
HAL Id: hal-00306333
https://hal.science/hal-00306333

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Context-Free Games
Anca Muscholl, Thomas Schwentick, Luc Segoufin

To cite this version:
Anca Muscholl, Thomas Schwentick, Luc Segoufin. Active Context-Free Games. Theory of Computing
Systems, 2006, 39 (1), pp.237–276. �hal-00306333�

https://hal.science/hal-00306333
https://hal.archives-ouvertes.fr

Active Context-Free Games⋆

Anca Muscholl1, Thomas Schwentick2, and Luc Segoufin3

1 LIAFA, Université Paris VII, 2 pl. Jussieu, F-75251 Paris
2 Philipps-Universität Marburg, FB Mathematik und Informatik, D-35032 Marburg
3 INRIA, Parc Club Orsay Univ., ZAC des vignes, 4 rue J. Monod, F-91893 Orsay

Abstract. An Active Context-Free Game is a game with two players (Romeo and Juliet) on
strings over a finite alphabet. In each move, Juliet selects a position of the current word and
Romeo rewrites the corresponding letter according to a rule of a context-free grammar. Juliet
wins if a string of the regular target language is reached. The complexity of deciding the existence
of winning strategies for Juliet is investigated, depending on properties of the grammar, of the
target language, and on restrictions on the strategy.

1 Introduction

This work was motivated by implementation issues that arose while developing active XML
(AXML) at INRIA. Active XML extends the framework of XML for describing semi-structured
data by a dynamic component, allowing to cope with e.g. web services and peer-to-peer ar-
chitectures. For an extensive overview of AXML we refer to [2, 3, 11].

We briefly describe here the background needed for understanding the motivation of this
work. Roughly speaking, an AXML document consists of some explicitly defined data, together
with some parts that are defined only intensionally, by means of embedded calls to web services
[3, 9, 7]. An example of an AXML document is given in Figure 1. An important feature is that
the call of a web service may return data containing new embedded calls to further web
services (see Figure 1). Each web service is specified using an active extension of WSDL [17],

City

Name

Paris

Meteo

@www.meteo.fr(Paris)

Events

@www.aden.fr

City

Name

Paris

Meteo

26o/rain

Events

Operas

@www.opera.fr

Outdoor

Marathon

AXML document Same document after service calls

Fig. 1.

which defines its input and output type by means of AXML-schemes which in turn are an
immediate extension of XML-schemes with additional tags for service calls. For instance, the
specification of the service www.meteo.fr can be string → string while the specification of
www.aden.fr can be ∅ → Operas∗Movies∗Outdoor∗ where Opera, Movies, Outdoor

is either string∗ or a pointer to a web service.
Whenever a user or another application requests some data, the system must decide which

data has to be materialized, in order to satisfy the request specification. An important issue

⋆ Work supported by the DAAD and Egide under PROCOPE grant D/0205766.

is then which services are called and in which order. Assume for instance for our example in
Figure 1 that there is a fee for each service call. If the request requires to minimize the overall
costs, the system should first call www.aden.fr in order to get the list of events and only call
the weather forecast if there is some available outdoor event. The requests we are considering
in this paper ask for all available data of a given type as specified by an AXML-schema.

The system has access to local data, service specifications and a request specification.
This can be modeled as follows (see [12, 1, 15]): (i) the local data is an AXML document
corresponding to a labeled, unranked tree, (ii) the input/output type of a service specification
is specified by a regular tree language, and, (iii) the requested data is also modeled by a regular
tree language.

As this problem turns out to be computationally difficult, we consider a simpler version.
Actually, even this simpler variant is undecidable without any further restrictions. First we
assume that services do not have any input. Note that services with a fixed number of different
inputs can be modeled by considering several different services, one per input option. Secondly,
we assume that the output type consists of finitely many options, that is the regular language
is in fact a disjunction of finitely many cases. The main simplification is that we work on
strings instead of trees. This allows a better understanding of the complexity of our problem.
Thus, the questions considered here are stated as follows: given (i) a string, (ii) a set of service
specifications of the form A→ u1 | · · · | un, where A is a letter and the ui are strings, and (iii)
a regular string language, can we decide which services to call and in which order, such that
the string eventually obtained is guaranteed to belong to the regular language representing the
target? We formalize this problem in terms of games. We discuss extensions of our framework
to trees and full regular languages in Section 7 and in the last section.

An Active Context-Free Game (CF-game) is played by two players (Romeo and Juliet)
on strings over a finite alphabet. Its rules are defined by a context-free grammar (CFG) and its
target by a regular language given by a regular expression (equivalently, a non-deterministic
automaton, NFA). In each move, Juliet jumps to a position of the current word and Romeo

rewrites the corresponding letter according to some rule of the grammar. Juliet wins a play if
the string obtained belongs to the target language. The intended meaning is obvious: Juliet
is the system, Romeo the environment, the CFG corresponds to the service specification and
the target language to the request specification.

We consider the complexity of deciding the existence of a winning strategy for Juliet in
two variants. The first one, called combined complexity, means that both the specification of
the game and the initial string are given as input. In the second variant, called data complexity,
we fix a game specification and a target language, and the input consists of a string, only. It
shows how the complexity behaves relatively to the length of the string. This can be motivated
by the fact that the specification of the system is often fixed once and for all, while the data
may frequently change. The data complexity measures then the difficulty of the problem after
preprocessing the specification.

We show that without any restrictions, there is a fixed CF-game for which it is undecidable
to know if Juliet has a winning strategy. This leads us to consider simpler variants of the
problem by restricting the set of rules, the regular target language, and/or the strategy. The
above example already suggests two restrictions. First, both service calls give rise to one new
service call tag, only. This means that the underlying CFG is linear. We also consider the
more restricted case of unary grammars, where a service call may only return another service
call or some data without any service call tag. Another realistic restriction, that is satisfied
by the above example and probably by most applications, is that the iterated answer of

2

service calls does not give back a tag with the same service call. This restriction corresponds
to non-recursive CFGs or even to non-recursive CFGs of fixed depth (bounded CFGs). The
problem is decidable for all these restrictions, although it is intractable in some cases (e.g.,
ExpSpace for non-recursive grammars without uniform depth bound). We also consider left-
to-right strategies where Juliet has to traverse the string from left to right. In the above
scenario this amounts to having a heuristics for parsing the data tree only once, such that if
the system decides not to call a service, it never comes back to this service again. This limits
drastically the possibilities of the system but also decreases significantly the complexity of the
problem. Combined with general CFGs the decision complexity is 2ExpTime and combined
with non-recursive rules it is ExpTime. But for all other restrictions the complexity is at
most PSpace. The left-to-right restriction allows for a uniform decision procedure (and very
efficient preprocessing as well) as an automaton accepting all winning configurations (strings)
can be computed from the CF-game independently of the input string. To further decrease the
complexity we also consider games where the specification of the target language is given as a
deterministic automaton (DFA). In the case of bounded CFGs, and left-to-right strategies we
end up with a tractable PTime decision procedure. This case seems rather restrictive at first
sight, but it is general enough to handle many practical cases and it has been implemented
in AXML [11].

Figures 2 and 3 summarize our results. The numbers in brackets refer to the corresponding
theorem or lemma, respectively. All complexities above NC1 are tight.

Rules Combined Complexity Data Complexity
Restriction NFA/DFA

general undecidable (4.2) undecidable (4.2)
non-recursive ExpSpace (5.1) PSpace (5.3)

bounded PSpace (5.3) PSpace (5.3)
linear ExpTime (6.1,6.2) ExpTime (6.1,6.2)
unary ExpTime (6.1,6.2) ExpTime (6.1,6.2)

Fig. 2. Unrestricted strategies

Rules Combined Complexity Combined Complexity Data Complexity
Restriction NFA DFA

general 2ExpTime (4.3) ExpTime (4.6) NC1 (4.6)
non-recursive ExpTime (5.6) PSpace (5.9) NC1 (4.6)

bounded PSpace (5.5) PTime (5.8) NC1 (4.6)
linear PSpace(6.4) PSpace (6.5) NC1 (4.6)
unary PSpace (6.4) PTime (6.6) NC1 (4.6)

Fig. 3. Left-to-right strategies

We then discuss the case where the output set of choice is no longer finite, but given
as a regular set. In that case, the set of rules is given as an extended context-free grammar
(ECFG) where each rule has a regular expression as right-hand side. We show that in this
case unrestricted winning strategies are already undecidable even for non-recursive rules of
depth two. However for left-to-right strategies the decision problem has the same complexity
as in the finite case.

3

Related work. For left-to-right strategies there is a tight connection with games on push-
down graphs [16] (see Propositions 4.4 and 4.5), which explains the decidability for arbitrary
CFGs. A question related to the game problem is that of verifying properties of infinite graphs
defined by CF-games (model-checking). Similar questions have been asked, e.g., for automatic
graphs [4], process rewriting graphs [10] and ground tree rewriting graphs [8]. For instance,
[8] considers CTL and game-like versions of the reachability problem in ground tree rewriting
graphs. Graphs generated by CFGs on strings can be seen as a special case of ground tree
rewriting graphs.

Overview. The paper is organized as follows. Sections 2 and 3 give formal definitions and
fix the notation. We also describe a couple of extensions of the basic game which are used in
the lower bound proofs. In order to improve the readability of the paper the proofs of these
lemmas are postponed until Section 8. The results on arbitrary CFGs are given in Section 4.
Non-recursive and linear CFGs are considered respectively in Section 5 and Section 6. Section
7 is devoted to extended context-free rules.

2 Basic definitions and notations

2.1 Context-free games

A context-free game (CF-game, for short) is a tuple G = 〈Σ,R, T 〉, where Σ is a finite
alphabet, R ⊆ Σ × Σ+ a finite set of rules and T is a (non-deterministic) finite automaton
representing a regular target language. Note that the rewriting rules do not allow the empty
string on the right-hand side. We call a symbol A of Σ a non-terminal if it occurs on the
left-hand side of some rule in R, otherwise a terminal.

A play of the game G is played by two players, Juliet and Romeo, who play in rounds. A
play consists of applying rewriting steps to a given string over Σ. In each round, first Juliet
selects a position in the string and then Romeo chooses a rewriting rule associated with the
letter of the chosen position.

A configuration C of the game is a pair (w, i) where w is a string (the current word) and
i ≤ |w| is a number (the current position). A position choice in configuration (a1 · · · an, i)
consists of selecting a position j ≤ n, a rule choice consists of replacing aj by a string u
such that aj → u is a rule of G. The resulting configuration is (a1 · · · aj−1uaj+1 · · · an, j). For
simplicity, we often write for short (u, v) for a configuration (uv, |u|+1). Similarly, if i is clear
from the context, we often just write w for a configuration (w, i).

A play on string w starts in the initial configuration C0 = (w, 1). The play stops and
Juliet wins if after some round the resulting string is in the language L(T) accepted by
T . Otherwise it goes on. Romeo wins immediately, if Juliet chooses a position j, whose
corresponding symbol is terminal. As usual, we say that Juliet has a winning strategy in
configuration (w, i) if, no matter how Romeo plays, a string in L(T) is reached within a finite
number of moves. To express that Juliet has a winning strategy in the game G on w we
simply say Juliet wins (G,w).

If the target automaton is a deterministic finite automaton (DFA), we call a CF-game
deterministic. For non-deterministic games we often specify the target language by a regular
expression instead of a NFA. It is well-known that regular expressions can be transformed
into equivalent NFAs of linear size.

From the point of view of two-player games on (infinite) graphs the CF-games considered
here have a very simple winning condition, which belongs to a low level of the Borel hierarchy

4

(reachability of a set). By Martin’s determinacy theorem [6], CF-games are thus determined
i.e., from each configuration one of the two players must have a winning strategy.

We consider the decision problem for Juliet having a winning strategy in G on a string
w. This comes in two flavors, combined decision problem and data decision problem. The
combined decision problem is:
[Combined] INPUT: A CF-game G = 〈Σ,R, T 〉, a string w

OUTPUT: True iff Juliet has a winning strategy in G on w.

The data decision problem associated with a CF-game G is:

[Data(G)] INPUT: A string w
OUTPUT: True iff Juliet has a winning strategy in G on w.

We say that Juliet has a left-to-right winning strategy in (G,w) if she wins with a strategy
in which the sequence of chosen positions is non-decreasing. I.e., if (v, j) is a configuration
reached from (u, i) then j ≥ i.

A rule is linear if its right-hand side contains at most one non-terminal. A rule is unary if
it is of the form A→ B with B ∈ Σ or A→ w and w only contains terminal symbols. A set
of rules is linear (resp., unary) if each rule is linear (resp., unary). The width of a rule is the
number of symbols on its right-hand side.

A set of rules is called non-recursive if no symbol can be derived from itself by a non-
empty sequence of rewritings. For a non-recursive set R we call the maximal depth d of a
leaf in a derivation tree of R the depth of R. If the depth of R is at most d, then we call it
d-bounded. The width of R is the maximum width of a rule in R.

A CF-game is unary (resp. linear, non-recursive, d-bounded) if its set of rules is.

2.2 Complexity

Throughout the paper we use standard complexity classes, such as deterministic polynomial
time (PTime), polynomial space (PSpace), deterministic exponential time (ExpTime), ex-
ponential space (ExpSpace) and deterministic double exponential time (2ExpTime). We
also use the fact that regular languages belong to the class NC1.

