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Abstract. We investigate two models of finite-state automata that op-
erate on rooted directed graphs by marking either vertices (V-automata)
or edges (E-automata). Runs correspond to locally consistent markings
and acceptance is defined by means of regular conditions on the paths
emanating from the root. Comparing the expressive power of these two
notions of graph acceptors, we show that E-automata are more expres-
sive than V-automata. Moreover, we prove that E-automata are at least
as expressive as the p-calculus. Our main result implies that every MSO-
definable tree language can be recognised by E-automata with uniform
runs, that is, runs that do not distinguish between isomorphic subtrees.

Introduction

Extending the formal language theory of words and trees to general classes of
graphs is a very challenging endeavour. During the last two decades, this topic
has attracted much attention, and several notions of graph-language recognis-
ability have been developed [15, 4, 25, 7, 10, 8, 6].

Over the domain of arbitrary finite graphs, Courcelle [4] proposes a power-
ful algebraic theory of languages recognisable via interpretations of tree-shaped
terms. This characterisation inherits many features from the well-established
theory of tree automata [24]. Thus, the notion of recognisability is closed un-
der Boolean operations and projection, and its expressive power reaches beyond
Monadic Second-Order Logic (MSO).

For directed graphs of bounded degree, Thomas [25] develops an automata-
theoretic approach in terms of tiling systems, or more generally graph acceptors.
These are devices that proceed by marking graph vertices according to local
constraints, tailored to match the expressive power of the existential fragment
of MSO (monadic X). The associated notion of recognisability is closed under
union, intersection, and projection. In general it is not closed under comple-
ment since, on many classes of graphs, monadic X is not closed under comple-
ment [27].

* This research has been partially supported by the EU RTN GAMES: “Games and
Automata for Synthesis and Validation”



The most substantial research is, however, focused on the special case of finite
directed acyclic graphs (see [26] for a survey). Robust notions of recognisability
are available, in particular, for partially ordered sets which serve as models for
concurrent computation [7, 17].

In this paper, we are concerned with arbitrary directed graphs of unbounded
degree that may be infinite or contain cycles. Aside from the generic interest,
this framework is fundamental for modelling the behaviour of state-transition
systems. Our point of departure is the notion of a graph acceptor, introduced
by Thomas in [25]. Adapting this notion to graphs of unbounded degree, we
define two kinds of finite-state automata that operate on rooted directed graphs
by marking either vertices (V-automata) or edges (E-automata), starting from
the root and proceeding according to transitions specified by local first-order
formulae. Because we are interested in the infinite behaviour of models, we equip
these automata with w-regular acceptance conditions over the marking of paths
emanating from the designated root.

The question whether to label edges or vertices is subject to a fundamental
choice in the design of automata that may revisit vertices of their input. The
most common option is to mark vertices, but the alternative to mark edges also
has some tradition, going back to the early 80ies and Kamimura and Slutzki’s
variant of tree-walking automata over planar graphs [15]. In [22], Potthoff, Seib-
ert, and Thomas discuss the expressive power of graph acceptors that mark edges
compared to those that mark vertices and show that, in their specific framework
restricted to ranked acyclic graphs of bounded degree, edge and vertex marking
lead to the same notion of recognisability.

Taking up an analogue investigation for our extended setting, we find that
the situation is radically different over arbitrary graphs, even if global acceptance
conditions are not involved. In a comparative study, we separate the expressive
power of vertex and edge-marking automata and relate it to Monadic Second-
Order Logic and to its bisimulation-invariant fragment, the p-calculus. Our main
result establishes a correspondence between runs of edge-marking automata over
arbitrary graphs and vertex-marking automata over trees obtained by unravel-
ling these graphs. Besides showing that edge-marking automata capture the
p-calculus over arbitrary graphs, as vertex-marking automata do on trees, this
result opens a perspective on uniform recognisability of graph languages.

Outline. The paper is structured as follows. After fixing our notation in Sec-
tion 1, we introduce V-automata and E-automata in Section 2, and point out
some elementary properties. Thus, recognisable classes of graphs are closed un-
der conjunction, disjunction and projection, but not under complement. In terms
of MSO, E-automata and V-automata define graph properties in the level X5 of
the monadic quantifier-alternation hierarchy, respectively MSOs, the variant of
MSO augmented with edge quantifiers [5].

In Section 3, we show that, over arbitrary directed graphs, E-automata are
strictly more expressive than V-automata. Actually, E-automata can describe
properties like perfect matching that are not yet definable in MSO. However, we



show that even when we restrict to MSO-definable properties, E-automata are
more expressive than V-automata. A separating property is directed reachability.

