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The Monadic Theory of Finite Representations of Infinite Words

Anuj Dawar∗ David Janin†

January 16, 2007

Abstract

In this paper, we consider existential monadic second-order logic (monadic Σ1) on finite unary graphs,
that is finite graphs with functional edge relation. These can be seen as finite encodings of ultimately
periodic words. We show that, on these graphs, the bisimulation invariant fragment of monadic Σ1

equals the bisimulation invariant fragment of monadic second order logic itself, and that MSO-definable
bisimulation closed classes of graphs coincide with classes of graphs definable by means of (an extension
of) finite state ω-word automata. This result can be seen as a translation, onto finite representations of
infinite words, of Büchi’s automata-theoretic characterization of S1S. In terms of descriptive complexity,
this result contrasts with the situation on arbitrary unary structures where bisimulation invariant monadic
Σ1 properties only define languages that are closed with respect to the prefix topology.
Keywords: Automata on infinite words, descriptive complexity, logic, specification languages.

1 Introduction

Models and properties of infinite words

Given a finite alphabet A, an infinite word (or ω-word) over A is a sequence (ai : i ∈ ω) where each ai ∈ A.
When treating such words as structures that interpret formulas of some logic, it is common to take the
underlying domain to be the set of natural numbers, and to allow a unary predicate symbol Pa for each
element a ∈ A so that Pa holds of integer i if, and only if, the ith element in the word is a. In this way a
sentence in a predicate logic, such as first-order or second-order logic, can be seen as defining a language of
infinite words, namely the set of words whose encoding satisfies the sentence. It is with such an encoding
that Büchi, seeking a decision procedure for S1S, the monadic theory of the natural numbers, obtained his
famous automata-theoretic characterisation of languages (i.e. sets of words) definable in monadic second-
order logic [3]. The consequences of this result continue to have a deep impact on research in computer
science.

We are especially interested in those infinite words that are eventually periodic. That is, they are of
the form u.vω for finite strings u and v. We can represent such words as finite structures consisting of
a (directed) graph that contains a simple path labeled u leading to a cycle labelled with the word v. We
examine properties of this class of structures, which we call lassos, that are definable in monadic second-order
logic. It is clear that any property of eventually periodic words can be reformulated as a property of lassos.
We aim to study the definability and descriptive complexity of languages of eventually periodic words when
they are represented in the form of finite graphs, especially as lassos.

Properties of words vs properties of their finite encodings

Given an infinite word w that is eventually periodic, the u and v such that w = u.vω are not uniquely
determined. Thus, if we have a sentence ϕ of some logic that is interpreted over lassos and we wish to
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interpret the models of ϕ as defining a language of infinite words, it is important to consider those sentences
that do not distinguish between different lassos that encode the same word.

This invariance condition can be seen as a special case of bisimulation invariance which has been much
studied in the context of modal logics [2]. It has also been studied specifically in the context of monadic
second-order logic in [7], where it was shown that any property that is definable in monadic second-order
logic and is bisimulation-invariant is definable in the modal µ-calculus.

In the particular context of finite encodings of eventually periodic words, an interesting question poses
itself. What is the cost or benefit, from the point of view of definability in a given logical formalism, of
representing words in terms of their finite encodings instead of explicitly as infinite structures? Of course,
finite representability is crucial when we want to study computational aspects of the definable properties.
However, it is also the case that the particular representation, such as lassos, makes certain information
explicit that is only implicitly available in the infinite word. For instance, any lasso contains a special
vertex (which we will call the knot) that marks the beginning of the cycle and is easily distinguished from
other vertices. As we shall see, this may allow us to give simpler definitions of some languages of infinite,
eventually periodic words. Indeed, it is possible that certain languages may become definable in their finite
representations that are not definable at all on infinite words.

Our contribution

In this paper we study the power of monadic second-order logic (MSO) on finite representations of eventually
periodic words and give a fairly complete account of it.

First, we establish that, as might be expected, for any MSO definable language of ω-words L there is an
MSO formula ϕL that defines the set of all finite encodings of the eventually periodic words of L.

Moreover, we prove that such a formula ϕL can always be found in the Σ1 fragment of the quantifier
alternation hierarchy of monadic second order logic. This contrasts with the case where MSO formulas are
interpreted directly over infinite words as we know [6] that in this case the monadic Σ1 formulas only define
closed languages in the prefix topology. As these correspond to Büchi automata where any infinite run is
accepting, they represent only a fragment of the languages that are definable in MSO.

