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Tree Automata and Disrete Distributed GamesJulien Bernet and David Janin ⋆LaBRI, Université de Bordeaux I351, ours de la Libération33 405 Talene edex FRANCE{bernet|janin}�labri.frAbstrat. Distributed games, as de�ned in [6℄, is a reent multiplayerextension of disrete two player in�nite games. The main motivationfor their introdution is that they provide an abstrat framework fordistributed synthesis problems, in whih most known deidable asesan be enoded and solved uniformly.In the present paper, we show that this unifying approah allows aswell a better understanding of the role played by lassial results fromtree automata theory (as opposed to adho automata onstrutions) indistributed synthesis problems. More preisely, we use alternating treeautomata omposition, and simulation of an alternating automaton bya non-deterministi one, as two entral tools for giving a simple proof ofknown deidable ases.IntrodutionDistributed games, as de�ned in [6℄, is a reent multiplayer extension of disretetwo player in�nite games. The main motivation for their introdution is thatthey provide an abstrat framework for distributed synthesis problems, in whihmost known deidable ases [1, 3�5, 10℄ an be enoded and solved uniformly.In the present paper, we show that this unifying approah allows as well abetter understanding of the role played by lassial results from tree automatatheory in distributed synthesis problems.More preisely, in the above mentioned works, many deision algorithms rely(more or less impliitly) on automata onstrutions that are not expliitly relatedto lassial automata theory.For instane, in [3℄, the main onstrution given by the authors to solve thepipeline synthesis problem �sounds� like the sequential omposition of two tree-automata. Similarly, one of the main onstrution (glue operation) de�ned in [6℄�sounds� like Muller and Shupp simulation of an alternating automaton by anon deterministi one [7℄.The purpose of this paper is to validate this intuition, by expliitly de�ningthe enountered automata (or their inputs) when they are missing in these works,and to apply known onstrutions in order to reprove these synthesis results.
⋆ This work is partially supported by the European Commission Researh and TrainingNetwork �Games and Automata for Synthesis and Validation� (RTN GAMES)



This way, it is expeted that it will ontribute to the foundation of a ommonground into whih methods and approahes an be enoded and ompared onewith the other.The tehnial relevane of our reformulation work is illustrated by the en-oding and solving of the pipeline ase [3℄.Other Related WorksPeterson and Reif ([8℄, extended in [9℄) initiated the researh on multiplayergames of inomplete information, onsidering �nite games, and introduing thenotion of hierarhial games: these games satisfy the property that one an lin-early order the set of players suh that p1 ≤ p2 if and only if �p2 knows morethan p1�, or equivalently �p2 knows the state of p1�. They prove that these gamesare solvable, by iteratively removing the inomplete information assoiated witheah player.Subsequent results on distributed synthesis (suh as [10℄, [3℄) essentially usedthe same ideas and tehniques, exept in the fat that they onsider in�nite playsand/or branhing time spei�ations.The ommon tehnique is to ut out the last player from the game (i.e. the onethat knows the state of all the other), modifying in the proess the spei�ationso that it re�ets all moves that an be taken by this player, then do the samewith the last but one, et. . . . until a �simple� 2-player game is left to solve.Our paper rely on the same priniple, making the automata onstrutionsexpliit.Organization of the PaperIn the �rst setion, after reviewing some of the notations used in this paper, we�x the de�nitions of trees, tree automata and in�nite two player games. Mullerand Shupp non determinization theorem is stated, and a notion of sequentialomposition of tree automata is also de�ned and analyzed.Distributed games and distributed strategies are presented in the seond se-tion. These games are played by a team of proess players versus a single envi-ronment opponent. Eah proess player only gets inomplete information aboutthe position of the other proesses. The existene of a winning distributed strat-egy in a distributed game is shown to be undeidable, even for simple winningonditions suh as safety and reahability.In the third setion, we �rst show that using an (external) tree-automatonin order to de�ne winning strategies in a (distributed) game is essentially equiv-alent to adding an additional proess player (internalizing the automaton) intothe game. Then, onversely, we show that when a proess player has enoughknowledge to dedue the positions of the other proesses, then its loal arenaan be externalized as a tree automaton reading the strategies of the remainingproesses, in whih non-deterministi hoies orrespond to the moves of theproess; this automaton an be omposed with any existing external winningondition. 2