Due to the alternating nature of games, our proof techniques are often based on alternating
Turing machines (ATM), which we denote usually as M = 〈Q = Qe∪Qa, Γ0, Γ, q0, δ, F 〉 with
set of states Q partitioned into existential states Qe and universal states Qa, input alphabet
Γ0, tape alphabet Γ ⊇ Γ0, transition relation δ ⊆ Q × Γ × Q × Γ × {Left,Right}, initial
state q0 and set of final states F . The acceptance of such a device is defined as usual through
accepting run trees (i.e., trees labeled by configurations, such that existential configurations
have one child labeled by some successor configuration, and universal ones have all their
successor configurations as children).

We frequently represent configurations of a Turing machineM by strings over the alphabet
Γ∪(Q×Γ) with exactly one symbol (q, A) ∈ Q×Γ , representing the state ofM and the symbol
under the head. For a transition d of M we write ABC →d D, with A,B,C,D ∈ Γ ∪ (Γ ×Q),
if the application of d in a configuration uABCv leads to a configuration string, in which
B is replaced by D. For example, if d = (q1, A, q2, B,Right) then (q1, A)CC →d (q2, C) and
C(q1, A)C →d B. We write ABC →M D if ABC →d D, for some d ∈ δ.

We use furthermore standard relations between alternating and non-alternating complex-
ity classes: PSpace (ExpSpace, resp.) equals alternating polynomial (exponential, resp.) time
and ExpTime (2ExpTime, resp.) equals alternating polynomial (exponential, resp.) space.
Also recall that on the level of finite automata, alternation does not increase the power.

5

To improve readability, we usually put symbols from a cartesian product into a framed
box. For instance, a symbol (q1, A) would often be displayed as q1, A .

3 Extended games and normal forms

The lower bound proofs of the following sections we reduce various problems to the combined
decision problem and the data decision problem for games with restricted rules and/or left-to-
right strategies. The games constructed there make use of a couple of encoding techniques that
force one of the players to play in a certain way. In order to reduce the technical complication
of these reductions we isolate some of these techniques in the current section by means of
extending the original CF-games in several ways. Furthermore, we exhibit two normal forms
for CF-games. The proofs of these results are given in Section 8.

More specifically, we consider the following three extensions of the basic game.

– Navigation constraints that restrict the possible position choices of Juliet;

– Symmetric rule choice, i.e., non-terminals for which Juliet (instead of Romeo) is allowed
to choose a rule;

– Games that consist of several phases.

The normal form results are as follows.

– For unrestricted strategies, a game with target NFA can be transformed in polynomial
time into a (basically) equivalent game with target DFA.

– For each fixed d, games of depth d can be transformed into (basically) equivalent games
of depth 1.

The most frequent proof technique is to let a player object whenever the other player
does not play as required. For instance, Romeo can prevent Juliet from choosing certain
positions at certain times in a game. For this purpose, non-terminals A have a rule A→ A⊥

which can be used by Romeo to indicate a forbidden position choice of Juliet (symbols of
the form A⊥ are called objection symbols). The target automaton T of the game ensures that
the objection symbols are used only under specific circumstances.

3.1 Extended games with unrestricted strategies

A navigation restriction is a triple ρ = (d, r, b) consisting of

– a direction d ∈ {,},
– a regular expression r over Σ, and

– a symbol b ∈ Σ ∪ {∗}.

In a CF-game G = 〈Σ,R, T,N〉 with navigation restrictions each rule α is associated with
a set N(α) of navigation restrictions. Furthermore, N(ǫ) is a set of navigation restrictions
which apply to the first position choice of a play.

Assume Romeo selects a rule A → u with restriction set {ρ1, . . . , ρm} in configuration
(v,Aw) resulting in the configuration (v, uw). The next position choice of Julietmust respect
one of the navigation constraints ρi. It respects the constraint ρi = (, r, b) if Juliet chooses
a position j such that the string between u and the chosen position, i.e., the prefix of w of
length j − |uv| − 1 is in the regular language L(r) of the expression r, and the symbol a at

6

position j matches b, i.e., either b = ∗ or a = b. Analogously, it respects a constraint (, r, b)
if the suffix of v of length |v| − j is in L(r) and the chosen symbol matches b.

It should be noted that, in particular, the new position has to be outside the right-
hand side u of the rule. Note also that r = ǫ means that Juliet must choose the next
position immediately to the right or to the left, respectively. Finally note that Juliet looses
immediately if she cannot find a next position satisfying the navigation constraints.

If N(α) is empty for a rule α, then the choice of Juliet is not restricted.
For a constraint (, r, b) in N(ǫ) the situation is similar: the length (j − 1)-prefix of the

string has to be in L(r) and the j-th symbol must match b.
It should be also noted that in a CF-game G = 〈Σ,R, T,N〉 with navigation restrictions,

the same rule of R might exist several times with different associated navigation restrictions.
For a deterministic game, the navigation rules have DFA instead of regular expressions.

The second extension allows non-terminals for which Juliet is allowed to select a rule.
A CF-game with symmetric rule choice is a CF-game in which a set ΣE of non-terminals
is distinguished. Here, the subscript E indicates that these non-terminals belong to Juliet.
Whenever Juliet selects a position with a non-terminal A from ΣE , she is the one to choose
a rule A→ u in the next step.

The last extension allows games to consist of several (but constantly many) phases. Each
phase i has its own set Ri of rules and its own goal Ti. Furthermore, each phase i has an
additional regular set Wi which limits the possibility to go to the next phase. Whenever a
configuration (w, j) with w ∈ Wi is reached in phase i, Juliet can choose to go to the next
phase of the game. Formally, an extended CF-game G consists of

– an alphabet Σ,
– a number k of phases,
– k tuples (Ri, Ti, Ni, ΣE,i,Wi), such that for each i ≤ k, Ri is a set of rules, Ti is a regular

set of winning strings, for each rule α, Ni(α) is a set of navigation constraints, Ni(ǫ) is the
set of navigation constraints for the first move in phase i, ΣE,i is a set of non-terminals
which allow Juliet to choose a rule, and Wi is a regular set of strings that allow Juliet

to enter the next phase.

Juliet wins if for some i, in phase i a string in Ti is reached. Note that the set Wk has no
meaning, but we keep it for simplicity.

The following lemma shows that the three extensions presented above do not enlarge the
expressive power of games. Note that the (pure) CF-game constructed in the lemma only
depends on the extended game G, i.e., not on the initial string v. This is required for all data
complexity reductions.

Lemma 3.1. There are polynomial-time computable functions mapping extended CF-games
G to CF-games G′ and pairs (G,w) to strings w′ such that Juliet wins (G,w) if and only if
Juliet wins (G′, w′). If G unary, linear or non-recursive then G′ can be guaranteed to have
the same property. If a non-recursive G is d-bounded then G′ can be chosen O(d)-bounded.

It should be stressed that Lemma 3.1 does not preserve linear and non-recursive rule sets
at the same time.

3.2 Extended games with left-to-right strategies

A similar result holds in the context of left-to-right strategies. Nevertheless, the proof tech-
niques are different (actually simpler) but not all rule types can be preserved. In the context of

7

left-to-right strategies, we do not consider games with several phases since these strategies are
essentially one-phase. It will turn out that for left-to-right strategies the coding of the target
language does matter. For instance we will see that, without restrictions on the rules, if the
target language is given by an NFA the combined complexity problem is 2ExpTime-complete
while it is in ExpTime when the target language is deterministic.

Lemma 3.2. For each CF-game G = 〈Σ,R, T,N,ΣE〉 with symmetric rule choice and nav-
igation constraints a CF-game G′ = 〈Σ′, R′, T ′〉 can be constructed in polynomial time such
that, for each string w, Juliet wins (G,w) with a left-to-right strategy if and only if Juliet

wins (G′, w) with a left-to-right strategy. Furthermore, the following statements hold.

(a) If, for some d, G is O(d)-bounded (non-recursive, resp.) then G′ is 2d-bounded (non-
recursive, resp.).

(b) If G is unary (linear, resp.) and all ΣE-rules have a navigation restriction, then G′ is
also unary (linear, resp.).

(c) If T is a DFA and each rule of R has at most one navigation restriction then T ′ is a
DFA.

3.3 Normal forms for games

The next lemma shows that for unrestricted strategies, the coding of the target language does
not affect the complexity. Indeed it shows that it is possible to reduce any CF-game with an
NFA target to a CF-game with a DFA target.

Lemma 3.3. For each CF-game G = 〈Σ,R, T 〉 a CF-game G′ = 〈Σ′, R′, T ′〉 can be con-
structed in polynomial time such that T ′ is given by a DFA and for each string w, Juliet
wins (G,w) if and only if Juliet wins (G′, w$), where $ is an additional symbol not occurring
in Σ. Furthermore, if G is unary, linear or non-recursive then G′ can be guaranteed to have
the same property. If G is d-bounded then G′ can be chosen O(d)-bounded.

We finally state the following lemma which enables us in lower bound proofs to reduce
the depth of the constructed game to 1.

Lemma 3.4. For each d ≥ 1 there are polynomial-time computable functions transforming
d-bounded CF-games G into 1-bounded CF-games G′, and pairs (G,w) into strings w′ such
that Juliet wins (G,w) if and only if Juliet wins (G′, w′). The same statement holds with
respect to left-to-right strategies. Furthermore G′ can be enforced to be unary or linear if G
has the corresponding property and it is deterministic in case G is deterministic.

4 Unrestricted rules

In this section, we consider games in which the rules are not restricted. The section is divided
into three parts.

In Subsection 4.1, we consider unrestricted strategies and obtain undecidability even in
the data complexity case. The basic idea to show this result is as follows. To each ATM M
we can associate a CF-game G such that M accepts a string w in space m iff Juliet wins
(G, $w ⊔m−|w| #) (Lemma 4.1). Undecidability is obtained by choosing an ATM M with an
undecidable language L(M) and adding an initial phase to G, in which sufficiently many
blanks ⊔ are added (sufficient for the run of M on w, if M accepts w).

8

The restriction to left-to-right strategies however results in decidable decision problems. In
Subsection 4.2 it is shown that the combined complexity in this case is 2ExpTime-complete.

Finally, in Subsection 4.3 we consider left-to-right strategies for deterministic games. The
specification of the target language by a DFA results in a considerable improvement in com-
plexity, ExpTime-complete. In fact, such games are strongly related to pushdown games
which have the same combined complexity. This relationship further implies that for left-to-
right strategies the sets Data(G) are regular, therefore the data complexity for games with
left-to-right strategies is in NC1.

4.1 Unrestricted rules and unrestricted strategies

We prove first that in general, both the combined and the data decision problem are unde-
cidable. The proof uses the following lemma which establishes a close connection between
alternating computations and CF-games. The fact that the game constructed in this lemma
is even unary will be used later for the proof of Corollary 6.1.

Lemma 4.1. Let M be an alternating Turing machine with space bound s(n) and initial state
q0. One can construct in polynomial time a unary game G = 〈Σ,R, T 〉 such that, for every
input w = a1 · · · an to M it holds:

M accepts w if and only if Juliet wins the game G on $ q0, a1 a2 · · · an ⊔
s(n)−n #.

Proof. The proof idea is to simulate a computation path of the ATM by letting Juliet play
in existential configurations (symmetric rule choice) and Romeo in universal configurations.
One single transition is simulated by a sequence of game moves, in which we use navigation
constraints for forcing the players to rewrite the symbols affected by the transition.

Let M = 〈Q = Qe ∪ Qa, Γ0, Γ, q0, δ, F 〉 and w ∈ Γ ∗
0 . Recall that Qe (Qa, resp.) denotes

the set of existential (universal, resp.) states, and δ ⊆ Q × Γ ×Q × Γ × {Left,Right} is the
transition relation of M . Let also ⊔ denote the blank symbol of M . Without restriction, we
assume that each state r of M can be entered either only from the left, or only from the right.
That is, if (q, A, r, B,Right) ∈ δ, then (q′, A′, r, B′,Left) /∈ δ for all q′, A′, B′ (symmetrically
for left moves).

The alphabet Σ of the game is defined as

Σ = Γ ∪ {$,#} ∪ { q, A , q, A,← , q, A,→ | q ∈ Q,A ∈ Γ}.

We explain first the goal of the game informally. Suppose that the current string is of the
form ($u, q, A C v#), corresponding to a configuration u(q, A)Cv of M with tape content

uACv, state q and the head on A (u, v ∈ Γ ∗, A,C ∈ Γ). The execution of the transition
(q, A, r, B,Right) (i.e., “replace A by B and go to the right into state r”) should correspond
to the following sequence of game configurations.

($u, q, A Cv#)→ ($u r,B,→ , Cv#)→ ($u, r, B,→ r, C v#)→ ($uB, r, C v#)

This can be accomplished by the following rules.

– q, A → r,B,→ with constraint (, ǫ, ∗) (go to the right),

– C → r, C with constraint (, ǫ, ∗) (go to the left),

– r,B,→ → B with constraint (, ǫ, ∗).

9

We used the fact that each state can be entered from a unique direction in order to associate
a unique navigation constraint with the rule C → r, C . Also note that each step of the ATM

must be simulated through consecutive game moves (otherwise Juliet looses). The case of
left moves is similar.