An intuitive explanation for this contrast is that on finite lassos it is possible to state infinitary Büchi
automata acceptance conditions using a monadic Σ1 formula by requiring that the knot vertex is labelled
by an accepting state. On infinite words, in the absence of such a knot vertex, the condition can be stated
but at the cost of an increase in the descriptive complexity.

Nonetheless, we are able to show that, apart from this increase in complexity, the expressive power of
MSO is the same in the two cases. To be precise, we show that any class of lassos that is MSO-definable
and that describes word properties (i.e. that is invariant under the equivalence on lassos relating structures
encoding the same infinite word) is already MSO definable as a class of infinite words. This means that
MSO definability on lassos can still be captured by finite automata.

These two results can be seen as a translation, onto finite representations of infinite words, of the Büchi
automata characterization theorem [3] of S1S.

These results also shed some light on the question of characterising the bisimulation invariant fragment
of MSO in the finite. As was shown by Janin and Walukiewicz [7], any MSO formula that is invariant
under bisimulations on all structures is equivalent to a formula of the modal µ-calculus (Lµ). It has long
been an open question whether this is true in the finite. That is, if an MSO formula ϕ is invariant under
bisimulation on finite structures, is it the case that ϕ is equivalent on finite structures to a formula of Lµ.
Similarly, the bisimulation invariant fragment of MSO with counting is known to correspond to the counting
extension of Lµ. More fine-grained results have established that the Σ1 fragment of MSO, when restricted to
bisimulation-invariant properties corresponds exactly to the fragment of Lµ which only uses greatest fixed
points and similarly for the counting extensions [6].

It is these last results where we show that the situation on finite structures is drastically different. The
results on eventually periodic words show that the correspondence between bisimulation-invariant Σ1 with
counting and the greatest fixed-point fragment of counting Lµ simply fails in the finite. We can construct
a formula of Σ1 that is invariant under counting bisimulations on finite structures but is not equivalent to
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a formula of Lµ with counting that uses only greatest fixed points. Similarly, the correspondence between
Σ1 and Lµ with only greatest fixed points, even without counting, fails, at least in relation to finite unary
graphs.

Related work

The interest in bisimulation preservation theorems goes back to van Benthem [13], who showed that a formula
of first-order logic is preserved under bisimulations on all structures if, and only if, it is equivalent to a formula
of modal logic. While many preservation theorems of classical model theory fail when we restrict ourselves
to finite structures, this is one exception. It was shown by Rosen [12] that a formula of first-order logic is
preserved under bisimulations on finite structures if, and only if, it is equivalent on finite structures to a
formula of modal logic. This result has prompted further investigation of preservation under bisimulations
on finite structures. For instance, Otto in[10] gives a unified treatment of the van Benthem and Rosen
results and considers their extensions to other variants of bisimulation and in [9] studies similar preservation
theorems for guarded logics. The status of the first-order modal preservation theorem on specific classes
of finite structures is explored by Dawar and Otto in [5]. The modal preservation theorems for monadic
second-order logic of Janin and Walukiewicz and Janin and Lenzi have also received attention and it has
been an active open question whether the corresponding results hold in the finite. In our paper [4], we
examined the case of the latter property on specific classes of finite structures. Some of the results in this
paper were presented in preliminary form there.

2 Background, definitions and main results

2.1 Graphs

The logic we consider is interpreted over rooted labeled directed graphs (often called transition systems or
Kripke structures). Fix a set Prop of atomic propositions. A graph for Prop is a structure

M = 〈V, r, E, {pM}p∈Prop〉

with universe V (vertices), distinguished element r ∈ V (root), binary relation E ⊆ V × V (directed edges)
and monadic relations pM ⊆ V for each atomic proposition p ∈ Prop (labeling).

A graph M is a unary graph when its edge relation E is functional, i.e. for any vertex u in M there is
one and only one vertex v in M such that (u, v) ∈ E.

A (directed) path in graph M is a (finite or infinite) sequence of vertices such that for any two consecutive
vertices v1 and v2 in the sequence one has (v1, v2) ∈ E.

When M is unary, there is a unique infinite path ρ ∈ V ω starting from the root. In this case, given
Σ = P(Prop), we define the infinite word encoded by the unary graph M to be the word wM ∈ Σω defined,
for each i ∈ IN, by wM [i] = {p ∈ Prop : ρ[i] ∈ pM}.