Under su�ient onditions, one an apply repeatedly this onstrution inorder to redue the number of proess players and thus to solve the distributedgame.The long-term goal of this approah is to gain bene�t from the high levelof abstration provided by game theory and, altogether, gain bene�t from well-known onstrutions of automata theory (as it as been developed from Rabin'sseminal result [11℄), to help having a better understanding of the fundamentalobstales to the synthesis of distributed systems.1 Trees, Automata and GamesFor any alphabet A, let A∗ and Aω be the set of all �nite and in�nite wordswith letters from A. Let A∞ = A∗ ∪ Aω, and A? = {ǫ} + A. Standard nota-tions on words and languages of words are used. In partiular, given a language
L ⊆ A∗, we use the notations L+ and (when the empty word ǫ 6∈ L) Lω thatstand, respetively, for the set of words built by onatenating �nitely many andin�nitely many �nite words of L. For any �nite word w = a1 . . . an, let |w| = nbe the length of w. For any in�nite word w, let inf(w) = {a ∈ A | w ∈ (A∗.a)ω}be the set of letters that our in�nitely often in w.For any two sets A and X , for any word w ∈ A∗, de�ne πX(w) (the projetionof w over X) as the word obtained by deleting any letter that is not in X fromthe word representation of w.Given n numbered sets A1, . . . , An, given A = A1 × . . . × An, given any setof indies I = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < . . . < ik, we write A[I] forthe set A[I] = Ai1 × . . . Aik

, for any x = (a1, . . . , an) ∈ A, we write x[I] for theelements x[I] = (xi1 , . . . , xik
) ∈ A[I], and, for any P ⊆ A, we write P [I] for theset P [I] = {x[I] ∈ A[I] : x ∈ P}.In ase I = {i, i + 1, . . . , j} (where 1 ≤ i ≤ j ≤ n), these notations simplifyto A[i . . . j], x[i . . . j] and P [i . . . j] respetively (and even simplify to A[i], x[i]and P [i] when i = j). These notations also extend to words as follows: for anyword w = a1.a2. . . . ∈ A∞, for any I ⊆ {1, . . . , n}, w[I] = a1[I].a2[I].a3[I] . . .,and to relations: for any relation R ⊆ A × A, we write R[I] the relation on A[I]de�ned by R[I] = {(x[I], y[I]) ∈ A[I] × A[I] : (x, y) ∈ R}.Given two �nite alphabets D and Σ, a Σ-labeled D-tree (also alled D,Σ-tree)is a partial funtion D∗ → Σ whose domain is losed under pre�x operation. Inthe sequel, elements of Σ are alled labels and elements of D are alled diretions.For any tree t : D∗ → Σ, the funtion flatt : Dom(t) → Σ.(D.Σ)∗ is de�nedby: flatt(ǫ) = t(ǫ) and, for any w ∈ D∗ and d ∈ D suh that w.d ∈ Dom(t),

flatt(w.d) = flatt(w).d.t(w.d). Observe that Dom(t) and flatt(Dom(t)) or-dered by the pre�x ordering are isomorphi, and, as a onsequene, flatt(Dom(t))uniquely determines tree t.The following de�nition is a variation on Muller and Shupp's original def-inition of alternating automaton [7℄. Our goal is to have a tree-transduer likeautomaton de�nition, even for alternating automaton.3



De�nition 1 (Alternating tree automaton). A �nite (D, Σ)-alternatingtree automaton is a tuple:
A = 〈Q = Q∀ ⊎ Q∃, D, Σ, q0, δ = δ∀ ∪ δ∃, Acc ⊆ Qω〉where Q is a �nite set of states, q0 ∈ Q∃ is the initial state, δ∀ : Q∀×D → P(Q∃)and δ∃ : Q∃ × Σ → P(Q∀) are the transition funtions, and the ω-rationallanguage Acc is the in�nitary aeptane riterion.Automaton A is a non deterministi automaton (also alled non alternating)when |δ∀(q, d)| ≤ 1 (for any q ∈ Q∀, d ∈ D).De�nition 2 (Runs). A run of an automaton A = 〈Q, D, Σ, i, δ, Acc〉 over a