The existential states q ∈ Qe correspond to symbols q, A ∈ ΣE for which Juliet chooses

the rule for rewriting. Correspondingly, universal states q ∈ Qa correspond to symbols q, A 6∈
ΣE for which Romeo chooses the rewriting rule.

It should be also noted that Juliet never has a choice of the position. It is always
determined by the transition of M and either immediately to the right or to the left of the
previous position.

Besides that, for existential states q she can select the next transition. Romeo, on the
other hand, can choose transitions for universal states and also rules of the form C → r, C ,
as in the example above. To enforce that he always takes a rule with the correct state r in
r, C , T accepts all strings of the forms $u p,A,→ q,B v# and $u q,B p,A,← v# with
u, v ∈ Γ ∗ and p 6= q.

The constraints in N(ǫ) force Juliet to choose position 2 in the initial string. To model

acceptance of M , the target T also covers all strings of the form $u f,A v# with u, v ∈ Γ ∗

and f an accepting state of M .
Finally, the statement of the lemma follows from Lemma 3.1. ⊓⊔

Using Lemma 4.1 it is now very easy to show that both decision problems of CF-games
are undecidable.

Theorem 4.2. There exists a CF-game G for which the data decision problem is undecidable.
Thus, the combined decision problem for CF-games is undecidable as well.

Proof. Let M be a deterministic Turing machine with an undecidable language L(M), e.g.,
M might be chosen as a universal TM. We describe how M can be transformed into an
extended game G.

For each string w ∈ L(M) there is an m ≥ |w| such that w is accepted by M in at most
m steps and with space m.

For an input w = a1 · · · an to M , let w′ = q0, a1 a2 · · · an, where q0 is the initial state of

M . We consider the following extended game G on string $w′S#.
In the first phase of G, Juliet transforms $w′S# into the string $w′⊔m−n#. This is done

by applying the rules S → S⊔ m− n− 1 and S → ⊔. The symbol S is in ΣE , hence Juliet

can apply the rule as often as she likes.
The rest of the game is as in the proof of Lemma 4.1. Therefore, Juliet wins the game

on $w′S# if and only if w ∈ L(M).
Note that if w 6∈ L(M) the computation of M might be infinite and the space it uses

might be unbounded. This will result in a situation in which Juliet looses, as soon she
cannot respect the navigation constraint “go to the right”.

By application of Lemma 3.1 the game G can be transformed into a pure CF-game.
⊓⊔

4.2 Unrestricted rules and left-to-right strategies

In this subsection we show that for left-to-right strategies the combined decision problem is
decidable, although the complexity is high.

10

Theorem 4.3. The combined decision problem for left-to-right strategies when the target
language T is given by an NFA is 2ExpTime-complete.

Proof. As the NFA for T can be transformed into an exponential size DFA, the 2ExpTime

upper bound follows immediately from Theorem 4.6 below.
The lower bound is shown by simulating the behavior of an alternating exponential space

Turing machine M on input w by an extended CF-game consisting of a construction stage
and a testing stage.4 During the construction stage, starting from S&w, the players keep
rewriting the leftmost symbol S only, generating a sequence of configurations ofM (in reversed
order). Each configuration is encoded by a sequence of (symbol,position)-pairs, where the
position is an exponential size number encoded in binary. The alternation ofM is mimicked by
alternating between Juliet- and Romeo-choices (symmetric rule choice). Romeo chooses the
universal transitions, while Juliet chooses the existential transitions and the configurations
according to the selected transition.

In the test stage, it is checked in a single left-to-right pass, that the outcome of the
construction stage encodes an accepting computation of M on w. That is, Romeo gets the
chance to object at each position of the current string. If he does this Juliet wins if the
objected position is correct. It will be crucial that an NFA of polynomial size in N can
express that j 6= i and j 6= i + 1, for any counter values 0 ≤ i, j < 2N , encoded as binary
strings.

Now we describe the construction ofGmore formally. LetM = 〈Q = Qe∪Qa, Γ0, Γ, q0, δ, F 〉
be the alternating Turing machine working in space 2p(n) on inputs of size n, for some polyno-
mial p. Let w be an input of size n and let N = p(n). For simplicity we assume that M always
alternates between existential and universal configurations, and that the initial configuration
is existential.

A computation of M on w will be represented as a sequence of configurations, separated
by an encoding of the transition leading from one configuration to the next one. For each
configuration we attach after each symbol its position in binary. That is, the word generated
after the first part must be of the form

v = UCt#dt−1$Ct−1#dt−2$ · · ·#d0$C0&w

where U is a symbol indicating that the construction stage is finished, each Ci is a string
encoding a configuration of M , and each di is a transition of M . Such a word is correct if C0

is the initial configuration of M on w, Ct is accepting and each Ci+1 follows from Ci using
the transition di. It should be noted that the latter condition implicitly guarantees that the
configurations alternate between universal and existential ones.

Each configuration Ci = A0 · · ·A2N−1 ∈ Γ ∗ΓQΓ
∗ is encoded as

A0bin(0) · · ·A2N−1bin(2
N − 1)

where ΓQ = {(A, q) | A ∈ Γ, q ∈ Q} and where bin(j) is the length N binary encoding of
0 ≤ j < 2N with the rightmost bit being the least significant one.

The alphabet Σ of the game consists of

– the symbols S,U, U ′, Ue, Ua, 0, 1, 0̄, 1̄,#, $,&,⊥,
– the set Y = Γ ∪ ΓQ,

4 These stages should not be confused with the phases of extended games.

11

– a copy ∆ of the transition relation δ,
– and some objection symbols which will be defined later.

The set ΣE (for which Juliet chooses the rewriting rules) is {Ue, S}.
The rewriting rules for the construction stage contain:

S → SA | S0 | S1 | Ue$ | Ua$ | U where A ∈ Y = Γ ∪ ΓQ

Ue → S#d for d ∈ ∆E

Ua → S#d for d ∈ ∆−∆E

Here, ∆E contains all transitions that start from a state in QE .
Of course, the rules of the construction stage do not guarantee that v really encodes a

consistent, accepting computation.
The target language contains all strings di$Ci · · ·#d0$C0&w, where di is chosen by Romeo

and cannot be applied to Ci. Hence, Juliet immediately wins if Romeo chooses a wrong
transition. Note that this part of the target language can be easily accepted by an NFA.

Juliet ends the construction stage whenever she wants by replacing S by U , resulting
in a string v. Then the test stage starts and Romeo has to check that v indeed encodes an
accepting run of M . This is done as follows. First Juliet is required to select U . This is
enforced by the fact that no strings in the target language start with the symbol U . On U ,
Romeo has two possible rules, U → ⊥ or U → U ′.

Romeo selects U → ⊥ if the string obtained so far is wrong in one of the following ways.

– Some transition chosen by Juliet cannot be applied.
– Some configuration is syntactically not of the right form, i.e., some Ci is either not of the

form (Γ (0 + 1)N)∗ΓQ(0 + 1)N (Γ (0 + 1)N)∗ or not of the form Y 0N (Y ∪ {0, 1})∗Y 1N .
– Ct is not accepting.

It is easy to check with a finite automaton of size O(N) whether the conditions above
hold or not. The target language T contains all words starting with ⊥ for which the string is
in none of the above cases (Romeo immediately looses if his objection if wrong). If the string
is in one of the cases above, then Juliet looses in every possible continuation of the play,
since all other strings included in T will start with U ′.

In all other cases, Romeo selects U → U ′. This rule, and all the following rules, has a
navigation constraint (, ǫ, ∗), forcing Juliet to choose the symbols of the string consecu-
tively.

It now remains for Romeo to check that

(1) between consecutive #s (resp. between U and the first #, and between the last $ and &),
the binary counters are incremented successively from left to right, and

(2) for each i, configuration Ci+1 follows from Ci via di or C0 is not the initial configuration
on input w.

During the rest of the game, Romeo can choose for each symbol of the string, whether
he wants to object or whether he leaves it as it is (rule A → A). Whenever he objects, he

replaces the symbols A with A, ? if (1) fails at the current position, and by A, ! if (2) fails
at the current position.

We explain now how to deal with condition (1). Assume there is a substring AuA′u′ in
v, where A,A′ ∈ Y , u, u′ ∈ {0, 1}N but bin(u) + 1 6= bin(u′), i.e., condition (1) is violated.

12

In this case, Romeo replaces A by an objection symbol indicating a counter mistake. In this
situation, Juliet can only win, if she is able to show that the objection of Romeo is not
valid. We describe next how this is done.

As we can assume that u and u′ are of the same length N , bin(u) + 1 = bin(u′) holds, if
and only if there is a position 0 ≤ i < N , such that

– u[j] = u′[j] for all j < i,

– u[i] = 0 and u′[i] = 1,

– u[j] = 1, u′[j] = 0, for all j > i.

In order to win, Juliet must show that such a position i exists. Hence, after Romeo has
rewritten A in AuA′u′ by the objection symbol A, ? , Juliet jumps to some position i in u.

We enforce this by associating the navigation constraints (, (0+1)∗, 0) and (, (0+1)∗, 1)

with rules of the form A → A, ? . Romeo rewrites it via 0 → 0̄ and 1 → 1̄, respectively.

Then Juliet successively has to select the remaining positions in u (which are all rewritten
by 0̄ and 1̄, respectively with navigation constraint (, ǫ, ∗), i.e., go to the next position),

and some initial positions of u′ until Romeo selects another objection symbol via 0 → 0, !

or 1 → 1, ! at some position j of u′. Intuitively, Romeo claims that i and j witness that

bin(u) + 1 6= bin(u′) because one of the three conditions above fails.

Juliet wins, if i and j are no such witnesses, i.e., if the string between (and including)
the two objection symbols is of one of the following forms, easily testable by the NFA T .

– A, ? (0 + 1)j−1b(0 + 1)i−j−10̄1̄∗A′(0̄ + 1̄)j−1 b, ! for A,A′ ∈ Y , b ∈ {0, 1} (case j < i),

– A, ? (0 + 1)i−10̄1̄∗A′(0̄ + 1̄)i−1 1, ! for A,A′ ∈ Y (case j = i),

– A, ? (0 + 1)i−10̄1̄∗A′(0̄ + 1̄)i−11̄0̄∗ 0, ! for A,A′ ∈ Y (case j > i).

Condition (2) can be handled in a simpler way. First, Romeo rewrites some A ∈ Y by

an objection symbol A, ! . Then Juliet is forced to select successively all Y -positions in the

next configuration (this can easily be enforced using navigation constraints) until Romeo

rewrites some symbol B by B, ! . Now, Juliet wins if either A, ! and B, ! are not followed
by the same binary counter, or if A is consistent with B, the intermediate transition d, and
the neighboring Y -symbols of B, or if the initial configuration is correct. To this end, the
target automaton accepts a string if it contains a substring of one of the following kinds.

– A, ! (0 + 1)ib1(Σ \ $)
∗$(Σ \ $)∗ B, ! (0 + 1)ib2 for b1, b2 ∈ {0, 1} with b1 6= b2 (Romeo did

not select the same position in the previous configuration),

– A, ! (Σ \#)∗#d$(Σ \ $)∗C(0 + 1)∗ B, ! (0 + 1)∗D for CBD →d A (if the position is the

same, than the transition d was applied correctly),5

– A, ! bin(i)(Σ \ (#+$))∗&Γ i−1
0 A, ! or (A, q0), ! 0

N (Σ \ (#+$))∗& A, ! for i > 0, A ∈ Γ

(the initial configuration is correct).

Finally, when the rewriting process reaches the symbol & this is rewritten by Romeo into
$. T accepts all strings in which the rightmost symbol which is not in the input alphabet of
M is a $. Hence, Juliet wins if Romeo never objects during the test stage. ⊓⊔

5 Recall the definition of CBD →d A from Subsection 2.2.

13

4.3 Deterministic games with unrestricted rules and left-to-right strategies

A (reachability) pushdown game is played by two players, Adam and Eve, on a graph GP

induced by an alternating pushdown system P = 〈S = SE ∪ SA, Γ, δ, F 〉, i.e., a pushdown
automaton without input, with existential and universal states. The nodes of GP are the
configurations of the automaton, i.e., elements from S × Γ ∗. To distinguish configurations of
P from configurations of CF-games, we denote them in the form [q, u] and refer to them as
nodes of GP .

The set S of states is partitioned into existential (SE , Eve’s states) and universal (SA,
Adam’s states) states. Correspondingly, nodes [q, u] are either existential or universal depend-
ing on whether q ∈ SE or q ∈ SA. There is an edge from node [q, u] to [q′, u′] if P can go from
[q, u] to [q′, u′] in one step, as described by the transition relation δ. A node [q, u] is final, if
q ∈ F .

Eve wins the reachability game from a given node [q, u] if whatever Adam’s choices
are, she can reach a final node. In this case, we call [q, u] a winning node. It is known that
deciding whether a node is winning is ExpTime-complete, [16]. Moreover, the set of winning
configurations can be described by an alternating automaton of exponential size, [5, 14].

The next two propositions show the relationship between pushdown games and CF-games
with left-to-right strategies and DFA target language.

Proposition 4.4. Given a CF-game G = 〈Σ,R, T 〉, where T is a DFA with initial state q0,
one can construct in polynomial time a pushdown system P such that, for every string w,
Juliet wins (G,w) with a left-to-right strategy if and only [q0, w$] is a winning node of P.

