N

N

Tree automata and discrete distributed games

Julien Bernet, David Janin

» To cite this version:

Julien Bernet, David Janin. Tree automata and discrete distributed games. Fundamentals of Com-
putation Theory (FCT), Aug 2005, Hungary. pp.540-551. hal-00306410

HAL Id: hal-00306410
https://hal.science/hal-00306410
Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00306410
https://hal.archives-ouvertes.fr

Tree Automata and Discrete Distributed Games

Julien Bernet and David Janin *

LaBRI, Université de Bordeaux I
351, cours de la Libération

33 405 Talence cedex FRANCE
{bernet|janin}@labri.fr

Abstract. Distributed games, as defined in [6], is a recent multiplayer
extension of discrete two player infinite games. The main motivation
for their introduction is that they provide an abstract framework for
distributed synthesis problems, in which most known decidable cases
can be encoded and solved uniformly.

In the present paper, we show that this unifying approach allows as
well a better understanding of the role played by classical results from
tree automata theory (as opposed to adhoc automata constructions) in
distributed synthesis problems. More precisely, we use alternating tree
automata composition, and simulation of an alternating automaton by
a non-deterministic one, as two central tools for giving a simple proof of
known decidable cases.

Introduction

Distributed games, as defined in [6], is a recent multiplayer extension of discrete
two player infinite games. The main motivation for their introduction is that
they provide an abstract framework for distributed synthesis problems, in which
most known decidable cases [1,3 5,10] can be encoded and solved uniformly.

In the present paper, we show that this unifying approach allows as well a
better understanding of the role played by classical results from tree automata
theory in distributed synthesis problems.

More precisely, in the above mentioned works, many decision algorithms rely
(more or less implicitly) on automata constructions that are not explicitly related
to classical automata theory.

For instance, in [3], the main construction given by the authors to solve the
pipeline synthesis problem “sounds” like the sequential composition of two tree-
automata. Similarly, one of the main construction (glue operation) defined in [6]
“sounds” like Muller and Schupp simulation of an alternating automaton by a
non deterministic one [7].

The purpose of this paper is to validate this intuition, by explicitly defining
the encountered automata (or their inputs) when they are missing in these works,
and to apply known constructions in order to reprove these synthesis results.

* This work is partially supported by the European Commission Research and Training
Network “Games and Automata for Synthesis and Validation” (RTN GAMES)

This way, it is expected that it will contribute to the foundation of a common
ground into which methods and approaches can be encoded and compared one
with the other.

The technical relevance of our reformulation work is illustrated by the en-
coding and solving of the pipeline case [3].

Other Related Works

Peterson and Reif ([8], extended in [9]) initiated the research on multiplayer
games of incomplete information, considering finite games, and introducing the
notion of hierarchical games: these games satisfy the property that one can lin-
early order the set of players such that p; < po if and only if “p2 knows more
than p;”, or equivalently “ps knows the state of p;”. They prove that these games
are solvable, by iteratively removing the incomplete information associated with
each player.

Subsequent results on distributed synthesis (such as [10], [3]) essentially used
the same ideas and techniques, except in the fact that they consider infinite plays
and/or branching time specifications.

The common technique is to cut out the last player from the game (i.e. the one
that knows the state of all the other), modifying in the process the specification
so that it reflects all moves that can be taken by this player, then do the same
with the last but one, etc. ... until a “simple” 2-player game is left to solve.

Our paper rely on the same principle, making the automata constructions
explicit.

Organization of the Paper

In the first section, after reviewing some of the notations used in this paper, we
fix the definitions of trees, tree automata and infinite two player games. Muller
and Schupp non determinization theorem is stated, and a notion of sequential
composition of tree automata is also defined and analyzed.

Distributed games and distributed strategies are presented in the second sec-
tion. These games are played by a team of process players versus a single envi-
ronment opponent. Each process player only gets incomplete information about
the position of the other processes. The existence of a winning distributed strat-
egy in a distributed game is shown to be undecidable, even for simple winning
conditions such as safety and reachability.

In the third section, we first show that using an (external) tree-automaton
in order to define winning strategies in a (distributed) game is essentially equiv-
alent to adding an additional process player (internalizing the automaton) into
the game. Then, conversely, we show that when a process player has enough
knowledge to deduce the positions of the other processes, then its local arena
can be externalized as a tree automaton reading the strategies of the remaining
processes, in which non-deterministic choices correspond to the moves of the
process; this automaton can be composed with any existing external winning
condition.