Σ-labeled D-tree t : D∗ → Σ is a Q∀-labeled (D×Q∃) tree ρ : (D×Q∃)∗ → Q∀suh that:� ρ(ǫ) ∈ δ∃(q0, t(ǫ)),� for all w ∈ Dom(ρ), if ρ(w) = q, then for any diretion d ∈ D suh that
a = t(w[1].d) is de�ned, and for any existential state q1 ∈ δ∀(q, d), thereexists a universal state q2 ∈ δ∃(q1, a) suh that ρ(w.(d, q1)) = q2.For any in�nite branh w of a run ρ of A over t, statesρ(w) is the sequeneof (universal and existential) states enountered along w. A tree t is aeptedby A if and only if there exists a run ρ of A over t suh that for any in�nitebranh w in ρ: statesρ(w) ∈ Acc. Denote by L(A) the language of all trees thatare aepted by A. The size of an automaton A is denoted by |A|.Observe that these tree automata (both alternating and non alternating), ifslightly unusual, have the same expressive power as their standard ounterpart,as in [7℄. In partiular:Theorem 1 (Simulation [7℄). Any alternating tree automaton A is equiva-lent to a non deterministi tree automaton A′, with |A′| ≤ 22

|A| (with Mulleraeptane ondition).Sine the runs of an automaton on trees are themselves trees, automata atas tree transduers and an be sequentially ombined.De�nition 3 (Automata Composition). Given two tree automata A1 =
〈Q1, D1, Σ1, q0,1, δ1, Acc1〉 and A2 = 〈Q2, D2, Σ2, q0,2, δ2, Acc2〉, suh that au-tomaton A2 is non deterministi with D2 = D1 × Q∃

1 and Σ2 = Q∀
1 , we de�nethe omposition of A1 followed by A2 to be the automaton

A2 ◦ A1 = 〈Q̃, D1, Σ1, q̃0, δ̃, Ãcc〉de�ned as follows:� Q̃∃ = Q∃
1 × Q∃

2 ; Q̃∀ = Q∀
1 × Q∀

2 ;� q0 = (q0,1, q0,2), 4



� (q′1, q
′
2) ∈ δ̃∀((q1, q2), d) ⇔

{
q′1 ∈ δ∀(q1, d)
{q′2} = δ∀2 (q2, (d, q′1))� (q′1, q

′
2) ∈ δ̃∃((q1, q2), a) ⇔

{
q′1 ∈ δ∃(q1, a)
q′2 ∈ δ∃2 (q2, q

′
1)� Ãcc = {w ∈ Q̃ω | w[1] ∈ Acc1 ∧ w[2] ∈ Acc2}Theorem 2. For any tree t : D∗

1 → Σ1, t ∈ L(A2 ◦ A1) if and only if thereexists an aepting run ρ : (D1 × Q∃
1)∗ → Q∀

1 of A1 over t suh that ρ ∈ L(A2).The proof, although tedious, is not ompliated, and is therefore omittedhere. Observe that it is ruial that A2 is non-alternating ; nevertheless, byapplying Theorem 1, one an always assume that is is the ase.De�nition 4 (Simple (or Two Player) Games). A simple arena is a quadru-ple G = 〈P, E, TP , TE〉, where P is a �nite set of Proess positions, E is a �niteset of Environment positions, TP ⊆ P×E is the set of Proess moves, TE ⊆ E×Pis the set of Environment moves. A simple game G = 〈P, E, TP , TE, e0,W〉 isbuilt upon a simple arena 〈P, E, TP , TE〉 by equipping it with an initial position
e0 ∈ E and a regular winning ondition W ⊆ (P + E)ω.As partiular ases of winning ondition, a reahability ondition is a winningondition of the form W = (P + E)∗.X.(P + E)ω for some set of positions
X ⊆ P +E to be reahed for Proess to win, and a safety ondition is a winningondition of the form W = ((P +E)−X))ω for some set of positions X ⊆ P +Eto be avoided for Proess to win.A play w ∈ (P + E)∗ in a simple game is any non-empty path in the arenabeginning on e0. A play w is winning for Proess when either it is �nite and endsin an Environment position, or it is in�nite and belongs to W . Otherwise, it iswinning for Environment.A strategy for Proess is a partial funtion σ : (E.P )+ → E suh that forany w.p ∈ Dom(σ), for any position e ∈ σ(w.p), then (p, e) ∈ TP , and for anysuessor p′ of e, w.p.e.p′ ∈ Dom(σ). A play w = e0.x1. . . . is onsistent withstrategy σ when, for any i ∈ N, if σ(e0. . . . .xi) and xi+1 are both de�ned thenthey are equal. A strategy σ is a winning strategy for Proess when any maximalplay (w.r.t. the pre�x ordering) onsistent with σ is winning for Proess.Given a strategy σ in some game G, the strategy tree tσ : P ∗ → E of σ in Gis de�ned indutively by tσ(ǫ) = e0, and tσ(u.x) = σ(flattσ