2.2 Bisimulation

A bisimulation between two graphs
M = 〈V, r, E, {pM}p∈Prop〉

and
M ′ = 〈V ′, r′, E′, {pM ′

}p∈Prop〉

is a relation B ⊆ V × V ′ such that, if (v, v′) ∈ B then:

• for each p ∈ Prop, v ∈ pM ⇔ v′ ∈ pM ′

;

• for each w with (v, w) ∈ E there is a w′ with (v′, w′) ∈ E′ and (w,w′) ∈ B; and
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• for each w′ with (v′, w′) ∈ E′ there is a w with (v, w) ∈ E and (w,w′) ∈ B.

A counting bisimulation between M and M ′ is a relation B ⊆ V × V ′ such that, if (v, v′) ∈ B then:

• for each p ∈ Prop, v ∈ pM ⇔ v′ ∈ pM ′

;

• B contains a bijection between the sets {w | (v, w) ∈ E} and {w′ | (v′, w′) ∈ E′}.

Observe that any counting bisimulation is a bisimulation.
We say that M and M ′ are (counting) bisimilar if there is a (counting) bisimulation B between them with

(r, r′) ∈ B. More generally, we say that two states v ∈M and v′ ∈M ′ (where M and M ′ are not necessarily
distinct) are (counting) bisimilar if there is a (counting) bisimulation B between the two structures with
(v, v′) ∈ B.

Restricted to unary graphs, the two notions coincide. That is, unary graphs M and M ′ are bisimilar if,
and only if, they are counting bisimilar.

2.3 Logic

We consider standard predicate logics, in particular first-order logic (FO) and monadic second-order logic
(MSO). These are interpreted in graphs. In the sequel, we shall write ϕ(x1, · · · , xn) or simply ϕ(x) for an
FO or MSO-formula with free first-order variables among x = (x1, · · · , xn) regardless of the free monadic
predicate (or set) variables occurring in ϕ. More precisely, given the set {X1, · · · , Xn} of all set variables
occurring free in ϕ, we shall implicitly and whenever required interpret the formula ϕ on transition systems
with the set of atomic proposition Prop′ = Prop ∪ {X1, · · · , Xn}.

A class of graphs C is (counting) bisimulation closed when, for any graph M , M ∈ C whenever there is
N ∈ C such that M and N are (counting) bisimilar. We say that an FO or MSO-sentence ϕ is (counting)
bisimulation invariant when the class Cϕ of models of ϕ is (counting) bisimulation closed, i.e. for any two
(counting) bisimilar models M and N one has M |= ϕ if, and only if, N |= ϕ.

We say that a class of graphs is (counting) bisimulation closed in the finite when the above property holds
restricted to finite graphs only. By extension, we say that an MSO-sentence ϕ is (counting) bisimulation
invariant in the finite when the class Cf

ϕ of finite graphs it defines is (counting) bisimulation closed in the
finite.

Observe that any unary graph M is characterized up to bisimulation by the infinite word wM ∈ Σω that
is described by the infinite path emanating from the root of M . Also, as we observed earlier, on unary
graphs, bisimulation coincides with counting bisimulation. In particular, this means that if a sentence ϕ is
invariant under counting bisimulations in the finite then, in particular, on finite unary graphs it is invariant
under bisimulations.

It follows that a counting bisimulation invariant class C of unary graphs is characterized by the language
of words LC = {wM ∈ Σω : M ∈ C}, i.e. for any unary graph M , M ∈ C if and only if wM ∈ LC .
This, along with Büchi’s characterization of S1S by means of finite state automata [3] gives us the following
theorem (following arguments similar to those developed in [7] but restricted to unary graphs).

Theorem 1 (Büchi [3]) A bisimulation closed class of (finite or infinite) unary graphs C is MSO-definable
if, and only if, the language LC is ω-regular.

2.4 Main results

In this paper, we focus our attention on bisimulation invariance on finite unary graphs. As above, a bisim-
ulation invariant class of a finite unary graph C is still characterized by the language LC it induces, and
counting bisimulation coincides with bisimulation. However, in this case, since all graphs in C are finite, all
words in LC are ultimately periodic, i.e. of the form u.vω for some finite non empty words u and v ∈ Σ+.

These leads to the following definition:
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Definition 2 Given a language of infinite words L ⊆ Σω, the kernel kern(L) ⊆ Σω of L is defined to be the
set of all ultimately periodic words of L, i.e. kern(L) = {u.vω : u, v ∈ Σ+, u.vω ∈ L}.

