, q′1))� (q′1, q

′
2) ∈ δ̃∃((q1, q2), a) ⇔

{
q′1 ∈ δ∃(q1, a)
q′2 ∈ δ∃2 (q2, q

′
1)� Ãcc = {w ∈ Q̃ω | w[1] ∈ Acc1 ∧ w[2] ∈ Acc2}Theorem 2. For any tree t : D∗

1 → Σ1, t ∈ L(A2 ◦ A1) if and only if thereexists an a

epting run ρ : (D1 × Q∃
1)∗ → Q∀

1 of A1 over t su
h that ρ ∈ L(A2).The proof, although tedious, is not 
ompli
ated, and is therefore omittedhere. Observe that it is 
ru
ial that A2 is non-alternating ; nevertheless, byapplying Theorem 1, one 
an always assume that is is the 
ase.De�nition 4 (Simple (or Two Player) Games). A simple arena is a quadru-ple G = 〈P, E, TP , TE〉, where P is a �nite set of Pro
ess positions, E is a �niteset of Environment positions, TP ⊆ P×E is the set of Pro
ess moves, TE ⊆ E×Pis the set of Environment moves. A simple game G = 〈P, E, TP , TE, e0,W〉 isbuilt upon a simple arena 〈P, E, TP , TE〉 by equipping it with an initial position
e0 ∈ E and a regular winning 
ondition W ⊆ (P + E)ω.As parti
ular 
ases of winning 
ondition, a rea
hability 
ondition is a winning
ondition of the form W = (P + E)∗.X.(P + E)ω for some set of positions
X ⊆ P +E to be rea
hed for Pro
ess to win, and a safety 
ondition is a winning
ondition of the form W = ((P +E)−X))ω for some set of positions X ⊆ P +Eto be avoided for Pro
ess to win.A play w ∈ (P + E)∗ in a simple game is any non-empty path in the arenabeginning on e0. A play w is winning for Pro
ess when either it is �nite and endsin an Environment position, or it is in�nite and belongs to W . Otherwise, it iswinning for Environment.A strategy for Pro
ess is a partial fun
tion σ : (E.P )+ → E su
h that forany w.p ∈ Dom(σ), for any position e ∈ σ(w.p), then (p, e) ∈ TP , and for anysu

essor p′ of e, w.p.e.p′ ∈ Dom(σ). A play w = e0.x1. . . . is 
onsistent withstrategy σ when, for any i ∈ N, if σ(e0. . . . .xi) and xi+1 are both de�ned thenthey are equal. A strategy σ is a winning strategy for Pro
ess when any maximalplay (w.r.t. the pre�x ordering) 
onsistent with σ is winning for Pro
ess.Given a strategy σ in some game G, the strategy tree tσ : P ∗ → E of σ in Gis de�ned indu
tively by tσ(ǫ) = e0, and tσ(u.x) = σ(flattσ

(u).x).Theorem 3 ([2℄). On �nite two-player games with regular winning 
ondition,either Pro
ess or Environment has a winning strategy, whi
h 
an be 
omputede�e
tively.2 Distributed GamesDe�nition 5 (Distributed Arena). A distributed arena is a free asyn
hro-nous produ
t where the possible Environment moves may have been restri
ted.5



More pre
isely, given two arenas G1 = 〈P1, E1, TP,1, TE,1〉 and G2 = 〈P2, E2,

TP,2, TE,2〉, a (two-pro
ess) distributed arena built upon the arenas G1 and G2 isany simple arena G = 〈P, E, TP , TE〉 of the form� Environment positions : E = E1 × E2,� Pro
esses positions : P = (E1 ∪ P1) × (E2 ∪ P2) − (E1 × E2),� Pro
esses moves : TP is the set of all pairs (p, e) ∈ (P × E) su
h that, for
i = 1 and i = 2 :
• either p[i] ∈ Pi and (p[i], e[i]) ∈ TP,i (Pro
ess i is a
tive in p),
• or p[i] ∈ Ei and p[i] = e[i] (Pro
ess i is ina
tive in p),� and Environment moves : TE is some subset of the set of all pairs (e, p) ∈