In Section 4, we investigate the relation between our automata model and
the (counting) u-calculus [16, 2], a logic which captures the MSO-definable prop-
erties that are invariant under (counting) bisimulation [14]. These properties are
particularly relevant for the specification of state-transition models, because they
do not distinguish between a model and its behaviour, understood as the unrav-
elling of its possible computations in a tree-like manner.

Our main technical result is a simulation theorem relating recognisability
of graphs and their unravelling. It states that, for every V-automaton A, there
exists an equivalent E-automaton that recognises precisely the class of graphs
whose unravelling is accepted by .A. Intuitively, this means that E-automata can
simulate on their input graph the behaviour of a V-automaton on the unravelling
of this graph. Notice that every element of the input graph may have infinitely
many copies in its unravelling, such that the V-automaton has potentially infinite
“space” to apply his marking. However, we argue that all these copies can be
encoded into a single marking of the original input element.

We discuss three consequences of this theorem. First, it implies that E-
automata subsume the p-calculus over arbitrary directed graphs, yielding an
operative model that differs substantially from previous automata-theoretic char-
acterisations of the p-calculus (see, e.g., [20, 9, 3, 13]), where automata essen-
tially run on a tree unravelling rather than on the input graph. The model of
V-automata is, however, not strong enough to capture the p-calculus over arbi-
trary graphs, since it cannot express directed reachability, which is p-definable.
Secondly, it follows that our definition of E-automata, with a universal linear-
time condition on infinite computation paths, is fairly robust, as far as expressive
power is concerned. In particular, adding branching-time acceptance condition
over the computation trees of automata, i.e., the unravelling of runs, would not
increase their expressiveness. Finally, when rephrased in terms of automata over
infinite trees, our main result shows that every MSO-definable language of infi-
nite trees can be recognised by a non-deterministic tree automata with uniform
runs, i.e., runs that do not distinguish between isomorphic subtrees. In other
words, shared substructure of the input can also be shared by the run. This
uniformisation result is particularly surprising as it does not incur a decrease in
expressiveness, as it is usually the case for such normalisations [11, 28].

1 Background

1.1 Words.

A word over an alphabet A is a partial function o : N — A with prefix-closed
domain. We say that « is finite, when dom(«) is so. The set of finite words over
the alphabet A is denoted by A*, whereas the set of infinite words is denoted
by A¥; the union of these two sets is A°°. The concatenation of a word o € A*
with a word 8 € A% is denoted by «f. This notation naturally extends to sets
of words. We sometimes refer to the element «(i) of a word a by ;.



In the sequel, we will use sets L C A% as infinitary acceptance conditions.
We say that L is a w-regular condition when L a finite union of languages of the
form LU where L C A* and U C A* are nonempty and regular. The set L is
called a parity condition, if there exist a priority mapping {2 : A — N of finite
image, such that L = {& € A¥ | liminf 2(a) =0 (mod 2)}, i.e., L is the set of
infinite sequences where the least priority that occurs infinitely often is even.

1.2 Graphs.

A graph is a structure G = (V, E) over a domain V of vertices with a binary
edge relation E C V x V. A rooted graph G,u is a graph with a distinguished
root vertex u. Given an edge (v,w) € E, we refer to v as its source and to w
as its target. A (directed) path in the graph G is a finite or infinite non-empty
sequence v1,vs, - - - € V° of vertices such that for any two consecutive elements
v; and v;4+1, we have (v;,v;41) € E. An undirected path in G is a sequence
v1,v2 -+ € V° where, for any two consecutive elements v; and v;41, either
(viyVit1) € E or (vi41,v;) € E. The distance d(v,v") between two vertices v, v’
of V, is the least number n such that there exists an undirected path vq,...,v,
in G with v1 = v and v, = v'. If no such path exists, we set d(v,v") = oo.

Fix an alphabet C of colours. For a graph G = (V, E), a vertex colouring
over C' is a function A\ : V — C} likewise, an edge colouring over C is a function
v : E — C. We refer to the expansion of a graph by edge and/or vertex colourings
as a coloured graph. When, instead of total functions, we consider partial edge
or vertex colourings, we refer to them as markings. The elements in the domain
of such a partial colouring are said to be marked by the respective function. In
addition to this, we say that a vertex v € V is involved in an edge marking
v : E — (), if it is either the source or the target of an edge marked by ~.
A vertex colouring A : V — (' is naturally extended to a path 7 in G by setting
A7) = Aom € C*. Likewise, for an edge colouring v : E — C, we define the
edge colouring of a path m = vy, v, ... in G to be the word y(7) € C*°, such that
v(m) (i) = y(n (i), m(i+1)) for all indices ¢ with i+ 1 € dom(w). For markings, the
corresponding definitions are restricted to paths in G that involve only marked
elements.