Our main result is:

Theorem 3 A bisimulation closed class of finite unary graphs C is definable by a MSO-sentence ϕ if, and
only if, there is an ω-regular language L ⊆ Σω such that LC = kern(L).

Moreover, ϕ is equivalent, over C to a formula in the Σ1 level of the monadic second order logic hierarchy.

Thus, we get the following in terms of descriptive complexity.

Corollary 4 Restricted to bisimulation invariant properties on finite unary graphs, the monadic quantifier
alternation depth hierarchy collapses to the Σ1 level.

3 From languages of words to classes of unary graphs

We first show that for any regular language of infinite words, there is an existential monadic formula that
defines, in the finite, the set of all graph encodings of the ultimately periodic words of this language.

More precisely:

Theorem 5 For any regular ω-language L ⊆ Σω there is a monadic Σ1 formula ϕL such that for any finite
unary graph M , M |= ϕL if, and only if, wM ∈ L.

Proof. Let L be an ω-regular language.
Observe first, that there is a nondeterministic finite Büchi automaton

AL = 〈Q, q0, δ, F 〉

that recognizes L and such that, for any infinite word of L of the form u.vω, there is an accepting state
q ∈ F such that, there is a path in AL from q0 to q reading u, and a cycle in AL from q to q reading v. In
fact, following [11], such an automaton can be taken as the Büchi automaton one can canonically build out
of an ω-semigroup recognizing L.

Now, the formula ϕL can be defined as follows: there is a collection of disjoint sets Xq, one for each state
q ∈ Q, such that: (i) r ∈ Xq0

; (ii) for each q, for each vertex x ∈ Xq, x has a single successor y and there is
a state q′ ∈ δ(λ(x)) such that y ∈ Xq′ with λ(x) = {p ∈ Prop : p(x) holds}; and (iii) any element with two
predecessors in the union of the Xqs belongs to some Xq with q ∈ F .

The formula ϕL defined in this way (1) checks that there is a unique path from the root, (2) necessarily
defines on this path a labeling that is a run of automaton AL, and (3) confirms that there is a vertex on this
path with two predecessors labeled by an accepting state. Since M is finite, this suffices to ensure that this
run is accepting. 2

One may ask whether a converse of this theorem holds. More precisely, given an MSO-formula ϕ, let Lϕ

be the language of all infinite words encoded by the unary finite models of ϕ, i.e.

Lϕ = {wM ∈ Σω : M |= ϕ,M unary and finite}

One may ask, for instance, if there is some ω-regular language L ⊆ Σω such that Lϕ = kern(L). Recall that,
by construction, all words in Lϕ are ultimately periodic.

The answer is no: there are MSO sentences ϕ such that Lϕ is not the kernel of an ω-regular language.
In fact, on the alphabet Σ = {a, b}, take the formula ϕ that defines unary graphs such that, on the unique
path from the root, there is a single b on the cycle. One has Lϕ = {am.(b.an)ω ∈ Σω : m ∈ IN, n ∈ IN} but,
by the pumping lemma, for any ω-regular language L such that Lϕ ⊆ L, there are integers m, n and p > n

such that am.(b.an.b.ap)ω ∈ L hence Lϕ 6= kern(L).
However, we prove in the next two sections that a converse to Theorem 5 can be obtained under the

assumption that the formula ϕ is invariant under counting bisimulations in the finite.
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4 The monadic second order theory of lassos

In this section, we consider monadic second order logic on lassos, i.e. unary graphs that are canonical
encodings of ultimately periodic words.

More formally, a unary graphM is called a lasso if all nodes inM except two have exactly one predecessor.
The two exceptions are the root, which has no predecessors and a node we call the knot which has two.

Any finite unary graph is bisimilar to a lasso. Moreover, any lasso M is completely characterized by the
two non empty finite words u and v, in the alphabet Σ, that are described respectively by the simple path
leading from the root to the knot of M (excluding the knot) and by the simple cycle leading from the knot
back to itself (excluding the knot at the end of the path). We write Mu,v for such a lasso. The following
characterization of MSO on lassos follows from the Decomposition Theorem proved for MSO in [8].