(E × P ) su
h that, for i = 1 and i = 2 :
• either p[i] ∈ Pi and (e[i], p[i]) ∈ TP,i (Environment a
tivates Pro
ess i),
• or p[i] ∈ Ei and p[i] = e[i] (Environment keeps Pro
ess i ina
tive).When the set TE of Environment moves is maximal, we 
all su
h an arena thefree asyn
hronous produ
t of arenas G1 and G2 and it is denoted by G1 ⊗ G2.These de�nitions extend to n-pro
ess distributed arena.Sin
e a distributed arena is built upon n simple arenas, we need a de�nitionto speak about its lo
al 
omponents:De�nition 6 (Proje
tion of distributed arena). Given a distributed arena

G = 〈P, E, TP , TE〉, with E = E1 × . . . × En and P = ((P1 ∪ E1) × . . . × (Pn ∪
En))−E, given a non empty set I ⊆ {1, . . . , n}, de�ne the 
anoni
al proje
tion
G[I] of G on I as the arena G[I] = 〈P ′, E′, T ′

P , T ′
E〉 given by: P ′ = P [I] − E[I](possibly smaller than P [I] !), E′ = E[I], T ′

P = TP [I] ∩ (P [I] × E[I]), and
T ′

E = TE [I] ∩ (E[I] × P [I]).Remark. Observe that a n-pro
ess distributed arena G as above 
an alwaysbe seen as a distributed arena built upon the games G[1], . . . , G[n]. Moreover,in the same way Cartesian produ
t of sets is (up to isomorphism) asso
iative,given an arbitrary non empty set I ⊂ {1, . . . , n}, given I = {1, . . . , n} − I, the
n-pro
ess distributed arena G 
an, as well, be seen as a distributed arena builtupon the two (distributed) arenas G[I] and G[I ].Example 1 (The Pipeline : Beginning). A distributed ar
hite
ture (as de�nedin [10℄, [3℄) is a set of sites linked together by some 
ommuni
ation 
hannels.Ea
h site 
an host a program, whi
h is essentially a sequential fun
tion1 mappinga sequen
e of inputs to a sequen
e of outputs. As a typi
al example, in a pipelinear
hite
ture, the sites are linearly ordered from left to right, ea
h site taking itsinput from the site on its right, and writing its output to the site on its left.To be more pre
ise, suppose ea
h 
ommuni
ation 
hannel xi 
an 
arry valuesthat range over some set Xi. The site si re
eives its input from the 
hannel xi,and writes its outputs to the 
hannel xi−1; thus, a program for the site si is a1 re
all that a sequential fun
tion is a fun
tion f : A∗

→ B∗ that is realized by a wordtransdu
er with input alphabet A and output alphabet B.6



s1 sn−2 sn−1 sn

xn
xn−1xn−2x0 Fig. 1. A pipeline ar
hite
turesequential fun
tion fi : X∗

i → X∗
i−1. The environment writes input to the systemon 
hannel xn, and the system's output is read on 
hannel x0.For any pipeline ar
hite
ture A, we 
an build a distributed arena GA =

〈P, E, TP , TE〉 where ea
h pro
ess plays the role of a program: on its lo
al arena,the environment's moves 
orrespond to the possible inputs for this site, and thepro
ess moves 
orrespond to the possible outputs:� P = X1 × . . . × Xn ; E = X0 × . . . × Xn−1.� ((v1, . . . , vn), (v′1, . . . , v
′
n)) ∈ TE i� v′i = vi+1 for ea
h i ∈ {1, . . . , n − 1} and

v′n ∈ Xn.Observe that by restri
ting the Environment moves, we ensure that the en-vironment 
arries 
orre
tly the values along the 
hannels.De�nition 7 (Distributed Games). A n-pro
ess distributed game G is atuple
G = 〈P, E, TP , TE, e0,W〉where 〈P, E, TP , TE〉 is a n-pro
ess distributed arena, e0 ∈ E is the initial (En-vironment) position, and W ⊆ (E.P )ω is the (regular) winning in�nitary 
ondi-tion.A distributed game is a parti
ular 
ase of simple game. It follows that previ-ous notions of plays and strategies are still de�ned. However, in order to avoid
onfusion with what may happen in the lo
al arena a distributed game is buildupon, we shall speak now of a global play and a global strategy.The lo
al view Pro
ess i has of a global play in a distributed game G is givenby the map viewi : (E.P )∗.E? → (Ei.Pi)