Under sufficient conditions, one can apply repeatedly this construction in
order to reduce the number of process players and thus to solve the distributed
game.

The long-term goal of this approach is to gain benefit from the high level
of abstraction provided by game theory and, altogether, gain benefit from well-
known constructions of automata theory (as it as been developed from Rabin’s
seminal result [11]), to help having a better understanding of the fundamental
obstacles to the synthesis of distributed systems.

1 Trees, Automata and Games

For any alphabet A, let A* and A“ be the set of all finite and infinite words
with letters from A. Let A = A* U A“, and A" = {e} + A. Standard nota-
tions on words and languages of words are used. In particular, given a language
L C A*, we use the notations L™ and (when the empty word ¢ ¢ L) L* that
stand, respectively, for the set of words built by concatenating finitely many and
infinitely many finite words of L. For any finite word w = a1 ...ay, let jw| =n
be the length of w. For any infinite word w, let inf(w) = {a € A | w € (A*.a)*}
be the set of letters that occur infinitely often in w.

For any two sets A and X, for any word w € A*, define mx (w) (the projection
of w over X) as the word obtained by deleting any letter that is not in X from
the word representation of w.

Given n numbered sets Ay,..., A,, given A = A; x ... x A,, given any set
of indices I = {iy,...,ix} C {1,...,n} with i1 < ... < i, we write A[I] for
the set A[I] = A;, x ... Ay, for any z = (a1,...,a,) € A, we write x[I] for the
elements z[I] = (z4,,...,2;,) € A[I], and, for any P C A, we write P[I] for the
set P[I] = {z[I] € A[I] : = € P}.

Incase I ={i,i+1,...,j} (where 1 < i < j <n), these notations simplify
to Afi...j], «[i...j] and PJi...j] respectively (and even simplify to A[i], x[i]
and PJi] when ¢ = j). These notations also extend to words as follows: for any
word w = aj.as.... € A%, for any I C {1,...,n}, w[I] = a1[I].a2[I].a3[I]...,
and to relations: for any relation R C A x A, we write R[I] the relation on A[I]
defined by R[I] = {(z[I],y[I]) € A[I] x A[I] : (z,y) € R}.

Given two finite alphabets D and X, a X'-labeled D-tree (also called D, X -tree)
is a partial function D* — X whose domain is closed under prefix operation. In
the sequel, elements of X are called labels and elements of D are called directions.

For any tree t : D* — X, the function flat; : Dom(t) — X.(D.X)* is defined
by: flati(e) = t(e) and, for any w € D* and d € D such that w.d € Dom(t),
flaty(w.d) = flaty(w).d.t(w.d). Observe that Dom(t) and flat,(Dom(t)) or-
dered by the prefix ordering are isomorphic, and, as a consequence, flat;(Dom(t))
uniquely determines tree t.

The following definition is a variation on Muller and Schupp’s original def-
inition of alternating automaton [7]. Our goal is to have a tree-transducer like
automaton definition, even for alternating automaton.

Definition 1 (Alternating tree automaton). A finite (D, X)-alternating
tree automaton is a tuple:

A=(Q=Q"WQ? D, X, q,5=05"Ub7, Acc C Q¥)

where Q is a finite set of states, qo € Q7 is the initial state, 67 : Q¥xD — P(Q7)
and 67 : Q7 x ¥ — P(Q") are the transition functions, and the w-rational
language Acc is the infinitary acceptance criterion.

Automaton A is a non deterministic automaton (also called non alternating)
when |67(q,d)| < 1 (for any ¢ € Q¥, d € D).

Definition 2 (Runs). A4 run of an automaton A = (Q, D, X,i,0, Acc) over a
X-labeled D-tree t : D* — X is a Q" -labeled (D x Q7) tree p: (D x Q7)* — Q"
such that:

= ple) € 67 (qo, t(e)),

— for all w € Dom(p), if p(w) = q, then for any direction d € D such that
a = t(w[l].d) is defined, and for any existential state q1 € 6 (q,d), there
exists a universal state ga € 67(q1,a) such that p(w.(d,q1)) = qa.