Lemma 6 For any MSO sentence ϕ, there exists a finite set of pairs of regular languages {(Ui, Vi) ⊆
Σ+ × Σ+}i∈I such that:

Mu,v |= ϕ if, and only if, (u, v) ∈
⋃

i∈I

Ui × Vi ((u, v) ∈ Σ+ × Σ+)

Proof. The mapping that maps any pair of non empty finite words (u, v) ∈ Σ+ ×Σ+ to the lasso Mu,v is an
FO-definable transduction. It follows, by the decomposition theorem [8] that there is a finite set of pairs of
MSO-formulas {(ϕi, ψi)}i∈I over finite Σ-words such that for any two words u and v ∈ Σ+,

Mu,v |= ϕ

if, and only if, there is some i ∈ I such that u |= ϕi and v |= ψi. By Büchi’s theorem, for all i ∈ I, the
MSO-formulas ϕi and ψi define regular languages Ui and Vi. 2

Remark: It follows, in particular, that Lϕ ⊆ kern(
⋃

i∈I Ui.(Vi)
ω). However, the inclusion may be

proper. To see this, conisder the formula ϕ in the two letter alphabet Σ = {a, b} that asserts that on the
cycles of lasso either only as or only bs occur. We have Lϕ = (a+ b)∗(aω + bω). But ϕ is also characterized
by the languages U = (a+ b)+ and V = a+ + b+ with U.V ω = (a+ b)ω.

At a more conceptual level, the inclusion is not proper because, for a given pair of languages U and V ,
there may be eventually periodic words in U.V ω which are not of the form u.(v)ω for any u ∈ U and v ∈ V .
The following lemma gives a precise characterisation of the eventually periodic words in U.V ω

Lemma 7 Let U and V be two languages of finite non empty words and let w ∈ U.V ω. Word w is ultimately
periodic if and only if there is u0 ∈ U and v1, . . . , vm, vm+1, . . . , vm+n ∈ V such that

w = u0.v1. · · · .vm.(vm+1. · · · .vm+n)ω

i.e. w = u.vω with u ∈ U.V + and v ∈ V +.

Thus, in regard to Lemma 6, given some i ∈ I, u ∈ Ui.V
+

i and v ∈ V +

i , nothing ensures that Mu,v |= ϕ

(equivalently u.vω ∈ Lϕ).

5 Bisimulation invariance on finite unary graphs

We stated, at the end of Section 3 that a converse to Theorem 5 is possible for formulas ϕ closed under
counting bisimulation. So far, we have not used the assumption of invariance under counting bisimulation.
We now do this, in the proof of the following theorem.

Theorem 8 For any MSO formula ϕ that is counting-bisimulation invariant on finite graphs, there exists
a finite set of pairs of languages (Dt, Et) ⊆ Σ+ × Σ+ such that, for any lasso Mu,v :

Mu,v |= ϕ iff ∃r ∈ Dt.E
+
t , ∃s ∈ E+

t such that u.vω = r.sω
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Proof. Let ϕ be a formula as above and let (Ui, Vi)i∈I be the regular languages obtained by applying
Lemma 6.

.

Lemma 9 For any i ∈ I, any (u, v) ∈ Ui × Vi, there is a triple t = (j, r, s) ∈ I × Σ+ × Σ+ such that:

1. r.sω = u.vω (hence Mu,v and Mr,s are bisimilar),

2. for all n > 0, r.sn ∈ Uj and sn ∈ Vj .

Proof. Let i, u and v be as above, so Mu,v |= ϕ. By invariance of ϕ, for each k > 0, we also have
Mu.vk,vk |= ϕ. Hence, by Lemma 6 for each k > 0 there is some ik ∈ I such that (u.vk, vk) ∈ Uik

×Vik
. Since

I is finite, there is some j ∈ I such that j = ik for infinitely many k. Now, since both Uj and Vj are regular
languages and there are infinitely many k such that u.vk ∈ Uj and vk ∈ Vj there must be some p > 0 such
that u.vpn ∈ Uj and vpn ∈ Vj for all n > 0. Taking r = u.vp and s = vp gives us the desired triple t. 2

A triple t = (j, r, s) as in Proposition 9 is called special. Write S for the set of all special triples.
To continue the proof of Theorem 8, we need some standard definitions from formal language theory.

Recall that the congruence class [w]L of a finite word w ∈ Σ+ with respect to a language L ⊆ Σ+ is defined
as the sets of words

[w]L = {w′ ∈ Σ+|∀u, v ∈ Σ∗, u.w.v ∈ L⇔ u.w′.v ∈ L}

We know that if L is regular there are only finitely many distinct sets [w]L for w ∈ Σ∗ and each one is a
regular language.