∗.E?
i de�ned in the following way:� viewi(ǫ) = ǫ� viewi(x) = x[i]� viewi(w.x.y) =

{
viewi(w.x) if x[i] = y[i]
viewi(w.x).y[i] otherwise.A play w ∈ (E.P )+ is said to be a
tive for Pro
ess i when w ends in aposition p ∈ P su
h that p[i] ∈ P [i].De�nition 8 (Lo
al and distributed Strategies). Given a n-tuple of lo
alstrategies (σi : (E[i].P [i])+ → E[i])i∈{1,...,n}, the indu
ed global strategy

σ1 ⊗ . . . ⊗ σn : (E.P )+ → Eis de�ned as follows: for any play of the form w.p ∈ (E.P )+, given the set
I ⊆ {1, . . . , n} of a
tive pro
esses in the global Pro
esses position p (i.e. I =
{i ∈ {1, . . . , n} : p[i] ∈ Pi}), de�ne σ(w.p) = e by:7



� e[i] = σi(viewi(w)) for i ∈ I� e[i] = p[i] for i ∈ {1, . . . , n} − I(provided everything is well-de�ned, otherwise σ(w.p) is left unde�ned).A global strategy σ : (E.P )+ → E is a distributed strategy if σ equals the
omposition σ1 ⊗ . . . ⊗ σn of some n lo
al strategies.Note that global strategies are not always distributed. Moreover, there aredistributed games in whi
h the Pro
esses have a winning strategy, but no winningdistributed strategy.From this, we 
an derive an important fa
t: the distributed game are notdetermined, in the sense that even when the environment does not have a winningstrategy, the pro
esses may not have a winning distributed strategy. Furthermore,using the fa
t that the pro
esses do not share the same information, we are ableto provide the following unde
idability result:Theorem 4. The problem of �nding a winning distributed strategy in a3-pro
ess distributed game with safety or rea
hability winning 
ondition is unde-
idable.The proof is omitted here due to spa
e restri
tion. Su�
e it to say that itpro
eeds by redu
tion to the Post 
orresponden
e problem, and relies heavilyon the fa
t that there are three pro
esses in the game. It is an open problemwhether solving a 2-pro
ess distributed game is de
idable or not.3 Tree Automata and Distributed GamesWe �rst mix games and automata, de�ning a winning 
ondition by means ofa tree-automaton that re
ognizes the set of trees of winning strategies. We il-lustrate this new 
on
ept by de�ning a pipeline game over the pipeline arena.Then, we present an algorithm to solve su
h a game, using the notion of leaderin a distributed game.De�nition 9 (External Winning Condition). A game with external win-ning 
ondition is a tuple
G = 〈P, E, TP , TE, e0,A〉where 〈P, E, TP , TE〉 is a simple arena, e0 ∈ E is the initial position, and A is a

(P, E)-tree automaton. In su
h a game, a strategy is winning if its strategy treebelongs to L(A). This de�nition extends to distributed games.In the sequel, in order to avoid 
onfusion, a game with a winning 
onditionde�ned as in se
tion 2 is 
alled game with internal winning 
ondition.As we are going to show, games with external winning 
ondition are notessentially more expressive than games with internal one.8



Theorem 5 (Internalization). For any n-pro
ess game G with external win-ning 
ondition, there exists a n + 1-pro
ess game G′ with internal winning 
on-dition su
h that G′[1, . . . , n] = G, and su
h that the pro
esses have a winningstrategy σ in G if and only if the pro
esses have a winning strategy of the form
σ ⊗ σ′ in G′.Proof. (sket
h) Let G = 〈P, E, TP , TE, e0,A〉 (where A = 〈Q∀⊎Q∃, P, E, q0, δ =
δ∀ ∪ δ∃, Acc〉) be a distributed game with external winning 
ondition. The game
G′ = 〈P ′, E′, T ′