(u).x).Theorem 3 ([2℄). On �nite two-player games with regular winning ondition,either Proess or Environment has a winning strategy, whih an be omputede�etively.2 Distributed GamesDe�nition 5 (Distributed Arena). A distributed arena is a free asynhro-nous produt where the possible Environment moves may have been restrited.5



More preisely, given two arenas G1 = 〈P1, E1, TP,1, TE,1〉 and G2 = 〈P2, E2,

TP,2, TE,2〉, a (two-proess) distributed arena built upon the arenas G1 and G2 isany simple arena G = 〈P, E, TP , TE〉 of the form� Environment positions : E = E1 × E2,� Proesses positions : P = (E1 ∪ P1) × (E2 ∪ P2) − (E1 × E2),� Proesses moves : TP is the set of all pairs (p, e) ∈ (P × E) suh that, for
i = 1 and i = 2 :
• either p[i] ∈ Pi and (p[i], e[i]) ∈ TP,i (Proess i is ative in p),
• or p[i] ∈ Ei and p[i] = e[i] (Proess i is inative in p),� and Environment moves : TE is some subset of the set of all pairs (e, p) ∈

(E × P ) suh that, for i = 1 and i = 2 :
• either p[i] ∈ Pi and (e[i], p[i]) ∈ TP,i (Environment ativates Proess i),
• or p[i] ∈ Ei and p[i] = e[i] (Environment keeps Proess i inative).When the set TE of Environment moves is maximal, we all suh an arena thefree asynhronous produt of arenas G1 and G2 and it is denoted by G1 ⊗ G2.These de�nitions extend to n-proess distributed arena.Sine a distributed arena is built upon n simple arenas, we need a de�nitionto speak about its loal omponents:De�nition 6 (Projetion of distributed arena). Given a distributed arena

G = 〈P, E, TP , TE〉, with E = E1 × . . . × En and P = ((P1 ∪ E1) × . . . × (Pn ∪
En))−E, given a non empty set I ⊆ {1, . . . , n}, de�ne the anonial projetion
G[I] of G on I as the arena G[I] = 〈P ′, E′, T ′

P , T ′
E〉 given by: P ′ = P [I] − E[I](possibly smaller than P [I] !), E′ = E[I], T ′

P = TP [I] ∩ (P [I] × E[I]), and
T ′

E = TE [I] ∩ (E[I] × P [I]).Remark. Observe that a n-proess distributed arena G as above an alwaysbe seen as a distributed arena built upon the games G[1], . . . , G[n]. Moreover,in the same way Cartesian produt of sets is (up to isomorphism) assoiative,given an arbitrary non empty set I ⊂ {1, . . . , n}, given I = {1, . . . , n} − I, the
n-proess distributed arena G an, as well, be seen as a distributed arena builtupon the two (distributed) arenas G[I] and G[I ].Example 1 (The Pipeline : Beginning). A distributed arhiteture (as de�nedin [10℄, [3℄) is a set of sites linked together by some ommuniation hannels.Eah site an host a program, whih is essentially a sequential funtion1 mappinga sequene of inputs to a sequene of outputs. As a typial example, in a pipelinearhiteture, the sites are linearly ordered from left to right, eah site taking itsinput from the site on its right, and writing its output to the site on its left.To be more preise, suppose eah ommuniation hannel xi an arry valuesthat range over some set Xi. The site si reeives its input from the hannel xi,and writes its outputs to the hannel xi−1; thus, a program for the site si is a1 reall that a sequential funtion is a funtion f : A∗

→ B∗ that is realized by a wordtransduer with input alphabet A and output alphabet B.6



s1 sn−2 sn−1 sn

xn
xn−1xn−2x0 Fig. 1. A pipeline arhiteturesequential funtion fi : X∗

i → X∗
i−1. The environment writes input to the systemon hannel xn, and the system's output is read on hannel x0.For any pipeline arhiteture A, we an build a distributed arena GA =