For any special triple t = (j, r, s) we define the languages

Dt = [r]Uj
.([s]Uj

∩ [s]Vj
)

and
Et = ([s]Uj

∩ [s]Vj
)

By construction, since Uj and Vj are regular languages, Dt and Et are also regular languages. Also, even
though there are infinitely many special triples, there are still only finitely many distinct sets Dt and Et.
Moreover, we have the following lemma.

Lemma 10 For any special triple t = (j, r, s), r.s ∈ Dt, s ∈ Et, Dt.E
+
t ⊆ Uj and E+

t ⊆ Vj .

Proof. Let t = (j, r, s) be a special triple as above.
Recall first that, for any u and v ∈ Σ+, any L ⊆ Σ+, we have [u]L.[v]L ⊆ [u.v]L. It follows that:

Dt.E
+
t ⊆

⋃

n>0

[r.sn]Uj

and
E+

t ⊆
⋃

n>0

[sn]Vj

Moreover, we know that for any u ∈ Σ+ and L ⊆ Σ+, if u ∈ L then [u]L ⊆ L. So we conclude the proof of
the lemma by observing that, following Lemma 9, we do have, for any n > 0, r.sn ∈ Uj and sn ∈ Vj . 2

Lemmas 6, 9 and 10 conclude the proof of Theorem 8 2

Corollary 11 For any MSO formula ϕ that is counting-bisimulation invariant on finite graphs, there exists
a regular language L such that Lϕ = kern(L).
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Proof. Take L =
⋃

t∈T Dt.(Et)
ω where the languages Dt and Et are as given by Theorem 8.

We first show that Lϕ ⊆ kern(L). Let w be in Lϕ. By definition, there are u and v such that u.vω = w

and Mu,v |= ϕ. By Lemma 9, this means that there is a special triple t = (j, r, s) such that u.vω = r.sω with
r.s ∈ Dt and s ∈ Et hence w = r.sω ∈ Dt.E

ω
t .

For the converse, let w be an ultimately periodic word in L, i.e. w ∈ kern(L). By definition of L, this
means that there is a special triple t = (j, r, s) such that w ∈ Dt.(Et)

ω. By Lemma 7, this means that
w = u.vω with u ∈ Dt.E

+
t and v ∈ E+

t . By Lemma 10, this means w = u.vω with u ∈ Uj and v ∈ Vj , hence
Mu,v |= ϕ and thus w ∈ Lϕ. 2

6 Application to bisimulation invariance in the finite

As a corollary, putting together the two theorem above:

Corollary 12 Any MSO formula that is bisimulation invariant on finite unary graphs is equivalent to a
monadic Σ1 formula.

Moreover, since any class of unary graphs that is equivalent to a regular language is definable, among
finite unary graphs, in the (counting or modal) mu-calculus, we obtain the following corollary.

Corollary 13 The bisimulation invariant fragment of monadic Σ1 on finite unary graphs is equivalent, on
finite unary graphs, to the mu-calculus Lµ.

Writing N1 for the first alternation level of Lµ (i.e. formulas of Lµ with only greatest fixed-point opera-
tors), we see that monadic Σ1 is not only not equivalent to N1, but it is equivalent to all of Lµ. This result
is rather unexpected since, on arbitrary (finite or infinite) unary graphs, the counting bisimulation invariant
fragment of monadic Σ1 only induces topologically closed regular languages [6], i.e. languages definable by
finite Büchi automata with only accepting states, which is the same as N1.

More generally, it is also known that any formula of monadic Σ1 that is invariant under counting bisim-
ulations on all graphs is equivalent to a formula in the counting extension of N1. Our results show that this
simply fails when we restrict ourselves to finite graphs. This is another striking illustration that finite model
theory can be dramatically different to the infinite variety.

Observe however that there is no hope to extend Corollary 13 to arbitrary finite graphs.
In fact, the mu-calculus formula

µX.(p ∨ (¬p→ 3X))

that defines the set of vertices from which there is a (directed) path to a vertex where p holds, is bisimulation
invariant but not definable by a monadic Σ1 formula. If it was, this would imply that directed reachability
would also be definable in monadic Σ1 and that is not the case [1].

7 Conclusions

The question of whether bisimulation-invariant MSO is equivalent on finite structures to Lµ remains a
challenging open problem. By investigating this question at the first level of the alternating hierarchy on
unary graphs we have been able to show that the nature of the problem is radically different to its counterpart
on arbitrary (finite or infinite) structures. In particular, we have constructed counterexamples to what might
be considered the natural ways of adapting the automata construction that works on infinite structures.
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