For any infinite branch w of a run p of A over t, states,(w) is the sequence
of (universal and existential) states encountered along w. A tree t is accepted
by A if and only if there exists a run p of A over t such that for any infinite
branch w in p: states,(w) € Acc. Denote by L(A) the language of all trees that
are accepted by A. The size of an automaton A is denoted by |A|.

Observe that these tree automata (both alternating and non alternating), if
slightly unusual, have the same expressive power as their standard counterpart,
as in [7]. In particular:

Theorem 1 (Simulation [7]). Any alternating tree automaton A is equiva-

lent to a non deterministic tree automaton A’, with |A’| < 92! (with Muller
acceptance condition).

Since the runs of an automaton on trees are themselves trees, automata act
as tree transducers and can be sequentially combined.

Definition 3 (Automata Composition). Given two tree automata A; =
<Q1, Dl, 21, qo,1, 61, ACCl> and Ag = <Q2, Dg, 22, 40,2, (52, ACCQ>, such that au-
tomaton As is non deterministic with Dy = D1 X Q? and Xy = QY, we define
the composition of Ay followed by As to be the automaton

A2 o Al = <©5D1721;%7ga 1/4;>
defined as follows:

- Q=07 xQ3; Q"=0Q) xQ3;
- qo = (%,1#0,2);

— (45, 5) € V(1 42), d) {{qz} E%(’q;a (d,q1))

~ 5 ((Zh)
- 1 53 gl <
(Q17q2) S ((Q1,Q2)aa) < {q2 c 53((12,(11)

— Acc = {w e Q¥ | w[l] € Acey Aw[2] € Accy}

Theorem 2. For any tree t : Df — X1, t € L(Az 0 A1) if and only if there
exists an accepting run p : (D1 x Q7)* — QY of Ay over t such that p € L(Az).

The proof, although tedious, is not complicated, and is therefore omitted
here. Observe that it is crucial that A, is non-alternating ; nevertheless, by
applying Theorem 1, one can always assume that is is the case.

Definition 4 (Simple (or Two Player) Games). A simple arena is a quadru-
ple G = (P,E,Tp,Tg), where P is a finite set of Process positions, E is a finite
set of Environment positions, Tp C Px E is the set of Process moves, Ty C ExXP
is the set of Environment moves. A simple game G = (P, E,Tp,Tg,eo, W) is
built upon a simple arena (P, E,Tp,Tg) by equipping it with an initial position
eo € E and a regular winning condition W C (P + E)“.

As particular cases of winning condition, a reachability condition is a winning
condition of the form W = (P + E)*.X.(P 4+ E)“ for some set of positions
X C P+ FE to be reached for Process to win, and a safety condition is a winning
condition of the form W = ((P+ E) — X))“ for some set of positions X C P+ FE
to be avoided for Process to win.

A play w € (P + E)* in a simple game is any non-empty path in the arena
beginning on eg. A play w is winning for Process when either it is finite and ends
in an Environment position, or it is infinite and belongs to W. Otherwise, it is
winning for Environment.

A strategy for Process is a partial function o : (E.P)* — E such that for
any w.p € Dom(o), for any position e € o(w.p), then (p,e) € Tp, and for any
successor p’ of e, w.p.e.p’ € Dom(c). A play w = eg.x1.... is consistent with
strategy o when, for any ¢ € N, if o(eg..... x;) and z;41 are both defined then
they are equal. A strategy o is a winning strategy for Process when any maximal
play (w.r.t. the prefix ordering) consistent with o is winning for Process.

Given a strategy o in some game G, the strategy tree t, : P* — Eof o0 in G
is defined inductively by t,(€) = eg, and t,(u.z) = o(flats, (u).z).

Theorem 3 ([2]). On finite two-player games with regular winning condition,
either Process or Environment has a winning strategy, which can be computed
effectively.

2 Distributed Games

Definition 5 (Distributed Arena). A distributed arena is a free asynchro-
nous product where the possible Environment moves may have been restricted.