Besides the functional notation G = (V| E, \) for vertex-marked graphs, it
is sometimes convenient to use a relational notation G = (V, E, (P:)cec), with
monadic symbols P. interpreted by PY := {v € V | A(v) = ¢}, for every ¢ €
C'. Similarly, for edge-marked graphs G = (V, E,~), we use the notation G =
(V, B, (R.)cec) with binary relational symbols R.. interpreted by RY := {(v,w) €
E | v(v,w) = ¢}, for every colour ¢ € C.

Bisimulation. The main part of this paper is concerned with devices taking as
input vertex-coloured graphs. For the sake of clarity, the following definitions
are formulated for this setting, the generalisation to edge-coloured graphs being
straightforward.

A counting bisimulation between two vertex-coloured graphs G = (V, E, \)
and ¢' = (V/,E',N) is a relation Z C V x V' such that, if (v,v") € Z, then



A(v) = XN (v') and Z contains a bijection between the sets {w | (v,w) € E} and
{w" | (v',w'") € E'}. Two rooted graphs G,u and G’,u’ are counting bisimilar,
if there exists a counting bisimulation Z between them with (u,u’) € Z. Two
vertices v, v’ of a graph G are counting bisimilar, if G,v and G, v’ are so.

The unravelling of a graph G = (V, E, \) from a vertex u € V is the graph
T (G, u) with domain V7 consisting of all directed paths 7 through G that start
from u, edge relation E7 containing all the pairs (m,7mv) € V7 x V7, and
vertex colouring A7 defined by A7 (mv) = A(v). A rooted graph G,u is a tree,
if it is isomorphic to its unravelling 7 (G, u), u. For trees, and in particular for
unravellings, we will generally not specify the root explicitly. Obviously, the
natural projection which sends every path v1,...,v, € V7 to its last node vy
defines a counting bisimulation between G and 7 (G, u). It is well-known (see,
e.g., [12]), that two graphs G,u and G, u are counting bisimilar if, and only if]
their unravelling 7 (G, ) and 7 (G, u) are isomorphic.

1.3 Logic.

We consider standard predicate logics, in particular First-Order Logic (FO) and
Monadic Second-Order Logic (MSO) interpreted over coloured graphs. Given
an alphabet C of vertex colours, we write Pc for the collection of monadic
symbols (P.).cc. When using edge colours from an alphabet D, we write Rp
for the collection of binary relational symbols (Rg)4ep- Thus, the vocabulary
of formulae is typically (a subset of) E U Pc U Rp. We refer to any formula
(x) with precisely one free first-order variable as a predicate, and to a formula
without free first-order variables as a sentence. For any integer k, the k-sphere
around a vertex v of a graph is the set of vertices w such that d(v,w) < k. An
FO-predicate ¢(x) is called k-local around z, if it is equivalent to the predicate
¢’ (x) obtained by relativising every quantifier in ¢ to elements of the k-sphere
around z. We say that a predicate ¢(z) is local around =z if it is k-local for
some k.

We also consider MSOs, the extension of MSO where quantification over sets
of edges is provided [5]. The syntax of MSOs allows binary second-order variables
and quantification over them. Given a graph G = (V, E), the semantics of this
quantification is however relativised to subsets of E. It is well known that, on
arbitrary graphs, MSQOs is strictly more expressive than MSO. Though, on trees
and on graphs of bounded degree, hence in particular on grids, MSO and MSO,
are equally expressive [5].

The monadic quantifier-alternation hierarchy is defined as follows. The first
level, monadic Iy, also called monadic Xy, is the set of FO-formulae. Then, for
every n, the level monadic X,,11 (resp. monadic IT,,11) is the closure of the set
of monadic IT,-formulae (respectively monadic X,-formulae) under existential
quantification (respectively universal quantification). This hierarchy is known to
be strict over arbitrary graphs, i.e., for every n € N, there exists a property ¢,
definable in MSO that is not definable in the level X, of the monadic hierar-
chy. More recently [18], it has also been shown that the monadic hierarchy is
strict already over finite grids. Since MSO and MSOs are equally expressive over



grids, and because the translation between the two preserves the quantification
structure, this strictness result carries over to MSOs.