Proof. Let T = (Q,Σ, δT , q0, FT). We define P as (S = SE ∪ SA, Σ ∪ {$}, δ, {f}), where

– SE = Q ∪ {f}, SA = Q̄ (Q̄ is a disjoint copy of Q),

– for every pair q ∈ Q, A ∈ Σ there are the transitions δ(q, A) = {(δT (q, A), ǫ), (q̄, A)}. A
transition (δT (q, A), ǫ) ∈ δ(q, A) corresponds to the case where Juliet skips the current
position, a transition (q̄, A) ∈ δ(q, A) corresponds to the case where Juliet selects the
current position,

– for every pair (q̄, A) and every rule A→ u of G there is a transition (q, u) ∈ δ(q̄, A). These
transitions correspond to the selection of the corresponding rule in R by Romeo, and

– finally, there is a transition (f, $) ∈ δ(q, $) for every accepting state q of T .

It can now be checked that Juliet wins (G,w) with a left-to-right strategy if and only if
[q0, w$] is a winning node in P. For each node [q, u$], the state q is the state reached by T on
the prefix processed so far in G, and u is the remaining suffix for G. ⊓⊔

Proposition 4.5. Given a pushdown system P one can construct in polynomial time a game
G = 〈Σ,R, T 〉, where T is a DFA, such that any node [q, A1 · · ·An] of P, c is winning if and

only if Juliet wins the game G on w = q, A1 A2 · · ·An with a left-to-right strategy.

Proof. Let P = 〈S = SE ∪SA, Γ, δ, F 〉 and assume without loss of generality that the moves
of P either pop a symbol or push one single symbol. We define a CF-game G with symmetric
rule choice and navigation constraints capturing the behavior of the pushdown game P.

In this game, nodes [q, A1 · · ·Am] of GP correspond to configurations (u, q, A1 A2 · · ·Am)
in the game G. Here u is a string of states of P and of special symbols ⊔ and ⊓ used as a
kind of blank symbols. To simulate a step of P which pops the topmost symbol and enters

14

state r, the new configuration of G has to be of the form (u′, r, A2 A3 · · ·Am). Analogously,

if P pushes a symbol B, the new configuration has to be of the form (u′, r, B A1 · · ·Am).

A pop move (r, ǫ) ∈ δ(q, A) is simulated in two steps. First, a rule q, A1 → r with

navigation constraint (, ǫ, ∗) (go to the right) is applied, then a rule A2 → r, A2 . We

put q, A1 ∈ ΣE (Juliet selects the rule) if q ∈ SE . If Romeo selects a wrong rule, i.e.,

A2 → r′, A2 with r′ 6= r, the target set lets Juliet win immediately, as it contains all strings

of the form ur r′, A v with r 6= r′.

A push move (r,B) ∈ δ(q, A) is simulated by adding in G the rule q, A1 → ⊔ r,B A1.
The ⊔ symbol is here to prevent Juliet from immediately winning if the symbol to the left
of q, A1 was a state q 6= r (recall from above that in the target language we have in the

target language all strings of the form ur r′, A v with r 6= r′). We now have to make sure

that Juliet selects next the symbol r,B (recall that navigation constraints cannot enforce a

move inside the right-hand side of the rule). This is done as follows. We add a rule ⊔ → ⊓ with
a navigation constraint (, ǫ, ∗) (go to the right) and we force Juliet to choose immediately
the symbol ⊔ by making sure that no string in the target language contains the symbol ⊔.

Furthermore, T accepts all strings of the form u f,A v with f ∈ F , A ∈ Γ , v ∈ Γ ∗ and

u ∈ (S ∪ {⊓})∗. Clearly, T can be accepted by a DFA of polynomial size in P.

Now the statement of the proposition follows immediately. ⊓⊔

From Propositions 4.4 and 4.5 and [16, 5, 14] we obtain immediately the following result.

Theorem 4.6. The combined decision problem for left-to-right strategies when the target
language T is given by a DFA is ExpTime-complete.

Moreover, the set of input words for which Juliet has a left-to-right winning strategy is
regular and an alternating automaton recognizing it can be constructed in exponential time
from a CF-game G.

Remark 4.7. It follows from Theorem 4.3 that the upper bound in Theorem 4.6 does not
apply in general to CF-games with a non-deterministic target automaton. The following non-
deterministic target T illustrates why the proof of the upper bound in Proposition 4.4 fails.

q0

q1

q2

q3

q4

q5

q6

a

a

c

d

c

d

In the game G = 〈Σ,R, T 〉 where R = {b→ c | d}, Juliet has a winning strategy on ab:
rewrite b, as both ac and ad are accepting for T . But in the pushdown system as constructed
in the proof of Proposition 4.4, Adam has a winning strategy on (q0, ab$): after reading a,
Eve has to commit to state q1 or to state q2. Depending on Eve’s choice, Adam will choose
respectively d and c for replacing b and thus will end in a non-accepting configuration with
state q4 or q5, respectively.

15

5 Non-recursive rules

In this section we focus on non-recursive games. The reader should recall the notion of depth
for non-recursive games. For non-recursive games of depth d and width m the number of
possible moves in a game is O(md+1|w|). It is therefore straightforward that it can be checked
in alternating exponential time, hence in ExpSpace, whether Juliet wins a game (G,w).
If the depth bound d is considered fixed, O(md+1|w|) becomes a polynomial bound resulting
in a PSpaceupper bound. As each single non-recursive game has a fixed depth bound, the
PSpaceupper bound holds also the data complexity of non-recursive games.

For unrestricted strategies, considered in Subsection 5.1, it turns out that all these upper
bounds are tight.

In Subsection 5.2 left-to-right strategies are considered. Interestingly, in the bounded case,
the restriction to left-to-right strategies does not reduce the complexity, it remains PSpace-
complete. For non-recursive rules, the complexity is ExpTime.

Finally, we turn to deterministic games with non-recursive rules and left-to-right strategies
in Subsection 5.3. The complexities are one level lower than for non-deterministic games, i.e.,
PSpace-complete for non-recursive games and PTime-complete for games with a fixed depth
bound.

5.1 Non-recursive rules and unrestricted strategies

We first consider non-recursive sets of rules and unrestricted strategies. Again, the decision
problems become decidable, although the complexity is high.

Theorem 5.1. The combined decision problem for non-recursive CF-games is ExpSpace-
complete.

Proof. Both the lower and the upper bound use alternating exponential-time Turing machines.

We show the upper bound by constructing an ATM deciding whether Juliet has a winning
strategy on w in exponential time. Let G be a game and w an input. The ATM maintains a
string representing the current game configuration. At each step it checks whether this string is
in the target language of the game. If yes, it stops and accepts. If not, it non-deterministically
chooses a position to rewrite and universally branches over all possible rewritings. It is im-
mediate to verify that this ATM is correct. As stated above, the maximal number of rule
applications is O(md+1|w|), if d is the depth and m the width of G. As each rule application
replaces a single symbol by a string of length at most m the size of strings occurring in a play
on w is O(md+2|w|), which is also the time bound of the ATM.

We now prove the lower bound. Let M be an ATM working in time 2p(n) on inputs of size
n, for some polynomial p. We assume wlog that each state of M is either only entered from the
left or only from the right. Let w = a1 · · · an be an input of size n. We construct in polynomial
time in w an extended CF-game and the string w′ = $ q0, a1 S$a2S$ · · ·SanSS̄ such that

G is non-recursive and Juliet wins (G,w′) if and only if M accepts w. The construction is
similar as in the proof of Lemma 4.1. However, in that proof a symbol representing a tape
cell could be rewritten arbitrarily often, which is not allowed for a non-recursive game. The
solution here is to produce for each tape cell a substring of the form $⊔2

p(n)
, that will allow

to store the consecutive symbols in that cell. During the simulation of the ATM by the game,

16

the symbols ⊔ might be replaced by symbols from Γ , i.e., the tape alphabet of M , in a left-
to-right manner. A string uA⊔i, u ∈ Γ ∗, A ∈ Γ , represents a tape cell containing A. Each ⊔
can be rewritten only once.

In the first phase, G has the rules S → S1S1, Si → Si+1Si+1, for each i < p(n), and

Sp(n) → ⊔, that allow to derive a string ⊔2
p(n)

from each S in w′. In a similar fashion, from S̄

a string (⊔2
p(n)

$)2
p(n)−n can be derived. Juliet is responsible that the first phase is performed

as intended, otherwise she might loose in the second phase. The target set T1 is empty, and
the set W1 allowing to continue with the second phase ensures that all occurrences of S, S̄
have been replaced by the ⊔’s. In phase 2, Juliet first has to select position 2.

The sequence of game configurations corresponding to a transition (q, A, r, B,Right) of M
is the following (v and w are strings that do not contain $):

(u$v, q, A ⊔i $wC ⊔j $x)→ (u$v r,B,→ ⊔i $w,C ⊔j $x)

→ (u$v r,B,→ ,⊔i$w r,C ⊔j $x)

→ (u$v r,B,→ B ⊔i−1 $w, r, C ⊔j $x)

This can be enforced using the following rules with constraints:

– q, A → r,B,→ with constraints “go right until you pass a $ and then go to the last
symbol different from ⊔”;

– C → r, C with constraints “go left until you pass a $ and then go to the leftmost ⊔

symbol”6;

– ⊔ → B with constraints “go to the right to the next symbol of the form σ ”, with
σ ∈ Q× Γ ;

The case of left moves is similar. The symbols for which Juliet chooses the rewriting rule
are symbols q, A , where q is an existential state.

It is easy to adapt the target language of Lemma 4.1 in order to enforce that Romeo

always picks the correct rewriting rule as in the sequence described above.

Notice that we do not literally use the navigation constraints of Section 3 but slightly
more general ones. They allow to specify also the neighbor of the new position in the opposite
direction from the old position (e.g., if the navigation constraint forces to go right, then we
have a constraint on the right neighbor of the target position). It is immediate to extend the
techniques of Section 3 in order to allow such constraints. ⊓⊔

We now consider games for which the depth is bounded by some fixed integer d.

Lemma 5.2. There is an extended CF-game G = 〈Σ,R, T 〉 of depth 1 such that Data(G) is
PSpace-hard.

Proof. We use a reduction from the quantified Boolean satisfaction problem QBS. The input of
QBS is a formula Φ = ∃x1∀x2 · · · ∀xnϕ where ϕ is a CNF formula with m clauses and 3 literals
per clause. We assume here, wlog, that the quantification starts with an existentially quantified
variable, alternates for each quantifier and ends with a universally quantified variable.

The extended game we construct has two phases and is played on a straightforward string
encoding of Φ. Note that it is necessary to encode the variables of Φ, as the game has to

6 Because of the transition (q,A, r, B,Right), state r can be entered only from the left.

17

be the same for all possible formulas. Basically, in the first phase, all variables get a truth
value, alternatively chosen by Juliet and Romeo, then Romeo selects a clause and Juliet

a literal in the clause. In phase 2 it is checked that this literal evaluates to true. We en-
code every variable xi by the string ai, where a is a symbol. For each clause Ci let wi be
the string ##δ1b

j1#δ2b
j2#δ3b

j3 , where j1, j2, j3, δ1, δ2, δ3 are such that xj1 , xj2 , xj3 are the
variables occurring in Ci and δk is 0 if xjk occurs negatively, 1 otherwise.

Consequently, we set w = # ∃ a # ∀ a2 # · · ·# ∀an # $w1 · · ·wm$.
We now describe the first phase of the game more formally.
Juliet has to choose position 2 first. The rules for the first part of the first phase are

∀ → 0, ∀ → 1, ∃ → 0 and ∃ → 1. The symbol ∃ is in ΣE,1 hence Juliet chooses the right-hand
side. Each rule has navigation restrictions (, a∗#, ∃), (, a∗#, ∀) and (, a∗#$,#), hence
Juliet can select the next variable to the right or, if all variables have been replaced, the
first symbol # of w1.

The rules for the second part of the first phase are

– # → s and # → r: Hence, Romeo can select or reject a clause. The rule # → r
has a navigation constraint (, (Σ − #)∗,#) which forces Juliet to go to the next
symbol # to the right. The rule #→ s has navigation constraints (, (Σ−#)∗,#0) and
(, (Σ −#)∗,#1). This forces Juliet to select a variable in the current clause;

– #0 → 0 and #1 → 1: The selected variable is marked as selected. These rules have
navigation constraints which force Juliet to end phase 1 and to proceed by phase 2.

In order to prevent Romeo from selecting two or zero clauses, we take T1 = Σ∗sΣ∗sΣ∗ +
(Σ − s)∗r(Σ −#2)

∗.
We now describe the second phase. During this phase, it is verified that the literal which

Juliet selected in the clause chosen by Romeo becomes true by the value assigned to its
variable. To this end, Juliet selects a string of a’s in the first part of w. Then it is checked
that the number of these as is the same as the number of bs at the selected literal. This check
is performed by replacing alternatively each a by c and each b by c. Finally, it is checked that
at the left of the as there is a 1 if and only if there is a 1 to the left of the bs. The rules are
as follows.

– a → c: The as are replaced from right to left, whereas the bs are replaced from left to
right. Therefore, the associated navigation constraint is (, c∗#Σ∗sΣ∗(0 + 1)c∗, b).

– b→ c: The navigation constraint to get back is (, c∗c#Σ∗sΣ∗(0 + 1)c∗, a). In order, to
be able to get to the first $ after the comparison is finished, there is another navigation
constraint (, Σ∗, $).