More precisely, given two arenas G1 = (P1,E1,Tp1,Tg 1) and G2 = (Pa, Fa,
Tpo,Tr2), a (two-process) distributed arena built upon the arenas G1 and Gy is
any simple arena G = (P, E,Tp,Tg) of the form

— Environment positions : £ = E; x Fj,
— Processes positions : P = (E1 U Py) x (B U Py) — (Ey X E3),
— Processes moves : Tp is the set of all pairs (p,e) € (P x E) such that, for
t=1andi=2:
o either p[i] € P; and (p[i],e[i]) € Tp; (Process i is active in p),
e or p[i] € E; and p[i] = e[i] (Process i is inactive in p),
and Environment moves : T is some subset of the set of all pairs (e, p) €
(E x P) such that, fori=1and i =2 :
e either p[i] € P, and (e[i], p[i]) € Tp; (Environment activates Process i),
e or pli] € E; and p[i] = e[i] (Environment keeps Process i inactive).

When the set Tg of Environment moves is maximal, we call such an arena the
free asynchronous product of arenas G1 and G4 and it is denoted by G1 ® G.
These definitions extend to n-process distributed arena.

Since a distributed arena is built upon n simple arenas, we need a definition
to speak about its local components:

Definition 6 (Projection of distributed arena). Given a distributed arena
G=(P,E,Tp,Tg), with E=Fy x...x E, and P=(PLUEy) x ... x (P, U
E,))— E, given a non empty set I C {1,...,n}, define the canonical projection
G[I] of G on I as the arena G[I| = (P, E',Tp,T) given by: P’ = P[I] — E[I]
(possibly smaller than P[I] !), E' = E[I], Tp = Tp[I] N (P[I] x E[I]), and
Ty =Tg[I] N (E] x P[I]).

Remark. Observe that a n-process distributed arena G as above can always
be seen as a distributed arena built upon the games G[1], ..., G[n]. Moreover,
in the same way Cartesian product of sets is (up to isomorphism) associative,
given an arbitrary non empty set I C {1,...,n}, given I = {1,...,n} — I, the
n-process distributed arena G can, as well, be seen as a distributed arena built
upon the two (distributed) arenas G[I] and G[I].

Ezample 1 (The Pipeline : Beginning). A distributed architecture (as defined
in [10], [3]) is a set of sites linked together by some communication channels.
Each site can host a program, which is essentially a sequential function' mapping
a sequence of inputs to a sequence of outputs. As a typical example, in a pipeline
architecture, the sites are linearly ordered from left to right, each site taking its
input from the site on its right, and writing its output to the site on its left.
To be more precise, suppose each communication channel x; can carry values
that range over some set X;. The site s; receives its input from the channel z;,
and writes its outputs to the channel x;_;; thus, a program for the site s; is a

! recall that a sequential function is a function f : A* — B* that is realized by a word

transducer with input alphabet A and output alphabet B.

Tn—2 Tn—1 In
————— e e

Fig. 1. A pipeline architecture

sequential function f; : X} — X/ ;. The environment writes input to the system
on channel z,, and the system’s output is read on channel z.
For any pipeline architecture A, we can build a distributed arena G, =
(P, E,Tp,Tg) where each process plays the role of a program: on its local arena,
the environment’s moves correspond to the possible inputs for this site, and the
process moves correspond to the possible outputs:
- P=Xix..xX,; E=Xox...xX,_1.
- ((v1,.-,vn), (V],...,00)) € Tg iff v} = v;44 for each i € {1,...,n — 1} and
v, € Xp.

Observe that by restricting the Environment moves, we ensure that the en-
vironment carries correctly the values along the channels.

Definition 7 (Distributed Games). A n-process distributed game G is a
tuple
G = <P7E7TP7TE7607W>

where (P, E,Tp,Tg) is a n-process distributed arena, ey € E is the initial (En-
vironment) position, and W C (E.P)% is the (regular) winning infinitary condi-
tion.

A distributed game is a particular case of simple game. It follows that previ-
ous notions of plays and strategies are still defined. However, in order to avoid
confusion with what may happen in the local arena a distributed game is build
upon, we shall speak now of a global play and a global strategy.

The local view Process i has of a global play in a distributed game G is given
by the map view; : (E.P)*.E” — (E;.P;)*.E} defined in the following way:

— view;(€) =€
— view;(z) = z[i]
view;(w.z) if z[i] = y[i]

~ viewi(w.z.y) = {viewi(w.x).y[i] otherwise.