A class K of rooted graphs is counting-bisimulation closed if, for any graph
G,u, we have G,u € K if, and only if, there exists a counting-bisimilar graph
G’ u' € K. A sentence ¢ of FO or MSO is counting-bisimulation invariant, if
its model class is counting-bisimulation closed, that is, for any two counting-
bisimilar graphs G,u and G,u’ we have G,u | ¢ if, and only if, G’ v’ E .
The (counting) p-calculus [16, 2, 12] is an extension of (counting) modal logic
with fixed-point operators that provides an effective syntax for the (counting)
bisimulation-invariant fragment of MSO [14, 12].

2 Vertex and edge-marking automata

Traditionally, automata are finite-state devices that produce a marking of their
input objects with states. The process of marking starts from designated input
elements and propagates locally, depending on the local properties of the input
structure and of the previously produced marking. When the input structures
are homogeneous, these propagation transitions can often be described pictori-
ally. However, as we are concerned with coloured directed graphs of unbounded
branching which are not homogeneous, we choose a more abstract way to de-
scribe transitions using local FO-formulae that refer to both the input structure
and the produced marking.

We introduce automata that take as input graphs with vertex colourings and
produce either edge or vertex markings. Whenever we speak of a X-coloured
graph, we mean a graph with a vertex colouring over a finite alphabet .

Definition 1 (V-automaton). Let X be a finite alphabet of vertex colours.
A vertex-marking automaton (V-automaton) for X-coloured graphs is a tuple

A= (Qv 2750; 57 ACC)

with a finite set QQ of states, two local formulae §o(x),0(x) € FO, called root
constraint respectively transition specification, over the vocabulary E'U Px U Py
of X-coloured graphs augmented with unary symbols associated to the states of
Q, and an w-reqular acceptance condition Acc C Q“.

Given a X-coloured graph G = (V, E, \) with a designated root u, a run of
the V-automaton A on G,u is a vertex marking p : V — @ with the following
properties:

(i) dnitial condition: G, p = dp(u), and
(i) local consistency: for every vertex v € V marked by p, we have G, p = 0(v).

A run p is accepting if, for every infinite path 7 in G that starts from u and
consists of vertices marked by p, we have p(w) € Acec. A graph G, u is accepted
by A, if there exists an accepting run of A4 on G, u. We define Ly (A) to be the



class of all rooted graphs accepted by the V-automaton A. A class K of rooted
graphs is V-recognisable, if there exists a V-automaton A with Ly (A) = K.

We observe that V-automata generalise most of the classical nondeterministic
automata models, such as top-down or bottom-up automata over finite trees, but
also, e.g., Muller-automata over infinite trees.

Remark 1. Notice that the run of an automaton is independent of the part of the
input graph that is unreachable from the designated root, since local consistency
is enforced just at marked vertices and extends only to a neighbourhood of the
current vertex, so that no marking of an unreachable vertex can be required.
However we may assume, without loss of generality, that accepting runs of a V-
automaton A are total functions. To achieve this, we can add an extra dummy
state L and modify the transition specification to be P, V ¢ and the acceptance
condition to include the set @*{L}(Q U {L})~.

Lemma 1. FEvery V-recognisable class of graphs is definable in the level X3 of
MSO.

Proof. Let A = (Q, X, dp,0, Acc) be a V-automaton with state set {1,...,n}.
We construct an MSO-formula ¢ 4 of the form 3P, --- 3P, (Vam/;(x) A cpAcc) with
Yace € IlIs and ¢ € Xy such that, for every graph G with a designated root
u, we have G,u | ¢4 if, and only if, G,u € Ly (A). In this formula, the block
of existential quantifiers 9P - - - 3P, guesses a vertex marking, the subformula
Va(x) expresses the local constraints,

P(a) = (z=u—dx) A\ P, — ),
q€Q

and @ .. checks the infinitary path condition. To see that ¢ 4.. can be described
in X5, notice that its negation —p .. expresses the property that there exists
a marked path starting at u that does not satisfy the w-regular acceptance
condition Ace. Using the representation of Q“\ Acc as a non-deterministic Biichi
word automaton, this property can be defined by a monadic Xs-formula (more
precisely, a pv-formula of the p-calculus). ad

Our second automata model differs from V-automata only by its way of
applying state labels to edges rather than to vertices.