P , T ′
E, e′0,W〉 is de�ned as follows. The positions and the winning
ondition are given by:� P ′ = (E × (Q∃ × E)) ∪ (P × (Q∃ × {#})),� E′ = (E × Q∃) ∪ (E × Q∀),� e′0 = (e0, q0),� W = {w ∈ (E′.P ′)ω | πQ∀∪Q∃(w) ∈ Acc}and moves are (repeatedly) de�ned by: from an environment position (e, q) ∈

E × Q∃ (or the initial position):1. �rst, Environment (deterministi
ally) moves to the pro
ess position
(e, (q, e)) ∈ E × (Q∃ × E),2. then, the new (automaton) pro
ess lo
ally 
hooses q′ ∈ δ∃(q, e), the otherpro
esses stay idle, thus the play pro
eeds in G′, to the environment position
(e, q′) ∈ E × Q∀,3. then, Environment 
hooses p ∈ TE(e) and q1 ∈ δ∀(q′, p), and the play pro-
eeds to the Pro
ess position (p, (q1, #)) ∈ P × Q∃,4. �nally, pro
esses 1 to n (on game G) 
hoose some e1 ∈ TP (p), the new(automaton) pro
ess stays almost idle (he simply deletes the # sign), andthe play pro
eeds to the Environment position (e1, q1) ∈ E × Q∃.If ρ is an a

epting run of A over tσ (for some strategy σ in G), one dedu
efrom ρ a strategy σ′ su
h that σ ⊗ σ′ is winning in G′. Conversely, if σ ⊗ σ′ is awinning strategy in G′, one 
an infer an a

epting run of A over tσ from σ′.Moreover, when G is a simple game with external winning 
ondition, theinternalization pro
edure 
an be further simpli�ed (and amounts essentially tobuild the produ
t of G with the automaton), and the resulting game with internal
ondition is a simple game as well.Example 2 (Pipeline Example Continued). Following the presentation from[3℄, the synthesis problem for distributed ar
hite
tures is presented as follows:given a distributed ar
hite
ture A and a ve
tor of programs (fi)1≤i≤n (one forea
h site of A), the 
omputation tree of the system is a (

∏
1≤i≤n Xi)-labeled

Xn-tree, where ea
h node w is labeled by the values held by the 
ommuni
ation
hannels after input w to the system.A spe
i�
ation for the system is a language of su
h trees spe
i�ed by a treeautomaton A (or equivalently by a MSO-formula).The synthesis problem is then: does there exists a ve
tor of programs su
hthat the resulting 
omputation tree belongs to the spe
i�
ation ?9



Building upon the pipeline arena GA as de�ned in example 1, we 
an nowde�ne a distributed game in whi
h the pro
esses have a winning strategy if andonly if there is a solution to the synthesis problem in the pipeline ar
hite
-ture. Suppose the spe
i�
ation for A is given by the �nite (Xn,
∏