A play w € (E.P)*" is said to be active for Process i when w ends in a
position p € P such that p[i] € P[i].

Definition 8 (Local and distributed Strategies). Given a n-tuple of local
strategies (0; : (E[i].P[i])* — Eli])ic(1,...n}, the induced global strategy

01®...00,: (E.P)T - E

is defined as follows: for any play of the form w.p € (E.P)T, given the set
I C {1,...,n} of active processes in the global Processes position p (i.e. I =
{ie{1,...,n}: pli] € B;}), define o(w.p) = e by:

— eli] = oi(view;(w)) foriel
—efi] =pli] forie{l,...,n} -1

(provided everything is well-defined, otherwise o(w.p) is left undefined).
A global strategy o : (E.P)T™ — E is a distributed strategy if o equals the
composition o1 ® ... R o, of some n local strategies.

Note that global strategies are not always distributed. Moreover, there are
distributed games in which the Processes have a winning strategy, but no winning
distributed strategy.

From this, we can derive an important fact: the distributed game are not
determined, in the sense that even when the environment does not have a winning
strategy, the processes may not have a winning distributed strategy. Furthermore,
using the fact that the processes do not share the same information, we are able
to provide the following undecidability result:

Theorem 4. The problem of finding a winning distributed strategy in a
3-process distributed game with safety or reachability winning condition is unde-

cidable.

The proof is omitted here due to space restriction. Suffice it to say that it
proceeds by reduction to the Post correspondence problem, and relies heavily
on the fact that there are three processes in the game. It is an open problem
whether solving a 2-process distributed game is decidable or not.

3 Tree Automata and Distributed Games

We first mix games and automata, defining a winning condition by means of
a tree-automaton that recognizes the set of trees of winning strategies. We il-
lustrate this new concept by defining a pipeline game over the pipeline arena.
Then, we present an algorithm to solve such a game, using the notion of leader
in a distributed game.

Definition 9 (External Winning Condition). A game with external win-
ning condition is a tuple

G= <P5E7TP7TE;607A>

where (P, E,Tp,Tg) is a simple arena, eq € E is the initial position, and A is a
(P, E)-tree automaton. In such a game, a strategy is winning if its strategy tree
belongs to L(A). This definition extends to distributed games.

In the sequel, in order to avoid confusion, a game with a winning condition
defined as in section 2 is called game with internal winning condition.

As we are going to show, games with external winning condition are not
essentially more expressive than games with internal one.

Theorem 5 (Internalization). For any n-process game G with external win-
ning condition, there exists a n + 1-process game G’ with internal winning con-
dition such that G'[1,...,n] = G, and such that the processes have a winning
strategy o in G if and only if the processes have a winning strategy of the form
c®d in G

Proof. (sketch) Let G = (P, E, Tp, Tg, eo, A) (where A = (Q"WQ?, P, E, qy,6 =
87U 67, Ace)) be a distributed game with external winning condition. The game
G = (P ,E,Tp, Tk, ey, W) is defined as follows. The positions and the winning
condition are given by:

= P'=(E x (Qx E))U(P x(Q x {#})),
- E'=(E x Q7)U(E x QY),

- 66 = (607%):

- W={we (E'"P)|rgvga(w) € Acc}

and moves are (repeatedly) defined by: from an environment position (e,q) €
E x Q7 (or the initial position):

1. first, Environment (deterministically) moves to the process position
(e.(a€)) € E x (Q° x E),

2. then, the new (automaton) process locally chooses ¢’ € §7(gq,e), the other
processes stay idle, thus the play proceeds in G, to the environment position
(e.q') € E x QY,

3. then, Environment chooses p € Tg(e) and ¢; € 67(¢/,p), and the play pro-
ceeds to the Process position (p, (q1,#)) € P x Q7,

4. finally, processes 1 to n (on game G) choose some e; € Tp(p), the new
(automaton) process stays almost idle (he simply deletes the # sign), and
the play proceeds to the Environment position (e1,q1) € E x Q7.

If p is an accepting run of A over ¢, (for some strategy o in G), one deduce

from p a strategy o’ such that ¢ ® ¢’ is winning in G’. Conversely, if 0 ® ¢’ is a
winning strategy in G’, one can infer an accepting run of A over t, from ¢’.