〈P, E, TP , TE〉 where eah proess plays the role of a program: on its loal arena,the environment's moves orrespond to the possible inputs for this site, and theproess moves orrespond to the possible outputs:� P = X1 × . . . × Xn ; E = X0 × . . . × Xn−1.� ((v1, . . . , vn), (v′1, . . . , v
′
n)) ∈ TE i� v′i = vi+1 for eah i ∈ {1, . . . , n − 1} and

v′n ∈ Xn.Observe that by restriting the Environment moves, we ensure that the en-vironment arries orretly the values along the hannels.De�nition 7 (Distributed Games). A n-proess distributed game G is atuple
G = 〈P, E, TP , TE, e0,W〉where 〈P, E, TP , TE〉 is a n-proess distributed arena, e0 ∈ E is the initial (En-vironment) position, and W ⊆ (E.P )ω is the (regular) winning in�nitary ondi-tion.A distributed game is a partiular ase of simple game. It follows that previ-ous notions of plays and strategies are still de�ned. However, in order to avoidonfusion with what may happen in the loal arena a distributed game is buildupon, we shall speak now of a global play and a global strategy.The loal view Proess i has of a global play in a distributed game G is givenby the map viewi : (E.P )∗.E? → (Ei.Pi)

∗.E?
i de�ned in the following way:� viewi(ǫ) = ǫ� viewi(x) = x[i]� viewi(w.x.y) =

{
viewi(w.x) if x[i] = y[i]
viewi(w.x).y[i] otherwise.A play w ∈ (E.P )+ is said to be ative for Proess i when w ends in aposition p ∈ P suh that p[i] ∈ P [i].De�nition 8 (Loal and distributed Strategies). Given a n-tuple of loalstrategies (σi : (E[i].P [i])+ → E[i])i∈{1,...,n}, the indued global strategy

σ1 ⊗ . . . ⊗ σn : (E.P )+ → Eis de�ned as follows: for any play of the form w.p ∈ (E.P )+, given the set
I ⊆ {1, . . . , n} of ative proesses in the global Proesses position p (i.e. I =
{i ∈ {1, . . . , n} : p[i] ∈ Pi}), de�ne σ(w.p) = e by:7



� e[i] = σi(viewi(w)) for i ∈ I� e[i] = p[i] for i ∈ {1, . . . , n} − I(provided everything is well-de�ned, otherwise σ(w.p) is left unde�ned).A global strategy σ : (E.P )+ → E is a distributed strategy if σ equals theomposition σ1 ⊗ . . . ⊗ σn of some n loal strategies.Note that global strategies are not always distributed. Moreover, there aredistributed games in whih the Proesses have a winning strategy, but no winningdistributed strategy.From this, we an derive an important fat: the distributed game are notdetermined, in the sense that even when the environment does not have a winningstrategy, the proesses may not have a winning distributed strategy. Furthermore,using the fat that the proesses do not share the same information, we are ableto provide the following undeidability result:Theorem 4. The problem of �nding a winning distributed strategy in a3-proess distributed game with safety or reahability winning ondition is unde-idable.The proof is omitted here due to spae restrition. Su�e it to say that itproeeds by redution to the Post orrespondene problem, and relies heavilyon the fat that there are three proesses in the game. It is an open problemwhether solving a 2-proess distributed game is deidable or not.3 Tree Automata and Distributed GamesWe �rst mix games and automata, de�ning a winning ondition by means ofa tree-automaton that reognizes the set of trees of winning strategies. We il-lustrate this new onept by de�ning a pipeline game over the pipeline arena.Then, we present an algorithm to solve suh a game, using the notion of leaderin a distributed game.De�nition 9 (External Winning Condition). A game with external win-ning ondition is a tuple
G = 〈P, E, TP , TE, e0,A〉where 〈P, E, TP , TE〉 is a simple arena, e0 ∈ E is the initial position, and A is a

(P, E)-tree automaton. In suh a game, a strategy is winning if its strategy treebelongs to L(A). This de�nition extends to distributed games.In the sequel, in order to avoid onfusion, a game with a winning onditionde�ned as in setion 2 is alled game with internal winning ondition.As we are going to show, games with external winning ondition are notessentially more expressive than games with internal one.8