– Finally, there is a rule $→ $′ which ends the game.

The target language is reached for Juliet if the final string is in

(Σ∗0cc∗#Σ∗$′Σ∗0cc∗(#0 +#1 +#+ $)Σ∗) + (Σ∗1cc∗#Σ∗$′Σ∗1cc∗(#0 +#1 +#+ $)Σ∗).

⊓⊔
When d is fixed, O(md+2|w|) becomes a polynomial bound. In that case, the upper bound

proof of Theorem 5.1 gives an PSpace upper bound. Together with Lemmas 5.2, 3.1 and 3.4
for the lower bound, this yields the following statement:

Theorem 5.3. For each d ≥ 1, the combined decision problem for d-bounded CF-games is
PSpace-complete. There exists a fixed game G of depth 1 for which Data(G) is PSpace-
complete.

18

5.2 Non-recursive rules and left-to-right strategies

We continue with non-recursive rules, but we now concentrate on left-to-right strategies. It
turns out that the complexity of the combined decision problem for bounded games is the
same as in the case of unrestricted strategies. Recall that the data decision problems are all
regular for left-to-right strategies.

The following lemma considers games that are bounded and unary. It will be used again
in Section 6 to prove Theorem 6.4.

Lemma 5.4. For each d ≥ 1, the combined decision problem for extended CF-games that are
d-bounded and unary with left-to-right strategies is PSpace-hard.

Proof. The proof is again a reduction from the quantified Boolean satisfaction problem
QBS. As in Lemma 5.2, we first construct a game with symmetric rule choice and navigation
constraints. As we are dealing with combined complexity here, the construction is even simpler
than the one of Lemma 5.2, because we are able to use one symbol per variable as opposed
to encoding them.

For a given QBS formula ∃x1∀x2 · · · ∀xnϕ where ϕ has m clauses of 3 literals each, let w
be the string ∃x1∀x2 · · · ∀xn#u1 · · ·um. Here, ui is of the form (Sv1v2v3) with vj = 1xk if the
j-th literal of Ci is xk and vj = 0xk if it is ¬xk.

In the game, first a value is associated to each variable, by Juliet for the existentially
quantified variables and by Romeo for the others. For this we have rules ∃ → 0, ∃ → 1,
∀ → 0 and ∀ → 1. Next, Romeo decides for each clause whether to accept or reject it
(S → a, S → r). The regular expression T checks in a straightforward manner whether at
least one of the literals of the selected clause becomes true by the variable assignment. ⊓⊔

From Lemmas 5.4, 3.2 (for the lower bound) and an immediate adaptation of the proof
of Theorem 5.1 for left-to-right strategies (for the upper bound) we obtain:

Theorem 5.5. For each d ≥ 1, the combined decision problem for d-bounded CF-games and
left-to-right strategies is PSpace-complete.

For non-recursive rules the complexity is one level higher.

Theorem 5.6. The combined decision problem for non-recursive games and left-to-right strate-
gies is ExpTime-complete.

Proof. Both the upper and lower bound proof use ATM of polynomial space.

The upper bound is shown similarly as in Theorem 5.8 below. The only differences are
that the number of pointers that we store is polynomial (bounded by the size of the rule set)
and that the target is an NFA (hence, we need to store a set of states instead of the state
pointer).

We now prove the lower bound. Let M be an ATM with polynomial space bound p(n)
and time bound 2p(n) on inputs of size n. We assume wlog that M strictly alternates between
existential and universal states. Let Q be the set of states ofM . Let w be an input of size n. We
construct in polynomial time an extended CF-gameG = 〈Σ,R, T 〉 such thatG is non-recursive
and Juliet has a winning left-to-right strategy in G on w$S1 iff M accepts w. The extended
game uses symmetric rule choice, only. During the game Juliet and Romeo essentially
derive the sequence of configurations of M : Juliet produces the existential configurations
while Romeo produces the universal ones.

19

This is done as follows. Let Γ be the tape alphabet of M . Let Γ̂e = { A, q | A ∈

Γ, q an existential state of Q}, Γ̂a = { A, q | A ∈ Γ, q an universal state of Q} and Γ̂ =

Γ̂e ∪ Γ̂a. The configuration slots are produced by the rules Si−1 → SiSi for each 1 < i < p(n)
and Sp(n)−1 → #Ce

1$C
a
1 , eventually resulting in a string of 2p(n)−1 copies of #Ce

1$C
a
1 . The

configurations are generated using rules Ca
i → Da

i , D
a
i → ACa

i+1, C
e
i → De

i and De
i → ACe

i+1

for all i < p(n) and all A ∈ Γ ∪ Γ̂ . To allow a player to object immediately, if the other
produces a symbol which leads to a configuration that is not consistent with the previous
one, we add the rules Ca

i → ! and Ce
i → ! . The symbols Ca

i and De
i belong to Juliet,

hence, she chooses configurations from Ce
1 (via De

i) and can object choices that Romeo makes
on Da

1 (via Ca
i).

Each configuration should contain exactly one symbol from Γ̂ which represents the position
of the head and the current state of M . Let Y = Γ ∪ Γ̂ .

For each t = (A,B,C,D) ∈ Y 4 letRt be the expression ∪j≤p(n)Σ
∗#Y j−2ABCY ∗$Y j−1D ! .

This expression checks that the symbol after which a player objected is D, the same position
carried a B in the configuration before with left and right neighbors A and C, respectively.
A 4-tuple t is said to be existential (resp. universal) if it is actually in (Γ ∪ Γ̂E)

4 (resp. in
(Γ ∪ Γ̂V)

4).

The target language contains all strings with a substring in which the last symbol is !
reflecting one of the following situations.

– Romeo is currently producing a configuration, and the last symbol before ! shows that
this configuration is inconsistent with the previous configuration. Such inconsistencies
are accepted if the string conforms to some Rt where t = (A,B,C,D) is universal but
ABC 6→M D.

– Juliet is currently producing a configuration, and the last symbol before ! shows that
this configuration is consistent with the previous configuration. This is captured by the
expressions Rt where t = (A,B,C,D) is existential and ABC →M D.

– Juliet is currently producing the initial configuration, Romeo objected, but the position
before ! is consistent with the input string. This can be checked in a similar as consistency
between the configurations.

The proof is finished by applying Lemma 3.2. ⊓⊔

5.3 Deterministic games with non-recursive rules and left-to-right strategies

When the target language is given as a DFA the problem becomes tractable for bounded
games. The PTime upper bound for the case of left-to-right strategies, bounded rules, and
DFA target language was already obtained in [11] using automata theoretical techniques. It
is also the framework which has been implemented in AXML [11].

We will need the following lemma which will be also used later in the proof of Theorem
6.6.

Lemma 5.7. The combined decision problem for d-bounded and unary extended CF-games
with DFA target language and left-to-right strategies is hard for PTime.

Proof. The proof is by a reduction from the monotone Boolean circuit value problem [13].
Let C be a Boolean circuit with 0s and 1s at the input gates. We can assume wlog that all
paths in C are alternating between or and and gates, have fan-in two and, start and end

20

with and gates [13]. With C we associate a DFA T as follows. The states of T are the gates of
C. The input alphabet for T is {l, r}. Strings over this alphabet describe paths in C starting
from the output gate. The letter l corresponds to the left input of a gate, the letter r to the
right one. We define δ(g, l) = g′, if g′ is the left input gate for g and, δ(g, r) = g′ if it is the
right input. For input gates g, we set δ(g, l) = δ(g, r) = g. The final states of T are the input
gates with value 1. Hence, T accepts exactly those strings that have a prefix corresponding
to a path from the output gate to an input gate with value 1.

In the game Juliet tries to prove that g evaluates to 1 and Romeo tries to show it
evaluates to 0. They define a path from the output gate to an input gate and Juliet wins if
this input gate has value 1. The game simply alternates between Romeo-moves (at and-gates)
and Juliet-moves (at or-gates). To this end, the initial string w is (SASE)

n, where 2n is the
depth of C and SE ∈ ΣE , SA ∈ ΣA. The rules are SE → l | r and SA → l | r with navigation
constraint (, ǫ, ⋆) (go to the right).

It is straightforward to verify that Juliet has a winning strategy iff the circuit evaluates
to 1 and that the reduction is logarithmic space (actually first-order).

⊓⊔

Theorem 5.8. For each d, the combined decision problem for d-bounded CF-games with left-
to-right strategy and DFA target language is PTime-complete.

Proof. The lower bound follows from Lemmas 5.7, 3.2 and 3.4.

We prove the upper bound by constructing an ATM M which decides in logarithmic space
whether Juliet has a winning left-to-right strategy for the game G = 〈Σ,R, T 〉 on a string
w. The tape of M consists of d + 2 pointers to its input. The first one (the string pointer)
points to the letter it is currently processing in w. The second one (the state pointer) points
to a state of the DFA for T . Each of the others (the stack pointers) point to a position in the
right-hand-side of a rule of R currently being investigated. Initially the string pointer is set
to the first letter of w, the state pointer to q0 and all other pointers are set to null.

At each step the machine checks whether the current situation of M represents a configu-
ration of G in which Juliet has won. This can be done by starting T from the state currently
pointed at, and reading the string akvkvk−1 · · · v1w

′, where

– w′ is the remainder of w starting behind the string pointer,

– k ≤ d is the number of non-null stack pointers and also the current depth, and

– uiaivi, for each i ≤ k, is the right-hand side of the rule of the i-th stack pointer, which
currently points at the position of ai.

If yes it immediately stops and accepts. Otherwise, it reads the letter ak and non-deterministically
decides whether it rewrites this letter or skips it. To rewrite it, it universally branches over all
possible rules and sets the lowest null stack pointer to the first position of the right-hand side
of the chosen rule. To skip it, it moves the stack pointer k to the next symbol and updates
the state pointer according to ak. Whenever a stack pointer k aims to move to the right from
the last symbol of its rule, it is reset to null and the algorithm continues with stack pointer
k − 1. Since d is a constant, the tape size remains logarithmic. ⊓⊔

If the depth of the rule set is not fixed, the complexity is one level higher:

Theorem 5.9. The combined decision problem for non-recursive games with DFA target and
left-to-right strategies is PSpace-complete.

21

Proof. The lower bound is obtained by a reduction from QBS. Let ϕ be a quantified Boolean
formula in prenex form, with quantifier-free part in CNF, clauses C1, . . . , Cm and variables
x1, . . . , xn. We encode ϕ by the string v = ∃x1∀x2 · · · ∀xn#u1 · · ·um, where ui is of the form
(v1v2v3) with vj = 1xk if the j-th literal of Ci is xk and vj = 0xk if it is ¬xk. Hence, each
variable xi of ϕ is represented by its own symbol. The game is played on the string w = S1v.
From S1 a variable assignment is constructed in a right-to-left manner. For this purpose we
have rules Si → Si+1xi0 and Si → Si+1xi1, for each i < n, as well as Sn → $xn0 and
Sn → $xn1. A symbol Si is in ΣE if and only if xi is existentially quantified. From $ we let
Romeo choose a clause index j and Juliet choose a variable index i. I.e., there are rules
$→ &j, for each j ≤ m, and &→ xi, for each i ≤ n. A DFA of polynomial size can check on
input xi j xnan · · ·x1a1 that the variable assignment xi 7→ ai makes clause Cj true. That is,
either ai = 1 and 1xi occurs between the jth pair of brackets, or ai = 0 and 0xi occurs.

For the upper bound we describe an alternating polynomial time algorithm. Let G =
〈Σ,R, T 〉 be a game with target DFA T = (Σ,Q, δ, q0, F).

For a string w, a state q ∈ Q and a set X ⊆ Q of states, we write q ⇒w
J X if Juliet has a

strategy that guarantees that the string w′ that is obtained at the end of the game, satisfies
δ∗(q, w′) ∈ X. Clearly, Juliet has a winning strategy on w in the CF-game G if and only if
q0 ⇒

w
J F .

It turns out that whether q ⇒w
J X holds can be computed in a recursive fashion in

alternating polynomial time, using the following two properties of ⇒w
J .

(a) q ⇒uv
J X if and only if there is a set Z ⊆ Q such that q ⇒u

J Z and, for all p ∈ Z, p⇒v
J X.

(b) If B → u1 | · · · | um are all rules with left-hand side B, then q ⇒B
J X if and only if,

δ(q,B) ∈ X or, for all i ≤ m, q ⇒ui

J X.

To see that (a) holds, assume that q ⇒uv
J X and fix a winning strategy for Juliet on uv. Let

U be the set of strings that Romeo can reach by playing the game on u given the strategy of
Juliet. Let Z = {δ∗(q, u′) | u′ ∈ U}. Hence, q ⇒u

J Z holds. On the other hand, as Juliet’s
strategy on uv guarantees to end up in a state of X, for every state p ∈ Z, Juliet can
play such that for the string v′ evolving from v it holds δ∗(p, v′) ∈ X. The reverse direction
is straightforward. Property (b) follows directly from the definition, as Juliet has no other
choice than to select B or to stop immediately.