Moreover, when G is a simple game with external winning condition, the
internalization procedure can be further simplified (and amounts essentially to
build the product of G with the automaton), and the resulting game with internal
condition is a simple game as well.

Ezample 2 (Pipeline Exzample Continued). Following the presentation from
[3], the synthesis problem for distributed architectures is presented as follows:
given a distributed architecture A and a vector of programs (f;)i1<i<n (one for
each site of A), the computation tree of the system is a ([[,<;<,, Xi)-labeled
X,,-tree, where each node w is labeled by the values held by the communication
channels after input w to the system.

A specification for the system is a language of such trees specified by a tree
automaton A (or equivalently by a MSO-formula).

The synthesis problem is then: does there exists a vector of programs such
that the resulting computation tree belongs to the specification ?

Building upon the pipeline arena G4 as defined in example 1, we can now
define a distributed game in which the processes have a winning strategy if and
only if there is a solution to the synthesis problem in the pipeline architec-
ture. Suppose the specification for A is given by the finite (X, []j<;<,,_1 Xi)-
automaton A, we can easily define a (J],-,~,, Xi, [[g<i<,_1 Xi)-automaton A’
that accepts a tree ¢’ if and only if it is the widening of some tree t € £L(A) (i.e.
if ¢(w) = t(w[n]) for all w € Dom(t")).

Using this automaton as an external winning condition, we get the encoding
of the synthesis problem for the pipeline architecture in a distributed game.

Observe that in this game, for each ¢ € {1,...,n}, provided that Process 4
knows the strategy for all the processes from 1 to ¢ — 1, then he can predict the
position in each of the local arenas from 1 to i — 1.

Using the above observation, one may ask now whether an inverse construc-
tion to internalization is possible or not. Intuitively, assuming that there is a
process in an n + 1-distributed game that can predict, at every step, what is the
global position in the game, can we ezternalize it into an external winning condi-
tion such that, the resulting n-process distributed game with external condition
is equivalent, in some effective sense, to the initial game 7

The notion of leader defined below follows this intuition. In fact, it provides
a local condition that is sufficient for such a global knowledge to be available to
a Process player.

Definition 10 (Leader). Given a 2-process game G = (P,E,Tp,Tg, e, A),
we say that Process 2 is a leader when, for any Environment position e € E, any
Processes positions x and y € P such that both (e,x) € Tg and (e,y) € Tg,

— if f2] = y[2) then af1] = y[1],
— if z[2] € E[2] or y[2] € E[2] then x = y.

Intuitively, Process 2 is a leader when, as soon as he knows a global Environ-
ment position then, after an Environment move (or several consecutive moves if
Process 2 stays idle for some time), Process 2 can predict, from his own position,
the global Processes position of the game.

This local property has the following formulation when it comes to consider-

ing plays:

Lemma 1. Let G = (P, E,Tp,Tg,e0) be a 2-process arena with initial position
eg. For any strategy o for the processes, the restriction of views to the plays that
are consistent with o and active for Process 2 is one-to-one.

Proof. Immediate from the definition.
Rephrased in a more useful way, this observation leads to the following result:

Lemma 2. For any 2-process game G = (P, E, Tp,Tg, e, W) such that Process
2 is a leader, there exists a (P[1], E[1])-automaton Ay such that for any strategies
o on G, o1 on G, the following propositions are equivalent:

10

(1) there exists a strategy o2 on G[2] such that o = 01 ® 02
(2) there is an accepting run p of Az over t,, such that p =t,,.

Proof. (sketch) We first give here a construction for As in the case both Process
1 and Process 2 are always active in the positions for Processes.
Automaton Az = (Q2, P[1], E[1], o2, 02, Acca) can be defined as follows:

— QY =FE; Q3 = P2] U {qo.2},

= 03(¢,p1) = {p2 € Q3 : (¢.(p1.p2)) € Te} (q € Q3. p1 € P[1]),

= 03(p2,e1) ={q € QI : qll] = e A (p2,q[2)) € TP2]} (p2 € Q3,1 € E[1])
with 65 (qo,2, e1) = {eo[2]},

— Accs = Q5.

The correspondence between runs of Ay on strategy trees in G[1] and strategy
trees in G easily follows from this construction, and from the fact that Process
2 is a leader in G.