Theorem 5 (Internalization). For any n-proess game G with external win-ning ondition, there exists a n + 1-proess game G′ with internal winning on-dition suh that G′[1, . . . , n] = G, and suh that the proesses have a winningstrategy σ in G if and only if the proesses have a winning strategy of the form
σ ⊗ σ′ in G′.Proof. (sketh) Let G = 〈P, E, TP , TE, e0,A〉 (where A = 〈Q∀⊎Q∃, P, E, q0, δ =
δ∀ ∪ δ∃, Acc〉) be a distributed game with external winning ondition. The game
G′ = 〈P ′, E′, T ′

P , T ′
E, e′0,W〉 is de�ned as follows. The positions and the winningondition are given by:� P ′ = (E × (Q∃ × E)) ∪ (P × (Q∃ × {#})),� E′ = (E × Q∃) ∪ (E × Q∀),� e′0 = (e0, q0),� W = {w ∈ (E′.P ′)ω | πQ∀∪Q∃(w) ∈ Acc}and moves are (repeatedly) de�ned by: from an environment position (e, q) ∈

E × Q∃ (or the initial position):1. �rst, Environment (deterministially) moves to the proess position
(e, (q, e)) ∈ E × (Q∃ × E),2. then, the new (automaton) proess loally hooses q′ ∈ δ∃(q, e), the otherproesses stay idle, thus the play proeeds in G′, to the environment position
(e, q′) ∈ E × Q∀,3. then, Environment hooses p ∈ TE(e) and q1 ∈ δ∀(q′, p), and the play pro-eeds to the Proess position (p, (q1, #)) ∈ P × Q∃,4. �nally, proesses 1 to n (on game G) hoose some e1 ∈ TP (p), the new(automaton) proess stays almost idle (he simply deletes the # sign), andthe play proeeds to the Environment position (e1, q1) ∈ E × Q∃.If ρ is an aepting run of A over tσ (for some strategy σ in G), one deduefrom ρ a strategy σ′ suh that σ ⊗ σ′ is winning in G′. Conversely, if σ ⊗ σ′ is awinning strategy in G′, one an infer an aepting run of A over tσ from σ′.Moreover, when G is a simple game with external winning ondition, theinternalization proedure an be further simpli�ed (and amounts essentially tobuild the produt of G with the automaton), and the resulting game with internalondition is a simple game as well.Example 2 (Pipeline Example Continued). Following the presentation from[3℄, the synthesis problem for distributed arhitetures is presented as follows:given a distributed arhiteture A and a vetor of programs (fi)1≤i≤n (one foreah site of A), the omputation tree of the system is a (

∏
1≤i≤n Xi)-labeled

Xn-tree, where eah node w is labeled by the values held by the ommuniationhannels after input w to the system.A spei�ation for the system is a language of suh trees spei�ed by a treeautomaton A (or equivalently by a MSO-formula).The synthesis problem is then: does there exists a vetor of programs suhthat the resulting omputation tree belongs to the spei�ation ?9



Building upon the pipeline arena GA as de�ned in example 1, we an nowde�ne a distributed game in whih the proesses have a winning strategy if andonly if there is a solution to the synthesis problem in the pipeline arhite-ture. Suppose the spei�ation for A is given by the �nite (Xn,
∏