0≤i≤n−1
Xi)-automaton A, we 
an easily de�ne a (

∏
1≤i≤n Xi,

∏
0≤i≤n−1

Xi)-automaton A′that a

epts a tree t′ if and only if it is the widening of some tree t ∈ L(A) (i.e.if t′(w) = t(w[n]) for all w ∈ Dom(t′)).Using this automaton as an external winning 
ondition, we get the en
odingof the synthesis problem for the pipeline ar
hite
ture in a distributed game.Observe that in this game, for ea
h i ∈ {1, . . . , n}, provided that Pro
ess iknows the strategy for all the pro
esses from 1 to i − 1, then he 
an predi
t theposition in ea
h of the lo
al arenas from 1 to i − 1.Using the above observation, one may ask now whether an inverse 
onstru
-tion to internalization is possible or not. Intuitively, assuming that there is apro
ess in an n+1-distributed game that 
an predi
t, at every step, what is theglobal position in the game, 
an we externalize it into an external winning 
ondi-tion su
h that, the resulting n-pro
ess distributed game with external 
onditionis equivalent, in some e�e
tive sense, to the initial game ?The notion of leader de�ned below follows this intuition. In fa
t, it providesa lo
al 
ondition that is su�
ient for su
h a global knowledge to be available toa Pro
ess player.De�nition 10 (Leader). Given a 2-pro
ess game G = 〈P, E, TP , TE, e0,A〉,we say that Pro
ess 2 is a leader when, for any Environment position e ∈ E, anyPro
esses positions x and y ∈ P su
h that both (e, x) ∈ TE and (e, y) ∈ TE,� if x[2] = y[2] then x[1] = y[1],� if x[2] ∈ E[2] or y[2] ∈ E[2] then x = y.Intuitively, Pro
ess 2 is a leader when, as soon as he knows a global Environ-ment position then, after an Environment move (or several 
onse
utive moves ifPro
ess 2 stays idle for some time), Pro
ess 2 
an predi
t, from his own position,the global Pro
esses position of the game.This lo
al property has the following formulation when it 
omes to 
onsider-ing plays:Lemma 1. Let G = 〈P, E, TP , TE, e0〉 be a 2-pro
ess arena with initial position
e0. For any strategy σ for the pro
esses, the restri
tion of view2 to the plays thatare 
onsistent with σ and a
tive for Pro
ess 2 is one-to-one.Proof. Immediate from the de�nition.Rephrased in a more useful way, this observation leads to the following result:Lemma 2. For any 2-pro
ess game G = 〈P, E, TP , TE , e0,W〉 su
h that Pro
ess
2 is a leader, there exists a (P [1], E[1])-automaton A2 su
h that for any strategies
σ on G, σ1 on G1, the following propositions are equivalent:10



(1) there exists a strategy σ2 on G[2] su
h that σ = σ1 ⊗ σ2(2) there is an a

epting run ρ of A2 over tσ1
su
h that ρ = tσ1

.Proof. (sket
h) We �rst give here a 
onstru
tion for A2 in the 
ase both Pro
ess
1 and Pro
ess 2 are always a
tive in the positions for Pro
esses.Automaton A2 = 〈Q2, P [1], E[1], q0,2, δ2, Acc2〉 
an be de�ned as follows:� Q∀

2 = E; Q∃
2 = P [2] ∪ {q0,2},� δ∀2 (q, p1) = {p2 ∈ Q∃

2 : (q, (p1, p2)) ∈ TE} (q ∈ Q∀
2 , p1 ∈ P [1]),� δ∃2 (p2, e1) = {q ∈ Q∀

2 : q[1] = e1 ∧ (p2, q[2]) ∈ TP [2]} (p2 ∈ Q∃
2 , e1 ∈ E[1])with δ∃2 (q0,2, e1) = {e0[2]},� Acc2 = Qω

2 .The 
orresponden
e between runs of A2 on strategy trees in G[1] and strategytrees in G easily follows from this 
onstru
tion, and from the fa
t that Pro
ess
2 is a leader in G.In the 
ase Pro
ess 2 may be ina
tivated by Environment one 
an 
he
k that,sin
e Pro
ess 2 is a leader, game G 
an be �rst normalized so that this no longerhappens (details are not given due to la
k of spa
e).In the 
ase Pro
ess 1 may be ina
tivated by Environment, then the 
onstru
-tion below 
an be extended, de�ning (quite easily though tediously) an automa-ton A2 with ǫ-transition. However, the main arguments remain the same.Sin
e the previous result holds for arbitrary external 
ondition and arbitrarystrategies in G[1] (even if G[1] is itself a distributed game), it follows:Theorem 6 (Externalization).For any n-pro
ess distributed game G = 〈P, E, TP , TE, e0,A〉 with non deter-ministi
 external winning 
ondition A su
h that Pro
ess n is a leader, there is a
(P [1 . . . n− 1], E[1 . . . n− 1])-automaton An su
h that the following propositionsare equivalent:(1) the pro
esses have a distributed winning strategy on G.(2) the pro
esses have a distributed winning strategy in 〈G[1 . . . n−1], e0[1 . . . n−