The alternating polynomial time algorithm works as follows. On input q, w,X, with |w| > 1
it guesses a set Z and non-empty strings u, v with w = uv, and it checks recursively that
q ⇒u

J Z holds and, for all p ∈ Z, p ⇒v
J X. On input q,B,X it checks whether δ(q,B) ∈ X

or, for all right-hand sides u of rules for B, that q ⇒u
J X. Each computation path has length

at most |w|+m|Σ|, where m is the width of R, since G is non-recursive. ⊓⊔

6 Linear rules

In this section we focus on linear and unary games. Recall from our example in the introduction
that in practice, service calls often generate a single subsequent call, a setting which is modeled
by linear CFGs in our framework.

A crucial property of plays on linear games, which is particularly important for some of the
upper bounds, is that the number of non-terminal symbols never increases. Hence, starting
from an initial string w of length n, all strings occurring during a play are of the form
u0A1u1 · · ·uk−1Akuk, for some k ≤ n. The behavior of the target automaton on the terminal
strings ui can be subsumed in behavior relations fi ⊆ Q×Q. Therefore, a configuration can

22

be represented always by a string of length O(n|Q|2). If T is deterministic, the fi are actually
functions, which is important for some of the proofs.

In Subsection 6.1 we consider unrestricted strategies. In all cases, combined or data com-
plexity, linear or unary rules, we obtain the same complexity, ExpTime-complete.

Subsection 6.2 shows that also for left-to-right strategies there is no complexity difference
between unary and linear rules. It is PSpace-complete for both, therefore one complexity
level below the case of unrestricted strategies.

Only for deterministic games unary and linear rules are different as shown in Subsection
6.3. Whereas the complexity remains PSpace-complete in the linear case, unary rules yield
another tractable case, PTime-complete.

6.1 Linear rules and unrestricted strategies

We start with the following lower bound which implies the same lower bound for combined
decision problems of unary and linear games.

Lemma 6.1. There is a unary CF-game G, for which Data(G) is ExpTime-hard.

Proof. Let L be an ExpTime-complete language. With a classical padding argument, we can
find such a language that is accepted by an ATM M using space n on inputs of length n.

From Lemma 4.1 we know that there is a unary CF-game G such that for every input
w = a1 · · · an to M , Juliet wins (G,w′), where

w′ = $ q0, a1 a2 · · · an#,

if and only if M accepts w. The CF-game G has the desired property. ⊓⊔

The following lemma shows that the combined decision problem for linear games is in
ExpTime.

Lemma 6.2. The combined decision problem for linear CF-games is in ExpTime.

Proof. Let G = 〈Σ,R, T 〉 and let w be the initial string. Let n be the number of non-
terminal symbols occurring in w. By linearity of R this is an upper bound on the number
of non-terminal symbols during the whole game. Let Q be the set of states of T . The string
w can be written as u0A1u1A2 · · ·Anuk where the Ai are non-terminal letters and the ui are
words over the terminal alphabet of R. Each ui induces a transition relation fi ⊂ Q × Q
which can be coded by |Q|2 symbols. We now define an alternating polynomial space Turing
machine M that decides whether Juliet has a winning strategy. M maintains on its tape
a string of the form f0B1f1 · · ·Bkfk with k ≤ n. This requires space of O(k|Q|2). Whenever
the composition of the k + 1 transition relations with the behavior of T on the intermediate
non-terminals gives an accepting state of T , M stops and accepts. Otherwise it decides non-
deterministically which non-terminal it is going to rewrite, say Bi. It then starts universally
a new computation for each rule in R whose head is Bi. Each subcomputation, corresponding
to a rule Bi → αBβ, where B is the only non-terminal, starts by computing the transition
relation for α and β, and composes them with fi−1 and fi, respectively. Altogether this is an
alternating polynomial space computation and thus in ExpTime. ⊓⊔

By combining Lemma 6.2 with Lemma 6.1, we get the following theorem.

Theorem 6.3. For unary and linear games with unrestricted strategies the combined com-
plexity is ExpTime-complete. There are games, for which the data complexity is ExpTime-
complete.

23

6.2 Linear rules and left-to-right strategies

We now consider left-to-right strategies for unary and linear CF-games.

Theorem 6.4. The combined decision problem for linear and for unary CF-games with left-
to-right strategies is PSpace-complete.

Proof. The lower bound follows from Lemmas 5.4 and 3.2. For the upper bound it is enough
to consider the linear case. Let G = 〈Σ,R, T 〉 and w ∈ Σ∗. We construct a non-deterministic
Turing machine M that checks in polynomial space whether Romeo has a winning strategy
in G on w. The result then follows because NPSpace=PSpace. M guesses the strategy of
Romeo and does backtracking for the possible moves of Juliet. For linear rules these possible
moves are either to stay at the current non-terminal or to jump to the next one. Note that
we consider here the pure game, where only Romeo selects rules.

As in the proof of Lemma 6.2, w is transformed into f0A1 · · · fk−1Akfk where the Ai are
the non-terminals of w and the fi are the corresponding intermediate transition relations of
T . Together with the current configuration of the game, M will maintain a pointer to the
non-terminal it is currently investigating and a counter mi, for each i ≤ k, in order to check
that all choices of Juliet have been considered.

M works as follows. It cycles through all possible strategies of Juliet. It has to verify that
during all plays never a string in the target language is produced. For each non-terminal it
first considers jumping to the next non-terminal or staying at the same one, in a backtracking
fashion. In either case M guesses the rule choice of Romeo, updates the current configuration
of the game (transition relations and non-terminal symbol). If M stays with the same non-
terminal it increments the counter mi of the changed position by one. If the counter goes
beyond |Σ| × 22(|T |)2 , M can safely backtrack because some possible outcome at this position
(wrt the target T) has already occurred twice. Note that 22(|T |)2 is an upper bound for the
number of different possible behavior relations for T . ⊓⊔

6.3 Deterministic games with linear rules and left-to-right strategies

When the target language is given as a DFA the complexity decreases in the unary case, but
not in the linear case.

Theorem 6.5. The combined decision problem for linear CF-games with target DFA and
left-to-right strategies is PSpace-complete.

Proof. The upper bound follows from Theorem 6.4.

For the lower bound, letM be a deterministic Turing machine that works in space bounded
by a polynomial p. Let Γ0 be the input alphabet, Γ the tape alphabet, Q its set of states and
w ∈ Γ ∗

0 be an input of size n. We can assume wlog that M halts on every input. We construct
in polynomial time a game G = 〈Σ,R, T 〉 where R is linear and T is a DFA such that Juliet
has a winning strategy in G on S#q0w⊔

p(n)−n# iff M accepts w. The idea of the construction
is as follows. Using S, Juliet lets Romeo produce a string which is intended to represent
the computation of M on w. Juliet wins iff either Romeo does not produce a computation
or all, or if it is accepting. The string will be a sequence Cl#Cl−1 · · ·#C0 of configurations
of M . If Romeo does a mistake Juliet wins because the DFA T accepts the current string.
To this end, it checks the mistake by counting and comparing the corresponding positions.

24

More precisely, Σ = Γ ∪ Q ∪ {#, S}, the rules of G are S → Sa for every a ∈ Σ \ {S}.
The target T accepts all words such that the distance between two successive #s is not p(n)
(that can be checked deterministically with O(p(n)) states). It also accepts all words in which
Cl is an accepting configuration of M , and those containing a substring between successive
occurrences of # which does not encode a configuration of M .

To capture inconsistent configurations produced byRomeo immediately, it finally contains
all words with a mismatch between the first letter and the previous configuration of M ,
whose description starts after the first # symbol. The latter can be done by a deterministic
automaton of size polynomial in |M | + |w| as follows: first it computes, using less than p(n)
states, the distance d between the first letter, say D, and the first # symbol, then it reads,
and remembers in its state the state q of the previous configuration of M . Then, it skips the
next p(n)−d− 1 characters and accepts if for the following three symbols A,B,C it does not
hold ABC →M D. All this requires only a polynomial number of states. ⊓⊔

Theorem 6.6. The combined decision problem for unary CF-games with target DFA and
left-to-right strategies is PTime-complete.

Proof. The lower bound follows from Lemma 5.7 and Lemma 3.2.

We now prove the upper bound. We construct an alternating Turing machine deciding in
logarithmic space whether Juliet has a winning left-to-right strategy. Let G be a unary game
with T as a target DFA. The Turing machine maintains on its tape a pointer to the current
state in the target automaton and a pointer to the current letter in the input configuration.
It also has a counter of logarithmic size. At each step it first checks whether the current
configuration is in the target language. If yes it immediately stops and accepts. Otherwise, it
non-deterministically decides whether it rewrites the current letter or not. If not, it updates
its state pointer by simulating T with the current letter and the current value of the state
pointer. Then it resets the counter value to zero and moves to the next letter. Whenever it
reaches the end of the string it rejects. To rewrite it universally branches over all possible
rewritings. If the newly inserted symbol is a non-terminal, it increments the counter by one.
If the counter goes beyond |Σ| then all possible cases for the current position have been
investigated and the Turing machine stops and rejects. If the newly inserted symbols is a
string of terminal symbols then it updates the state pointer by simulating T on that string
and proceeds with the next symbol. ⊓⊔

7 Rules with regular expressions

As mentioned in the introduction the initial motivation of this work was to consider extended
context-free rules (ECFG), i.e., rules of the form A→ RA where RA is a regular expression.
We first consider unrestricted strategies and show that even the data complexity of the non-
recursive case is undecidable. However for left-to-right strategies, we show that the general
decidability result of the previous section extends to these games.

Extended rules, unrestricted strategies

Theorem 7.1. The data decision problem for 2-bounded CF-games with extended context-free
rules is undecidable.

25

Proof. We give a reduction from the problem of whether a (deterministic) Turing machine
M accepts the empty word or not. Then Romeo wins the game iff M accepts ǫ. The game
starts with a unique letter S. The idea is to simulate M as in the proof of Theorem 5.1 but
reversing the roles of Juliet and Romeo. This can be done because M is deterministic and
therefore Juliet has no decision to take in the simulation of M . The first rule of the game
is S → ($⊔∗)∗ allowing Romeo to introduce at once enough space for M to accept ǫ. If M
requires m steps to accept ǫ then Romeo rewrites S with ($⊔m)m in one step. Then, the game
continues by a simulation of M on ǫ, as in the second part of the proof of Theorem 5.1. Note
that the simulation is achieved with rules of depth one, and that we do not need symmetric
rules for simulating M because it is deterministic. The target language contains all strings
corresponding to the case where the space provided by Romeo does not suffice for completing
the run of M (i.e., the current configuration allows a further step, but there is no extra ⊔
symbol available) and to the case where the run is blocked in a non-final configuration.

We now apply Lemmas 3.1, 3.4 to the second step (simulation of M), obtaining a game
of depth one. Together with the first step this yields the overall depth 2.

⊓⊔

Extended rules, left-to-right strategies

The case of CF-games was handled by a reduction to reachability pushdown games. In order
to extend this idea to ECFGs we need to consider more powerful pushdown games: parity
pushdown games.

A parity pushdown game is played on a graph GP associated with an alternating pushdown
system P = 〈Q = QE ∪ QA, Γ, δ,W 〉, where Q, Γ , δ are defined as in the reachability
pushdown game (see Section 4). In addition, W is a function that associates an integer
(priority) with each state of Q.

A play π is a (possibly infinite) sequence of states that corresponds to the choices made by
Eve and Adam starting from the initial node. If the play is finite, one of the player cannot
play anymore, then the other player wins immediately. If the play is infinite, consider the
sequence W (π) and consider the lowest number n which is repeated infinitely often in W (π).
Eve wins the play if this number is even, otherwise Adam wins.

We say Eve wins the parity game if she has a winning strategy. It is known that deciding
whether an initial configuration is winning is ExpTime-complete, [16]. Moreover, the set of
winning configurations can be described by an alternating automaton of exponential size, [5,
14].

Proposition 7.2. Given a game G = 〈Σ,R, T 〉, where T is a DFA with initial state q0 and a
set R of extended context-free rules, one can construct in polynomial time a parity pushdown
system P such that Juliet wins the game G on w if and only if the node [q0, w$] is winning
for Eve in the parity pushdown game.

Proof. Starting from G, we first construct a (pure) CF-game G′ = 〈Σ′, R′, T ′〉 that in a sense
approximates G. Then we apply the reduction of Proposition 4.4 to obtain a pushdown system
for G′. We then show how to define the accepting configuration of G′ is order to simulate G
appropriately.

We construct G′ = 〈Σ′, R′, T ′〉 as follows. For each extended rule A→ RA of G, let Γ (RA)
be a right-linear context-free grammar generating RA where each non-terminal letter is a new
letter (not from Σ). Let ∆ be the set of new symbols introduced in Γ (RA). Let R

′ be the set

26

of all rules that are either in Γ (RA) or of the form A→ ⊥ (Romeo also has the possibility to
object using ⊥). The target language is T . Note that T does not contain any symbol from ∆,
thus Juliet has to rewrite them if she wants to win. Note also that because of the left-to-right
strategy Juliet is forced to select the leftmost symbol of ∆ if there is one.

So G′ simulates G by simulating a rule A → RA of G by a sequence of rewritings in G′

using the rules of Γ (RA). The problem is that Romeo can now win in G′ by refusing to
complete a simulation of A → RA and rewriting forever using the rules of Γ (RA) forcing an
infinite play. We prevent him from doing that by adding an appropriate parity condition in
the pushdown system constructed from G′ in the proof of Proposition 4.4.