0≤i≤n−1
Xi)-automaton A, we an easily de�ne a (

∏
1≤i≤n Xi,

∏
0≤i≤n−1

Xi)-automaton A′that aepts a tree t′ if and only if it is the widening of some tree t ∈ L(A) (i.e.if t′(w) = t(w[n]) for all w ∈ Dom(t′)).Using this automaton as an external winning ondition, we get the enodingof the synthesis problem for the pipeline arhiteture in a distributed game.Observe that in this game, for eah i ∈ {1, . . . , n}, provided that Proess iknows the strategy for all the proesses from 1 to i − 1, then he an predit theposition in eah of the loal arenas from 1 to i − 1.Using the above observation, one may ask now whether an inverse onstru-tion to internalization is possible or not. Intuitively, assuming that there is aproess in an n+1-distributed game that an predit, at every step, what is theglobal position in the game, an we externalize it into an external winning ondi-tion suh that, the resulting n-proess distributed game with external onditionis equivalent, in some e�etive sense, to the initial game ?The notion of leader de�ned below follows this intuition. In fat, it providesa loal ondition that is su�ient for suh a global knowledge to be available toa Proess player.De�nition 10 (Leader). Given a 2-proess game G = 〈P, E, TP , TE, e0,A〉,we say that Proess 2 is a leader when, for any Environment position e ∈ E, anyProesses positions x and y ∈ P suh that both (e, x) ∈ TE and (e, y) ∈ TE,� if x[2] = y[2] then x[1] = y[1],� if x[2] ∈ E[2] or y[2] ∈ E[2] then x = y.Intuitively, Proess 2 is a leader when, as soon as he knows a global Environ-ment position then, after an Environment move (or several onseutive moves ifProess 2 stays idle for some time), Proess 2 an predit, from his own position,the global Proesses position of the game.This loal property has the following formulation when it omes to onsider-ing plays:Lemma 1. Let G = 〈P, E, TP , TE, e0〉 be a 2-proess arena with initial position
e0. For any strategy σ for the proesses, the restrition of view2 to the plays thatare onsistent with σ and ative for Proess 2 is one-to-one.Proof. Immediate from the de�nition.Rephrased in a more useful way, this observation leads to the following result:Lemma 2. For any 2-proess game G = 〈P, E, TP , TE , e0,W〉 suh that Proess
2 is a leader, there exists a (P [1], E[1])-automaton A2 suh that for any strategies
σ on G, σ1 on G1, the following propositions are equivalent:10



(1) there exists a strategy σ2 on G[2] suh that σ = σ1 ⊗ σ2(2) there is an aepting run ρ of A2 over tσ1
suh that ρ = tσ1

.Proof. (sketh) We �rst give here a onstrution for A2 in the ase both Proess
1 and Proess 2 are always ative in the positions for Proesses.Automaton A2 = 〈Q2, P [1], E[1], q0,2, δ2, Acc2〉 an be de�ned as follows:� Q∀

2 = E; Q∃
2 = P [2] ∪ {q0,2},� δ∀2 (q, p1) = {p2 ∈ Q∃

2 : (q, (p1, p2)) ∈ TE} (q ∈ Q∀
2 , p1 ∈ P [1]),� δ∃2 (p2, e1) = {q ∈ Q∀

2 : q[1] = e1 ∧ (p2, q[2]) ∈ TP [2]} (p2 ∈ Q∃
2 , e1 ∈ E[1])with δ∃2 (q0,2, e1) = {e0[2]},� Acc2 = Qω

2 .The orrespondene between runs of A2 on strategy trees in G[1] and strategytrees in G easily follows from this onstrution, and from the fat that Proess
2 is a leader in G.In the ase Proess 2 may be inativated by Environment one an hek that,sine Proess 2 is a leader, game G an be �rst normalized so that this no longerhappens (details are not given due to lak of spae).In the ase Proess 1 may be inativated by Environment, then the onstru-tion below an be extended, de�ning (quite easily though tediously) an automa-ton A2 with ǫ-transition. However, the main arguments remain the same.Sine the previous result holds for arbitrary external ondition and arbitrarystrategies in G[1] (even if G[1] is itself a distributed game), it follows:Theorem 6 (Externalization).For any n-proess distributed game G = 〈P, E, TP , TE, e0,A〉 with non deter-ministi external winning ondition A suh that Proess n is a leader, there is a
(P [1 . . . n− 1], E[1 . . . n− 1])-automaton An suh that the following propositionsare equivalent:(1) the proesses have a distributed winning strategy on G.(2) the proesses have a distributed winning strategy in 〈G[1 . . . n−1], e0[1 . . . n−

1],A ◦ An〉.Example 3 (The Pipeline: End). We have already mentioned that, in the n-proess pipeline arena, from any initial position, Proess n is a leader. It followsthat Theorem 6 applies.Moreover, observe that the resulting (n−1)-proess game arena G[1 . . . n−1]is nothing but a (n − 1)-proess pipeline arena. This says that Theorem 6 anbe applied repeatedly till the number of proesses is redued to one. Now, onean internalize the automaton, and ompute a winning strategy in the resultingsimple game using Theorem 3.Transposed on our more abstrat setting, this an be expressed as the fol-lowing orollary of the theorem.Corollary 1. For any n-proess (n ≥ 2) distributed game G suh that for eah
i ∈ {2, . . . , n} proess i is a leader in G[1 . . . i], the problem of determiningwhether the proesses have a winning strategy is deidable.11
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