In the case Process 2 may be inactivated by Environment one can check that,
since Process 2 is a leader, game G can be first normalized so that this no longer
happens (details are not given due to lack of space).

In the case Process 1 may be inactivated by Environment, then the construc-
tion below can be extended, defining (quite easily though tediously) an automa-
ton As with e-transition. However, the main arguments remain the same.

Since the previous result holds for arbitrary external condition and arbitrary
strategies in G[1] (even if G[1] is itself a distributed game), it follows:

Theorem 6 (Externalization).

For any n-process distributed game G = (P, E,Tp,TE, eo, A) with non deter-
mianistic external winning condition A such that Process n is a leader, there is a
(P[1...n—=1],E[l...n—1])-automaton A, such that the following propositions
are equivalent:

(1) the processes have a distributed winning strategy on G.
(2) the processes have a distributed winning strategy in (G[1...n—1],ep[l...n—

1], A0 A,).

Ezample 8 (The Pipeline: End). We have already mentioned that, in the n-
process pipeline arena, from any initial position, Process n is a leader. It follows
that Theorem 6 applies.

Moreover, observe that the resulting (n — 1)-process game arena G[1...n—1]
is nothing but a (n — 1)-process pipeline arena. This says that Theorem 6 can
be applied repeatedly till the number of processes is reduced to one. Now, one
can internalize the automaton, and compute a winning strategy in the resulting
simple game using Theorem 3.

Transposed on our more abstract setting, this can be expressed as the fol-
lowing corollary of the theorem.

Corollary 1. For any n-process (n > 2) distributed game G such that for each
i € {2,...,n} process i is a leader in G[1...i], the problem of determining
whether the processes have a winning strategy is decidable.

11

Remark. At every step, the external condition we get from the composition
is an alternating automaton that needs to be simulated by a non alternating
one so that the composition can be iterated. This means that the complexity
of solving the pipeline architecture synthesis problem by means of its encoding
into a distributed game is a tower of exponents of depth at least the number
of components in the pipeline. This (bad) complexity was expected, since this
problem is non-elementary [10].

4 Concluding Remarks

We have defined a set of automata theoretic tools that can be used to solve
various distributed synthesis problems, e.g. the pipeline architecture [3].

Compared to [6] we do obtain an automata theoretic interpretation of most
of the operations defined there: in their approach, applying successively DIVIDE
and GLUE to a game where both 0 and n are leaders amounts, in our setting, to
externalize 0, to apply the simulation theorem, to externalize n, and eventually
to internalize the resulting automaton.

Still, one application case presented by the authors to solve the local specifi-
cation case [5] is not solved in this paper. This is left for further studies. There
is a chance that tree automata theory will still provide arguments.

References

1. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. to appear in Theoretical Computer Sciences, 2002.

2. E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. 32th Symp. on Foudations of Computer Sciences, pages 368-377. IEEE, 1991.

3. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Logic in
Computer Sciences, pages 389-398, 2001.

4. F. Lin and M. Wonham. Decentralized control and coordination of discrete
event systems with partial observation. IEEE Transactions on automatic control,
33(12):1330 1337, 1990.

5. P. Madhusudan and P.S. Thiagarajan. Distributed controller synthesis for local
specifications. In 28th International Colloguium on Automata, Languages and Pro-
gramming (ICALP), volume 2076 of LNCS, pages 396 407, 2001.

6. S. Mohalik and I. Walukiewicz. Distributed games. In Foundations of Software
Technology and Theoretical Computer Science, pages 338 351, 2003.

7. D.E. Muller and P.E. Schupp. Simulating alternating tree automata by non-
deterministic automata. Theoretical Computer Sciences, 141:67-107, 1995.

8. G.L. Peterson and J.H. Reif. Multiple-person alternation. In 20th Annual IEEE
Symposium on Foundations of Computer Sciences, pages 348-363, october 1979.

9. G.L. Peterson, J.H. Reif, and S. Azhar. Decision algorithms for multiplayer non-
cooperative games of incomplete information. Computers and Mathematics with
Applications, 43:179 206, january 2002.

10. Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize.
In IEEE Symposium on Foundations of Computer Science, pages 746-757, 1990.

11. M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1-35, 1969.

12