Let P be the pushdown system constructed from G′ as in Proposition 4.4. We modify
P and define the parity winning condition as follows. All nodes with an accepting state
(corresponding to a word in T ′) have priority 0, are self-looping and belong to Eve (Eve
safely wins if she gets there). All nodes corresponding to a symbol of ∆ have priority 2: Eve
wins if Adam keeps rewriting forever. The remaining nodes have priority 1: Adam wins if
he can force an infinite play which is ”fair” (no infinite rewriting when simulating a rule
A→ RA). ⊓⊔

From Proposition 7.2, the results on parity games mentioned above, and Proposition 4.5
(for the lower bound) we immediately obtain:

Theorem 7.3. The combined decision problem for CF-games with target DFA, extended
context-free rules and left-to-right strategies is ExpTime-complete.

Moreover the set of input words for which Juliet has a left-to-right winning strategy is
regular and an alternating automaton that recognizes it can be constructed in exponential time
from a game.

8 Proofs for section 3

In this section we show how extended games can be transformed into (basically) equivalent
pure games (Subsections 8.1 and 8.2). Further, the proofs for the normal forms are given in
Subsection 8.3

The proof techniques are different for general and left-to-right strategies. In some cases
we also need different proofs for different kinds of rule restrictions.

8.1 Transforming extended games for unrestricted strategies

We start this section by proving Lemma 3.1 which shows how to reduce an extended context-
free game into a regular one. The proof is divided into three steps (Lemmas 8.1, 8.2 and 8.3),
each step showing that the corresponding extension does not affect the expressive power of
the game.

The first step shows how to remove navigation constraints.

Lemma 8.1. For each CF-game G = 〈Σ,R, T,N〉 with navigation restrictions a CF-game
G′ = 〈Σ′, R′, T ′〉 can be constructed in polynomial time such that, for each string w, Juliet
wins (G,w) if and only if she wins (G′, w). Furthermore, if G is unary, linear, or non-recursive
then G′ has the same properties. If G is d-bounded then G′ is 3d+ 1-bounded.

Proof. Let us first describe the idea behind the construction. Say, Romeo chooses a rule
α : A→ u with one navigation constraint (, r, B), B ∈ Σ, in configuration (v,Aw). Hence,

27

in G, we get the configuration (v, uw) and, the next position choice of Juliet has to result
in a configuration (vuw1, aw2) such that w = w1Bw2 and w1 ∈ L(r).

The corresponding sequence of configurations in the game G′ should be as follows.

(v,Aw)→
(1)

(v, α w)→
(2)

(v α w1, B̂w2)→
(3)

(v, uw1B̂w2)

As can be seen here, we make use of new symbols. In G′, there is one symbol Â for each
non-terminal A of R, and one symbol α for each rule α of R.

In step (1), Romeo chooses the rule that is applied to A. In (2), Juliet chooses the
position for the next move. Hence, w1 has to match the regular expression r of the navigation
constraint (, r, B) of α. Finally, in (3), the rule chosen in (1) is applied, ending in a situation
in which Juliet is obliged to choose the position of B̂. The game could now continue with a
step of kind (1) by using a rule with left-hand side B̂. For navigation restrictions to the left
the steps are corresponding.

Now we explain the construction of G′ more formally. Let G = 〈Σ,R, T,N〉 be an extended
game. The alphabet Σ′ of G′ consists of

Σ ∪ { α | α rule of G} ∪ {Â | A non-terminal of G}.

and of one objection symbol B⊥, for each of the non-terminals B in this set. The intention is
that Romeo should be able to object if w1, resulting from step (2), is not in L(r).

For each non-terminal A of Σ, G′ contains the rules A → A⊥ and Â → Â⊥. For rules
α : A→ u in G without navigation constraints it contains the rules A→ u and Â→ u. If α
has navigation constraints there are the rules

A→ α , Â→ α and α → u.

If α : A→ u has no navigation constraint, then the last two rules are replaced by the rule
Â→ u. It should be noted that the additional rules preserve all the properties mentioned in
the statement of the lemma. Further, as each step is replaced by a sequence of at most three
steps and because of the additional objection rules, G′ is 3d+ 1-bounded if G is d-bounded.

The target language of G′ has two purposes. First, it has to reflect the original target
language of G. Second, it has to prevent Romeo from abusing objection symbols. That is,
all configurations in which Romeo falsely selects an objection symbol become immediate
winning configurations for Juliet. Note that T ′ will not accept any strings with more than
one objection symbol. Consequently, after Romeo places an objection symbol without getting
into L(T ′), he can choose such a symbol in each future step, preventing the string to ever
enter L(T ′). At the top level, T ′ is basically a disjunction of several automata. Besides one
subautomaton T0 which represents T , the other subautomata of T ′ correspond to the steps
(1) to (3) above.

The subautomata of T ′ are described in the following.

– T0 simply results from T by allowing each transition reading a symbol A also to read the
corresponding Â.

– T1 accepts all strings of the form Σ∗(A⊥+Â⊥)Σ∗, for each non-terminal A of G, to prevent
Romeo from taking an objection symbol if Juliet plays correctly during (1).

– T2 ensures that Romeo does not object unfairly in step (2). It accepts all strings of one
of the following forms.

28

• Σ∗ α rB⊥Σ∗, for each navigation constraint (, r, B) of a rule α : A→ u;

• Σ∗ α rB⊥Σ∗, for each navigation constraint (, r, ∗) of a rule α : A → u, and each
B ∈ Σ;

• the corresponding forms for navigation constraints to the left.

– Finally, T3 accepts strings of the form Σ∗ α ⊥Σ∗ÂΣ∗ and Σ∗ÂΣ∗ α ⊥Σ∗, for every rule
α with navigation constraints and every A ∈ Σ.

Now we show that whenever one of the players departs from the intended behavior the
other can win. We only consider the case of rules with navigation constraints. Note that a
configuration containing more than one objection symbol is always winning for Romeo.

– In round (1), Juliet has to choose the position of a symbol of the form Â if such a symbol
is in the string. If she does not follow that rule, Romeo can object and win. If she does,
Romeo looses if he objects (T1).

– If there is no such symbol, she is free to choose an arbitrary position and Romeo looses
if he objects (T1).

– If Juliet chooses the position of α in round (2) again, Romeo can place a α ⊥ and
wins. If she chooses an allowed position which respects the navigation constraints, say
labeled by B, then she wins in case Romeo selects B⊥ (T2).

– If, in round (3), Juliet does not go back to α , then Romeo wins by choosing B̂⊥, in

case she selected B̂ or by some A⊥, otherwise. If Romeo chooses α ⊥ on the correct
position then Juliet wins (T3).

We only sketch how to deal with constraints for the first move of the play, given in N(ǫ).
The idea is simply as follows. We add a disjoint copy Σ′ of Σ to the alphabet of the game.
We replace all symbols σ on the right-hand sides of rules by σ′. For each rule A→ u we add a
rule A′ → u. Finally, we modify T ′ accordingly, so that σ and σ′ can be used interchangeably.

All symbols of the initial string are from Σ, after the first move, however, there is at least
one non-Σ symbol. Hence, T ′ can be finally adapted to deal with wrong position choices of
Juliet in the first move. ⊓⊔

The second step takes care of symmetric rules.

Lemma 8.2. There are polynomial-time computable functions mapping CF-games G with
symmetric rule choice and navigation constraints to CF-games G′ with navigation constraints
only, and pairs (G,w) to strings w′ such that Juliet wins (G,w) if and only if Juliet wins
(G′, w′). If G is unary, linear or non-recursive then G′ can be guaranteed to have the same
property. If a non-recursive G is d-bounded then G′ is 4d+ 1-bounded.

Proof. Let G be the CF-game 〈Σ,R, T,N,ΣE〉 with symmetric rule choice for non-terminals
in ΣE and navigation constraints N .

In the following we always suppose that A is a non-terminal from ΣE and that α1, . . . , αk

are all rules with left-hand side A in R, where αi : A→ ui.

We describe two constructions, one which preserves unary and linear rules, and one which
preserves bounded (but not necessarily unary) rules.

Preserving unary and linear rules. Let m be the maximum number of rules which are
associated with a single symbol of G.

29

Let w′ = w$m. The idea is as follows. Suppose that the current configuration of G is
(u,Av), reflected by (u,Av$m) in G′. If Juliet wants to choose rule αi : A → ui then the
play in G′ should go through the following configurations.7

uAv$m →
(1)

uÂv$m →
(2)

uÂv$i−1$̂$m−i

→
(3)

u αi v$
i−1$̂$m−i →

(4)
u αi v$

m →
(5)

uuiv$
m

In (1), Juliet selects the position of A and Romeo selects the only possible rule A→ Â.
In (2), Juliet commits herself to the i-th rule by choosing the i-th $ in the suffix of the

string. This is rewritten by $̂. In (3), Juliet has to select the position of Â and Romeo

will be forced to replace it by αi to be consistent with the choice of the previously chosen

$. In step (4), Juliet selects the position of $̂ which is then rewritten by $. Finally, in (5),
Juliet selects αi and Romeo has to replace it by ui. If the original rule A → ui of G
has a navigation constraint this is associated with the rule αi → ui. The other rules are
associated with suitable navigation constraints that ensure moving back and forth between
the $ symbols and the symbols Â and αi .

More precisely, the game G′ is defined over the alphabet Σ1 = Σ′ ∪ {$, $̂}, where Σ′ is
defined as in Lemma 8.1.

The set R′ contains the following rules. The numbers correspond to the 5 steps above.

(1) A→ Â with navigation constraint (, Σ∗
1 , $);

(2) $→ $̂ with all navigation constraints of the form (, Σ∗
1 , Â), for A ∈ Σ;

(3) Â→ αi with navigation constraint (, Σ∗
1 , $̂), for each rule αi of G;

(4) $̂→ $ with all navigation constraints of the form (, Σ∗
1 , αi), for rules αi of G

(5) αi → ui, for each rule αi : A → ui of G; if αi had navigation constraints the same are
associated with αi → ui.

Note that, due to the navigation constraints in G′, Juliet never can select a position
which is not allowed. Therefore there is no need to allow objection for Romeo.

The automaton T ′ accepts all strings that correspond to strings accept to strings in L(T),
i.e., all strings of the form u$m with u ∈ T . Furthermore, it accepts all strings resulting from
a wrong rule choice of Romeo in step (3). They are easily recognized by comparing the index

i in αi with the relative position of $̂ in the $-suffix of the string.

Preserving non-recursive rules. The main idea in this case is as follows. We play the game
on w′ = w. The rules R′ are the same as in R for non-terminals not in ΣE .

If Juliet wants to choose rule αi : A→ ui in configuration (u,Av) then the play should
go through the following configurations.

uAv →
(1)

u〈 α1 · · · αk 〉v →
(2)

u〈 α1 · · · α̂i · · · αk 〉v →
(3)

u〈 α1 · · ·ui · · · αk 〉v

Here 〈 and 〉 are additional symbols. In step (1) Juliet selects the position of A and Romeo

has to replace it by α1 · · · αk . In step (2) chooses a rule αi by selecting the corresponding

symbol αi . Romeo has to replace it by α̂i . In step (3) Juliet has to select the position of

7 We denote configurations only as strings as the chosen positions are always clear.

30

α̂i and Romeo must rewrite it by ui. The original navigation constraints of αi are associated

with the rule α̂i → ui.
The rules of G′ are as follows.

(1) Rules A→ 〈 α1 · · · αk 〉, for each non-terminal A of Σ with rules α1, . . . , αk;

(2) Rules αi → α̂i , for each rule αi of G;

(3) Rules α̂i → ui, for each rule αi : A→ ui of G.

In order to prevent, in steps (2) and (3), Juliet from selecting a position outside 〈 α1 · · · αk 〉

or 〈 α1 · · · α̂i · · · αk 〉, there are objection symbols ! and rules A → ! for every non-

terminal ofG′. T ′ accepts all strings in which an objection symbol occurs in a string 〈 α1 · · · αk 〉

or 〈 α1 · · · α̂i · · · αk 〉. Note that, after finishing a rule application properly, one symbol αi

has been replaced by a symbol from Σ, therefore there is at any time at most one substring
of this form in the string.

Besides that T ′ accepts all strings u that result in strings of L(T) after deleting all symbols
not in Σ. ⊓⊔

It should be noted that the constructions given in the proof of Lemma 8.2 do not result
in a game which is unary and non-recursive at the same time.

Finally we deal with games with several phases.

Lemma 8.3. There are polynomial-time computable functions mapping extended CF-games
G to CF-games G′ with symmetric rule choice and navigation constraints only, and pairs
(G,w) to strings w′ such that Juliet wins (G,w) if and only if Juliet wins (G′, w′). If G
is unary, linear or non-recursive then G′ can be guaranteed to have the same property. If a
non-recursive G is d-bounded then G′ is also 2d-bounded.

Proof. Let k be the number of phases in G, Σ its alphabet. For each symbol A ∈ Σ we make
use of the additional symbols A1, . . . , Ak.

Each move of G is simulated in G′ by two moves. First, Juliet selects a position. Then,
Romeo replaces the symbol A of that position by Ai, where i is the number of the current
phase. Then Juliet has to select the same position again and, depending on whether A ∈
ΣE,i, Juliet or Romeo chooses the rule which replaces Ai.

This process is guarded by the final symbols of the string. To this end, let w′ = w$1$2 · · · $k.
In phase i the suffix of the string will be $′1$

′
2 · · · $

′
i$i+1 · · · $k. We abbreviate the string

$′1$
′
2 · · · $

′
i$i+1 · · · $k by Di.