Definition 2 (E-automaton). Let X be a finite alphabet of vertex colours.
An edge-marking automaton (E-automaton) for X'-coloured graphs is a tuple

A=(Q, X, 0,0, Acc),

with a finite set Q of states, two local predicates do(x),0(x) € FO, called root
constraint and transition specification, over the vocabulary E'U Ps U Rg of X-
coloured graphs augmented with binary relational symbols associated to the states
of Q, and an w-regular acceptance condition Acc C Q“.



Given a Y-coloured graph G = (V, E, \) with a designated root u, an accept-
ing run of the E-automaton A on G, u is now an edge marking p : ' — @Q with
the following properties:

(i) dnitial condition: G, p = dp(u), and
(ii) local consistency: for every vertex v € V involved in p, we have G, p = 6(v).

A run p is accepting if, for every infinite path m = vg,v1,... in G that starts
from the root u = vy and proceeds along edges (v;, v;+1) marked by p, we have
p(m) € Acc. As in the case of V-automata, we say that the graph G, u is accepted
by A if there exists an accepting run of A4 on G, u, and we define Lg(A) to be
the class of rooted graphs accepted by the E-automaton A. A class K of rooted
graphs is E-recognisable, if there exists an E-automaton A with Lg(A) = K.
We remark that there are E-recognisable classes of graphs that cannot be de-
scribed in MSO. An example is the class of graphs that allow a perfect matching
between the vertices reachable from the root. Essentially, this is because edge
marking corresponds to a quantification over sets of edges which is not available
in MSO. Nevertheless, for every E-automaton, the class Lg(A) is definable in
MSOs. The proof is a straightforward adaptation of the proof of Lemma 1.

Lemma 2. Fvery E-recognisable class of graphs is definable in the level X5 of
MSOs;.

2.1 Elementary properties

We survey some elementary properties of our graph automata. An essential fea-
ture is that we can specify grid properties, even without marking edges, by
simulating a grid vocabulary consisting of two functional edge symbols, say Ry
and Rp, standing for North and East. Towards this, we use two extra monadic
symbols Py and Pg, and we require that the root is in both Py and Pg, and
every vertex v has exactly two outgoing edges (v,vg) and (v,vy) such that ei-
ther both or none of v and vg belong to Pr whereas they never belong together
to Py and, similarly, either both or none of v and vy belong to Py whereas they
never belong together to Pg. The intended grid relations can now be defined by
Ry = {(2,y) € B | Py(x) — Px(y)} and R == {(2,y) € E | Pp(z) — Pu(y)}.

Lemma 3. E-automata and V-automata with k+1-local transition specifications
are strictly more expressive than E-automata respectively V-automata with k-
local transition specification.

Proof. A corresponding statement for tiling systems is proved in [26]. The argu-
ment carries over to our automata. O

Lemma 4. Both V-recognisable and E-recognisable classes of graphs are closed
under union, intersection, and projection.



Proof. These properties follow directly from the definition of our automata
model. To show, for instance, closure under union for V-automata, consider
two V-automata A = (Q, X, &, d, Acc) and A" = (Q', X, 8,0', Acc’). Then the
automaton over the state set QUQ’, with root constraint dgVdy,, transition speci-
fication §V¢’, and infinitary condition AcclJ Acc’ recognises Ly (A)ULy (A’). O

Lemma 5. Neither V-recognisable nor E-recognisable classes of graphs are closed
under complement. The statement also holds for classes of finite graphs.

Proof. We have already seen that FO-definable classes of finite grids can be
recognised by V-automata and also by E-automata. If, in addition to being closed
under projection, recognisable classes were closed under complement, any MSO-
definable class of finite grids would be recognisable, and hence Y5-definable, by
Lemma 1 respectively Lemma 2. This contradicts the infiniteness of the monadic
hierarchy over grids [18]. O

3 E-automata versus V-automata

In this section, we compare the expressive power of the two notions of automata.
It turns out that E-automata are, even on finite graphs, strictly more expressive
than V-automata.

3.1 Encoding V-automata into E-automata
Proposition 1. Every V-recognisable class of graphs is also E-recognisable.

Proof. For simplicity, we assume here that automata are normalised so that
accepting runs are total functions. Given a V-automaton A = (Q, X, do, , Acc),
we construct an E-automaton B = (Q x Q, X, 8}, 6', Acc’) that marks edges of
its input graph with pairs of (vertex) states from @, in such a way that the
marking of a vertex v with a state ¢ in a run of A corresponds to the marking of
all incoming and outgoing edges from v by pairs of the form (¢’, q) respectively
(q,q') in a run of B.