1],A ◦ An〉.Example 3 (The Pipeline: End). We have already mentioned that, in the n-pro
ess pipeline arena, from any initial position, Pro
ess n is a leader. It followsthat Theorem 6 applies.Moreover, observe that the resulting (n−1)-pro
ess game arena G[1 . . . n−1]is nothing but a (n − 1)-pro
ess pipeline arena. This says that Theorem 6 
anbe applied repeatedly till the number of pro
esses is redu
ed to one. Now, one
an internalize the automaton, and 
ompute a winning strategy in the resultingsimple game using Theorem 3.Transposed on our more abstra
t setting, this 
an be expressed as the fol-lowing 
orollary of the theorem.Corollary 1. For any n-pro
ess (n ≥ 2) distributed game G su
h that for ea
h
i ∈ {2, . . . , n} pro
ess i is a leader in G[1 . . . i], the problem of determiningwhether the pro
esses have a winning strategy is de
idable.11



Remark. At every step, the external 
ondition we get from the 
ompositionis an alternating automaton that needs to be simulated by a non alternatingone so that the 
omposition 
an be iterated. This means that the 
omplexityof solving the pipeline ar
hite
ture synthesis problem by means of its en
odinginto a distributed game is a tower of exponents of depth at least the numberof 
omponents in the pipeline. This (bad) 
omplexity was expe
ted, sin
e thisproblem is non-elementary [10℄.4 Con
luding RemarksWe have de�ned a set of automata theoreti
 tools that 
an be used to solvevarious distributed synthesis problems, e.g. the pipeline ar
hite
ture [3℄.Compared to [6℄ we do obtain an automata theoreti
 interpretation of mostof the operations de�ned there: in their approa
h, applying su

essively Divideand Glue to a game where both 0 and n are leaders amounts, in our setting, toexternalize 0, to apply the simulation theorem, to externalize n, and eventuallyto internalize the resulting automaton.Still, one appli
ation 
ase presented by the authors to solve the lo
al spe
i�-
ation 
ase [5℄ is not solved in this paper. This is left for further studies. Thereis a 
han
e that tree automata theory will still provide arguments.Referen
es1. A. Arnold, A. Vin
ent, and I. Walukiewi
z. Games for synthesis of 
ontrollers withpartial observation. to appear in Theoreti
al Computer S
ien
es, 2002.2. E.A. Emerson and C.S. Jutla. Tree automata, mu-
al
ulus and determina
y. InPro
. 32th Symp. on Foudations of Computer S
ien
es, pages 368�377. IEEE, 1991.3. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Logi
 inComputer S
ien
es, pages 389�398, 2001.4. F. Lin and M. Wonham. De
entralized 
ontrol and 
oordination of dis
reteevent systems with partial observation. IEEE Transa
tions on automati
 
ontrol,33(12):1330�1337, 1990.5. P. Madhusudan and P.S. Thiagarajan. Distributed 
ontroller synthesis for lo
alspe
i�
ations. In 28th International Colloquium on Automata, Languages and Pro-gramming (ICALP), volume 2076 of LNCS, pages 396�407, 2001.6. S. Mohalik and I. Walukiewi
z. Distributed games. In Foundations of SoftwareTe
hnology and Theoreti
al Computer S
ien
e, pages 338�351, 2003.7. D.E. Muller and P.E. S
hupp. Simulating alternating tree automata by non-deterministi
 automata. Theoreti
al Computer S
ien
es, 141:67�107, 1995.8. G.L. Peterson and J.H. Reif. Multiple-person alternation. In 20th Annual IEEESymposium on Foundations of Computer S
ien
es, pages 348�363, o
tober 1979.9. G.L. Peterson, J.H. Reif, and S. Azhar. De
ision algorithms for multiplayer non-
ooperative games of in
omplete information. Computers and Mathemati
s withAppli
ations, 43:179�206, january 2002.10. Amir Pnueli and Roni Rosner. Distributed rea
tive systems are hard to synthesize.In IEEE Symposium on Foundations of Computer S
ien
e, pages 746�757, 1990.11. M.O. Rabin. De
idability of se
ond order theories and automata on in�nite trees.Transa
tions of the Ameri
an Mathemati
al So
iety, 141:1�35, 1969.12