Let Σ′ = Σ ∪Σ{1,...,k} ∪ {$i, $
′
i | i ≤ k} ∪ {⊥}.

Romeo can object for various reasons. Juliet could choose a wrong position in the second
step (not Ai), or it could choose the (i+ 1)-st $ before phase i is finished.

The rule set R′ is defined as follows.

– For each non-terminal A and each i ≤ k, G contains the rule A→ Ai.
– For each rule, A→ u in Ri it has the rule Ai → u.
– For each i ≤ k it contains the rule $i → $′i.
– Additionally, it contains the rule A→ ⊥, for each symbol A ∈ Σ ∪ {$i, $

′
i | i ≤ k}.

The new target language is defined as follows.

– For each i, it contains all strings of the form uDi with u ∈ L(Ti);

31

– For each i, j, j 6= i and A, it contains all strings of the form Σ∗AjΣ
∗Di, in order to prevent

Romeo choosing a symbol Ai not consistent with the current phase; It should be noted
here, that at each time there is at most one symbol of the form Ai;

– For each i < k it contains all strings of the form u$′1$
′
2 · · · $

′
i
⊥$i+1 · · · $k with u ∈Wi; This

is used to allow Juliet to go to phase i+1, if the current string is in Wi. If Juliet tries
to replace the (i+1)-st $ before the i-th phase is finished or to skip a phase then Romeo

wins.

As each rule application of G is simulated by two rule applications of G′ and besides only
depth 1 rules are added the depth of G′ is at most 2d+ 1 if the depth of G is d. ⊓⊔

Combining these three lemmas we eventually obtain Lemma 3.1.

8.2 Transforming extended games for left-to-right strategies

We now turn to the proof of Lemma 3.2. The proof is divided into two steps. The first step
shows how to remove navigation constraints.

Lemma 8.4. For each CF-game G = 〈Σ,R, T,N〉 with navigation restrictions a CF-game
G′ = 〈Σ′, R′, T ′〉 can be constructed in polynomial time such that, for each string w, Juliet
wins (G,w) with a left-to-right strategy if and only if Juliet wins (G′, w) with a left-to-
right strategy. Furthermore, if G being unary, linear and non-recursive is preserved. If G is
d-bounded then G′ is (8d + 1)-bounded. If T is a DFA and each rule of R has at most one
navigation restriction then T ′ is a DFA.

Proof. The idea is similar to the proof of Lemma 8.1. Of course, we do not have to consider
constraints that require navigation to the left.

For each rule α : A → u with navigation constraints in R, R′ contains the rule A → α .
The other rules are as in R.

Whenever Juliet selects a wrong position wrt a constraint (, r, B), Romeo marks the
selected symbol A by A⊥. The target automaton T ′ has to ensure that, if Romeo uses A⊥

wrongly, the string between the previous position (the right-most symbol of the form α) and
A⊥ matches the regular expression r. To this end, for each non-terminal A of G an objection
rule A→ A⊥ is added.

The target automaton T ′ accepts all strings v, for which h(v) ∈ L(T), where h is the
homomorphism with h(A) = A, for A ∈ Σ and h(α) = u, for α : A→ u.

Furthermore, it accepts all strings that result from an objection of Romeo in a situa-
tion where the current position choice of Juliet was valid with respect to the navigation
constraints of the previous rule.

More precisely, for each rule α : A → u with a navigation constraint (, r, B) it accepts
all strings of the form u α v1B

⊥v2, where v1 ∈ L(r). Similarly, for rules (, r, ∗).

It is easy to see that T ′ can be made deterministic, if T is a DFA, each r is given by a
DFA and there is at most one navigation constraint per rule. ⊓⊔

The second step allows to remove symmetric rules and therefore completes the proof of
Lemma 3.2.

32

Lemma 8.5. For each CF-game G = 〈Σ,R, T,N,ΣE〉 with symmetric rule choice and nav-
igation constraints a CF-game G′ = 〈Σ′, R′, T ′〉 with navigation constraints only can be con-
structed in polynomial time such that, for each string w, Juliet wins (G,w) with a left-to-
right strategy if and only if Juliet wins (G′, w) with a left-to-right strategy. Furthermore,
the following statements hold.

(a) If G is non-recursive then also G′ is non-recursive. More precisely, if G is d-bounded then
G′ is 3d-bounded.

(b) If G is unary (linear, resp.) and all ΣE-rules have a single navigation restriction, then
G′ is also unary (linear, resp.).

(c) If T is a DFA and each rule of R has at most one navigation restriction then T ′ is a
DFA.

Proof. For non-linear games the (second part of the) proof of Lemma 8.2 can be directly
applied. Although it was stated in the case of unrestricted strategies, it works as well for
left-to-right strategies.

Of course, we cannot take the same approach in the case of unary rules. Instead of letting
Juliet choose a rule from a substring of rules we let her cycle through all possible rules. She
selects the last rule by moving to the next position. It is necessary here, that the ΣE-rules
have navigation constraints because otherwise Juliet would be allowed to select the same
position again.

To state it otherwise: if A is a ΣE-non-terminal with rules α1 : A→ u1, . . . , αm : A→ um
and Juliet wants to select rule αi then, for some v, w, the play proceeds as follows:

vAw →
(1)

v α1 w →
(2)

v α2 w . . .→
(i)

v αi w,

and Juliet chooses a position inside w next. The corresponding rules are A→ α1 and, for
each j ≤ m, αj−1 → αj .

The automaton T ′ accepts all strings v for which h(v) ∈ L(T), where h(A) = A, for each
non-terminal A and h(α) = u, for each rule α : A→ u.

Both constructions result in a target DFA under the conditions of (c). ⊓⊔

8.3 Normal forms for games

We conclude this section by proving the normal form lemmas of Section 8.

Lemma 3.3. For each CF-game G = 〈Σ,R, T 〉 a CF-game G′ = 〈Σ′, R′, T ′〉 can be

constructed in polynomial time such that T ′ is given by a DFA and for each string w, Juliet
wins (G,w) if and only if Juliet wins (G′, w$), where $ is an additional symbol not occurring

in Σ. Furthermore, if G is unary, linear or non-recursive then G′ can be guaranteed to have

the same property. If G is d-bounded then G′ can be chosen O(d)-bounded.

Proof. Let us first describe the idea of the construction: during a construction stage Juliet

plays as in G. Eventually she obtains a word w′ = A1 · · ·Al ∈ L(T). In the transformation

stage she replaces each symbol A of w′ by a symbol A, q , where q is a state of T . For the

resulting string A1, q1 , . . . , Al, ql it should hold qi ∈ δ(qi−1, Ai), for every i ≤ l, where q0 is
the initial state of T and ql ∈ F .

33

How the transformation is done depends on the required properties of G′ but is along the
lines of Lemma 8.2.

If G′ has to be linear (but not non-recursive) then, for each symbol A there are rules

A→ A, q1 and A, qi → A, qi+1 , for each i < k, where q1, . . . , qk are all states of T . Hence,

Juliet can select the suitable symbol A, qi by cycling through all possible states.

If G′ does not need to be linear then first a rule A → 〈 A, q1 · · · A, qk 〉 is applied, and

Juliet chooses a A, qi afterwards which is then replaced by qi.

In both cases the automaton T ′ can be adapted to accept all strings obtained from w′. ⊓⊔
Note that in this proof we could not apply Lemma 3.1 as we often apply Lemma 3.3 only

after application of Lemma 3.1 and Lemma 3.1 itself does not preserve determinism of games.

Lemma 3.4. For each d ≥ 1 there are polynomial-time computable functions transforming

d-bounded CF-games G into 1-bounded CF-games G′, and pairs (G,w) into strings w′ such

that Juliet wins (G,w) if and only if Juliet wins (G′, w′). The same statement holds with

respect to left-to-right strategies. Furthermore G′ can be enforced to be unary or linear if G
has the corresponding property and it is deterministic in case G is deterministic.

Proof. We use the additional symbols $0, · · · , $d−1 and #1, . . . ,#d. Let m be the maximal
length of a right-hand side of a rule of G. The string w′ is obtained by replacing each symbol
A of w by A$0v

m
1 , where vi, i ≤ d, is recursively defined as follows.

– for i < d, vi equals #i$iv
m
i+1.

– vd is #d.

Roughly speaking, we attach to A the encoding of a tree of depth d and degree m, that will
be filled stepwise by the string derived from A using rewriting rules. The symbols #i are used
to be replaced by symbols of Σ, the symbols $i are used to store the rules that generated the
symbols of Σ.

As an example (with m = d = 2), the G-configurations

AB → CDB → EDB → EDF

will be simulated in G′ by

A$0#1$1#2#2#1$1#2#2B$0#1$1#2#2#1$1#2#2

→∗ A CD C$1#2#2D$1#2#2B$0#1$1#2#2#1$1#2#2

→∗ A CD C E E#2D$1#2#2B$0#1$1#2#2#1$1#2#2

→∗ A CD C E E#2D$1#2#2B F F$1#2#2#1$1#2#2

The selection of a position in w and the replacement of a symbol A by a string α =
A1 · · ·An in the game G is mimicked in G′ as follows. First, Juliet selects the position
immediately to the right of the symbol A. This position carries a symbol of the form $i,
where i is the depth of A in the current play. Then Romeo replaces $i by the symbol α .
In the next n rounds the n symbols #i+1 attached to A must be replaced by A1, . . . , An. We
thus have a rule $i → α for each i ≤ d and each rule α ∈ R, and a rule #i → a for each

i ≤ d and each a ∈ Σ. Additionally, we have objection rules $i → !! and #i → ! . The target
language of G′ ensures that both players play according to this description:

34

– If Juliet selects a position which does not carry a $i when considering a symbol of depth
i then Romeo can replace it by a symbol !! and wins immediately.

– If Juliet does not select the positions labeled by #i+1 in the n copy moves, then Romeo

can place the symbol ! and wins.
– If Romeo does not replace the j-th symbol labeled #i+1 by Aj then Juliet wins imme-

diately.

All these conditions can be checked by a deterministic automaton (with d components)
of polynomial size which works in parallel with the automaton of G (which simply ignores
symbols of the form $j and #j and all symbols A, for which the right neighbor has been
replaced by a symbol α).

It should be stressed that the construction works for general strategies as well as for left-
to-right strategies. ⊓⊔

9 Discussion

We have seen that in general it is undecidable to tell who wins a CF-game. We have also
seen several restrictions on rules and on the strategy which imply decidability. A natural
interesting situation not considered in this paper is the case where the target language T is
finite. This is often the case in our scenario, as a user may require all data looking exactly like
this or that, with no other options. If no ǫ-rules are allowed, the game is obviously decidable
in ExpTime (APSpace) as no useful configuration can be larger than the largest string in
L(T). It is open whether this bound is tight. If ǫ-rules are allowed it is not even clear whether
the game is decidable.

Knowing that there exists a winning strategy is one thing. In practice the system needs
to know which web service it should call and in which order. This corresponds to extracting
a winning strategy of a CF-game when it exists. We can show that this is always possible
within the same complexity bounds as for the decision problem.

Acknowledgment. We thank Tova Milo who brought the problem to our attention, Serge
Abiteboul and Victor Vianu for several fruitful discussions, and Tova Milo and Omar Benjel-
loun for the time they spent explaining us the beauty of AXML. We are greatly indebted to
the referees of TOCS for their extremely careful reading and the numerous corrections they
proposed.

References

1. S. Abiteboul. Semistructured Data: from Practice to Theory. In LICS’01, IEEE Comp. Soc. 2001.
2. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML documents with distri-

bution and replication. In SIGMOD’03, pages 527-538, ACM 2003.
3. Active XML. http://www-rocq.inria.fr/verso/Gemo/Projects/axml.
4. A. Blumensath and E. Grädel. Automatic structures. In LICS’00, pages 51–62, IEEE Comp. Soc. 2000.
5. Th. Cachat. Symbolic Strategy Synthesis for Games on Pushdown Graphs. In ICALP’02, LNCS 2380,

pages 704-715, Springer, 2002.
6. E. Grädel, W. Thomas, and Th. Wilke, eds. Automata, Logics, and Infinite Games. Springer, 2002.
7. Jelly: Executable XML. http://jakarta.apache.org/commons/sandbox/jelly.
8. Ch. Löding. Infinite graphs generated by tree rewriting. PhD thesis, RWTH Aachen, 2003.
9. Macromedia Coldfusion MX. http://www.macromedia.com/.

10. R. Mayr. Process rewrite systems. In Theoretical computer science 156(1-2):264-286, 2000.
11. T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. Dang Ngoc. Exchanging Intensional XML Data. In

SIGMOD’03, pages 289-300, ACM 2003.

35

12. F. Neven. Automata, Logic, and XML. In Proc. of CSL’02, LNCS 2471, pages 2-26, Springer, 2002.
13. C. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
14. O. Serre. Note on winning positions on pushdown games with ω-regular conditions. In Information Pro-

cessing Letters 85:285-291, 2003.
15. V. Vianu. A Web Odyssey: From Codd to XML. In PODS’01, ACM 2001.
16. I. Walukiewicz. Pushdown Processes: Games and Model-Checking. In Information and Computation 164(2),

2001, pages 234-263.
17. Web services. http://www.w3.org/2002/ws.

36