The following one-local formula expresses that the edge marking around a
vertex z encodes a vertex marking of z by ¢:

ea2) =y | (Bw.2) = \ Biay®2) A (BGy) =V R (=0)].
q'eQ

7EQ

Now, we define the root constraint &) (z) and the transition specification ¢'(z)
for B to be the conjunction of \/ . ¢q(z) with the formula obtained from do(z)
respectively d(x) by replacing every atom P,z with the subformula ¢,(z). The
acceptance condition Acc’ consists of all infinite words 3 € (Q x Q)“ for which
there exists a word a € Ace, such that §5; = (@, a;41), for all indices i.

To verify that the construction is correct in the case of graphs with no isolated
vertices (these need to be treated separately, but pose no great difficulty), let



us consider a rooted graph G,u € Ly (A) and let p: V. — @ be an accepting
run of the V-automaton A. Then, the marking p' : F — @ x Q defined by
o' (v,w) = (p(v), p(w)), for every edge (v,w) € E, is an accepting run of the
E-automaton B on G, u. Conversely, for an accepting run p' : E — Q X Q of B
on a graph G, u, the conditions ¢} and ¢’ ensure that, for every vertex v € V,
there exists a unique state ¢ € @ such that G, p’ | ¢4(v); the vertex-marking
p: V — @ defined by associating to every vertex v € V this unique state, is an
accepting run of the V-automaton A on G. a

3.2 E-automata are more expressive than V-automata

Next, we prove that edge-marking yields a strict increase in expressiveness over
vertex-marking. Instead of relying on properties from MSOy \ MSO we show,
moreover, that separating properties exist already in MSO.

Theorem 1. There exists an E-recognisable class of directed graphs that is MSO-
definable, but not V-recognisable.

Proof. We show that directed reachability is definable by an E-automaton, but
not by a V-automaton. Let K be the class of graphs G,u over the alphabet
Y = {a,b} in which there exists a finite directed path from u to a vertex v
with A\(v) = a. Clearly, this class is definable in MSO, in fact, already in the
p-calculus by the formula pX.(P, vV 0X).

To see that K is E-recognisable, consider the automaton B = ({¢}, X/, dg, 6, )
with only one state g. The root constraint §y states that, if the root is not
coloured with a, precisely one outgoing edge is marked,

do(x) := P, — Ty (Ewy A Rxy AVz(Exy AN Rxz — z = y))

The transition specification requires that, if a vertex is not coloured with a and
has an incoming marked edge, then precisely one outgoing edge is marked,

§(z) == (=P, A Jy(Eyz A Ryz)) — Jy (Exzy A Rey AVz(Exz A Rez — z =y)).

In this way, accepting runs of B correspond to markings of a directed path from
the root to some vertex of colour a. Therefore, Ly (B) = K.

To show that K is not V-recognisable, we use an idea of Ajtai and Fa-
gin [1]. Towards a contradiction, let A = (Q, X, do, d, Acc) be a V-automaton
with Ly (A) = K. We fix real number p between 0 and 1. For every integer n,
we construct a random Y-coloured graph G = (Viu, By An) over the domain
V. ={0,...,n} with the following edge relation:

— for all ¢ < n, the forward-edge (i,i+ 1) is contained in E,,, and

— for every (i,j) with 1 < i < j < n, the back-edge(j,4) is contained in E,
with probability p.
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The vertices of G are coloured by A, (i) = b, for all i < n, and A\, (n) = a.

Clearly, for every n, the graph G with root 0 belongs to K. For every element
i < n,let now G,; be the graph obtained from G by removing the forward-edge
(4,4 + 1). Obviously, G;';,0 ¢ K. A technical theorem of [1] implies that, for
every size of a vertex-alphabet C' and every quantifier rank r, there exists an
integer n and a value for p, such that the following property holds with positive
probability: for every marking p : Vi, — @ of G, there exists an index i < n
such that, for every FO-formula of quantifier rank at most r, if G, p |= ¢ then
gpn,za p ': P-

Applying this statement to an accepting run p of A on G,0, it implies
that there exist values n € N, p € (0,1), and ¢ < n such that, with positive
probability, p is also an accepting run of A on G, since the initial condition
and the local consistency of A cannot distinguish between the graphs G ;, 0 and
G,,0 when they are marked in the same way. Notice that the path condition
cannot discriminate between these graphs either, since any infinite path in the
former is also an infinite path in the latter. Hence, we have G}!';,0 € Ly (A), in
contradiction to our assumption that Ly (A) = K. O

4 Simulation and uniform recognisability

In this section, we establish a relation between runs of automata on graphs
with runs on their unravelling. This allows us, on the one hand, to conclude that
over arbitrary graphs E-automata capture the counting p-calculus and, on the
other hand, that V-automata over trees can be normalised to mark isomorphic
subtrees identically.

4.1 E-automata and the p-calculus

Observe that, on trees, the marking of edges can be simply moved to their
targets, and hence the notions of F-recognisability and V-recognisability coin-
cide. Furthermore, V-automata —with one-local root constraint and transition
specification— generalise MSO tree-automata [29, 12]. Accordingly, for classes of
trees, recognisability equals MSO-definability.

Theorem 2 (Rabin [23], Muchnik and Walukiewicz [19, 29]). For every
MSO formula ¢ there exists a one-local V-automaton A, such that, for every
tree T, we have T = ¢ if, and only if, T € Ly (Ay,).

Proof. This follows from Walukiewicz’s automata-theoretic characterisation of
MSO on trees. As already observed in [12], Walukiewicz’s automata are, in this
case, V-automata with transition specification definable by means of counting
one-local formulae. O

The following theorem is our main result. Informally, it states that every
V-automaton on trees can be simulated by an E-automaton on graphs that is
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equivalent in the sense that a graph is accepted by the E-automata if, and only,
if its unravelling is accepted by the V-automaton.

Theorem 3. For every V-automaton A we can construct an E-automaton B
such that a rooted graph G,u is accepted by B if, and only if, its tree unravelling
T(G,u) is accepted by A.

Proof. Let A = (Q, X, 0,0, Acc) be a V-automaton. Without loss of gener-
ality [29], we may assume that Acc is a parity condition, and that the root
constraint and the transition specification are one-local formulae.

As in the proof of Proposition 1, we construct an E-automaton that operates
by encoding a vertex-marking run into an edge-marking one. However, in that
setting, the two markings were defined on the same graph. Here, we need to
overlay all the (counting bisimilar) copies of a graph vertex that occur in the
unravelling. To handle this, we proceed by a power-set construction. Essentially,
we intend to mark every edge (v, w) in G by the set of all pairs of states (q,q")
that label copies of v and w connected in 7 (G, u).

Formally, let B = (Q', X, 8,0, Acc’) be an E-automaton with set of states
Q' = Z(Q x Q). The following formula expresses that the edge marking around
a vertex z encodes that a copy of z in the unravelling tree is marked by ¢:

eal2) = Vy|(BG) =\ Ron) A (Bly.2) = \ Be(y.2))].
q'eQ 9€Q
(a.9")€d’ (¢".9)€q
Observe that the corresponding formulae in the proof of Proposition 1 are mu-
tually exclusive for different states ¢ € (). Here, several formulae ¢, may hold at
one vertex, as it corresponds to the overlay of several vertices in the unravelling.

The root constraint dj(z) and the transition specification §’(x) for B is ob-
tained from dg(z) respectively d(x) by replacing every atom P,z with the sub-
formula ¢g4(z). The infinitary path condition is defined in terms of traces. Given
an infinite word 8 € (£(Q x @))%, we say that a word « € Q¥ is a trace of £,
if it is the case that (o, a;41) € B; for every index i. The acceptance condition
Acc’ consists of all infinite words # € Q' for which every trace o belongs to
Ace. Clearly, if Acc is regular, then Acc’ is regular as well. Notice however, that
even when Acc is a parity condition, Acc’ is not a prefix-invariant property.

To verify that the construction is correct, let G = (V, E, \) be a coloured
graph with a distinguished root u, and let 7(G,u) = (VZ,E7,\T) be its un-
ravelling from u. Recall that 7 (G, u) is built from G by taking as vertices the
finite paths in G starting from . Let f : VZ — V be the projection that maps
every finite path in V7 to its last vertex. Assuming that 7 (G,u) € Ly (A), let
p: VT — Q be an accepting run of the automaton A on this unravelling. We
define the edge marking p’ : E — @’ by setting, for every (v,w) € E,

p'(v,w) = {(p('),p(w') € Q x Q| (v,w') € ET with f(v') =v and f(v') = w}.

It is not difficult to check that p’ defined in such a way is an accepting run of
the automaton B on G, u.
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Conversely, assume G,u € Lg(B) and let p’ : E — Q' be an accepting run of
the E-automaton B on the graph G, u. By induction on the length of paths in V7,
and exploiting the memoryless determinacy of parity games [9], one can verify
that there exists a vertex marking p : V7 — @ such that 7 (G, u), p = do(u) and,
for every path of the form 7mvw in V7, we have (p(7v), p(mvw)) € p(v,w) and
T(G,u),p = é(mvw). By definition of B, it follows that p is an accepting run of
automaton A on the unravelling 7 (G, u). O

Corollary 1. FEwvery class of graphs definable in the counting p-calculus is recog-
nisable by an E-automaton.

Proof. Let ¢ be a formula in the counting p-calculus. By Theorem 2 there exists
a V-automaton A, such that for every tree, T € Ly (A) if, and only if 7 = ¢.
Since ¢ is counting-bisimulation invariant, a graph G, u satisfies ¢ if, and only
if, its unravelling 7 (G, u) also satisfies , that is, if 7(G,u) € Ly (A). Now, the
E-automaton B that simulates A according to Theorem 3 recognises the model
class of ¢, as G,u € Lg(B) if, and ouly if, 7(G,u) € Ly (A). |

4.2 Application to expressiveness

As a consequence of the above results, it follows that our w-regular path condi-
tions for E-automata are optimal in the sense that a more general model, where
global acceptance conditions are given by MSO-formulae interpreted over the
unravelling of locally consistent markings, would not be more expressive.

Proposition 2. Consider an E-automaton A = (Q, 0o, d, Acc), and an MSO-
formula ¢ over infinite trees with edges marked by Q. Then, there exists an
E-automaton A, such that G,u € Ay, if, and only if, there is a run p of A on

G, u such that T ((G, p),u) = ¢.

Proof. We refer to a generalisation of our automata model over input graphs
where both edges and vertices are coloured. According to (straighforward gener-
alisations of ) Theorem 2 and 3, there exists an E-automaton 53 running on graphs
H, uw with Q-coloured edges such that, for every such input graph 7(H,u) E ¢
if, and only if, H,u € Lg(B). The desired automaton A, is then obtained by
combining the automata A and B as a wreath product in which B reads runs of

A. O

4.3 Weakly uniform tree automata

A consequence of Gurevich and Shelah’s Non-Uniformisation Theorem [11] for
Monadic Second-Order Logic on the binary tree is that there exist MSO-definable
languages that are not recognised by unambiguous tree-automata [28]. This neg-
ative result suggests that developing a notion of uniform recognisability [27] for
MSO-definable languages of infinite trees could be very difficult. On the other
hand, a success in achieving a notion of uniform recognisability may bear with
itself many decision and classification results as those obtained, e.g., for lan-
guages of infinite words [21]. Our result on E-automata shows that at least a
weak notion of uniformity is available without sacrificing expressiveness.
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Definition 3. Given a V-automaton A and a tree T, we say that a run p of A
on T is uniform, if any two isomorphic subtrees of T are marked by p in the
same way. We say that a V-automaton A is weakly uniform if, for every tree
T € Ly (A), there exists an accepting run of A on T that is uniform.

Observe that, in contrast to Thomas’ notion of uniform recognisability, our
assertion of weak uniformity is constrained to the particular input tree; runs
over isomorphic subtrees of different trees may be different.

Theorem 4. For every MSO-formula ¢ on trees, there exists a weakly uniform
V-automaton that recognises the models of .

Proof. Let A be a V-automaton equivalent to ¢ according to Theorem 2. Further,
let B =(Q,dp, 0, Acc) be the E-automaton that simulates A according to Theo-
rem 3, such that, for every graph, G,u € Lg(B) if, and only if, 7 (G, u) = ¢. For
every graph G, u and every accepting run p of B on G, u, let pr be the marking
induced by p on the unravelling 7 (G, u). Since Lg(B) is closed under counting
bisimulation, we can modify the transition specification §, without modifying
Lg(B), in such a way that, whenever p is an accepting run of B on G, u, the
unravelling p7 of the marking (G, p), u is also an accepting run of B on 7 (G, u).

We conclude by proving that B modified in such a way is weakly uniform.
Given any tree 7 € Lg(B), consider the quotient Gr,u. of 7 under counting
bisimulation, with u. corresponding to the class of the root. Then there exists an
accepting run p of B on G, u. (since 7 and Gr, u. are counting bisimilar). Now,
one can observe that pr is a uniform accepting run of B on 7. We obtain the
desired V-automaton over trees, by pushing the state-marking of B from edges
towards their target. a0
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