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Abstract. We introduce distributed games over asynchronous transi-
tion systems to model a distributed controller synthesis problem. A game
involves two teams and is not turn-based: several players of both teams
may simultaneously be enabled. We define distributed strategies based on
the causal view that players have of the system. We reduce the problem
of finding a winning distributed strategy with a given memory to find-
ing a memoryless winning distributed strategy in a larger distributed
game. We reduce the latter problem to finding a strategy in a classical
2-players game. This allows to transfer results from the sequential case
to this distributed setting.
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1 Introduction

The controller synthesis problem has been widely investigated by many authors
for different system types (sequential, concurrent, timed, probabilistic) and dif-
ferent specification languages (linear or branching temporal logics for instance).
The variant addressed here, called distributed controller synthesis problem, is
the following. We are given a distributed reactive system executing a program
in some environment, modeled by an asynchronous transition system [13] made
up of several processes. It can perform local actions and synchronization actions
involving several processes. Such an action first reads states of the participat-
ing processes and, depending on what is read, chooses a transition changing
the states of the involved processes. Interpreting processes as memory locations,
this suggests communication via shared memory, and explains the terminology
adopted in the paper. However, one can as well simulate with these asynchronous
systems other communication paradigms, such as point-to-point channels. An-
other advantage of this model is to handle actions of the environment just as
actions of the reactive system. We are also given a specification, i.e., a prop-
erty expressing behaviors one wants to ensure for the system. The distributed
controller synthesis problem is then to compute a distributed controller on the
same process set (actions of the controller observe local states of some processes).
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With this information, the controller has to enable or disable controllable ac-
tions of the system, so that the overall system behaves correctly according to
the specification.

The problem is known to be decidable and to have an optimal solution in the
sequential case [10], i.e., when there is a single process. For distributed systems
however, the situation is more involved. Several models have been considered
so far (formulated in control or in game theory terminology). For synchronous
processes communicating via buffers, the problem is undecidable [9] for LTL spec-
ifications except for very few communication architectures. Recent works [5,4]
extend this result, e.g., for local specifications (talking only of actions of single
processes). The approach of [7] unifies [9,5,4]. In all settings, a major reason for
undecidability is when the specification language makes it possible to express
properties of an observed linearization of process actions, ignoring their possible
concurrency. Another distributed model is studied in [6], and it is shown that the
existence of specific controllers is decidable for specification languages making
no distinction between linearizations of the same concurrent execution.

Systems used in this paper subsume those of [9,5,4,7] and [6]. In [6], global
transitions of the system are obtained by synchronizing local transitions of pro-
cesses, and transitions of the environment are local. Here in contrast, a transition
of a synchronizing action also depends on the states of other involved processes,
so that transition functions of actions are not necessarily a cartesian product of
local transition functions. Further, environment moves can be defined globally.
Systems of [7], in which the environment is global and transitions of the system
are purely local (process communication flows through the environment) can
also be modeled naturally in our framework. Another difference is that [6,7] use
local memory controllers, based on the history of process local states (cf. Sec. 5).
We use causal memory: a controller can remember information collected from
other processes along the computation. The existence of a distributed controller
in the settings of [6,7] implies the existence of a controller in our setting. As
the converse does not hold, one cannot transfer immediately the undecidability
results of [6,7] to our case.

Our primary goal is to model the distributed controller synthesis problem
by games. Sequential 2-players games already provide a natural and widely used
context to model sequential reactive systems [8,11,14,12]. Player 0 represents the
system and player 1 represents the environment. The rules of the game describe
the possible interactions between them, and the winning condition for player 0
expresses the specification that the system should meet. Thus, deciding whether
player 0 has a winning strategy corresponds to deciding whether the system can
be controlled to meet the specification, and computing a winning strategy for
player 0 corresponds to solving the controller synthesis problem.

Distributed games proposed in this paper fit suitably to the model of asyn-
chronous systems and supply a natural framework for studying the distributed
controller problem. Two teams play one against the other. Players of team 0 may
be viewed as controllable actions of a distributed system which cooperate in or-
der to meet the specification, no matter how the environment (team 1) behaves.
All players use a pool of shared variables to transmit information. The game is



not turn-based: in each position of the game, several players of team 0 or team
1 may be simultaneously enabled. Thus, the game is asynchronous, contrary to
the setting of [7] where at each stage players act synchronously. Assuming that
dependencies between actions are fixed (i.e., do not depend on the context), a
play is then a Mazurkiewicz trace.

We next define the notion of distributed strategy for a team in such a game.
Roughly speaking, a strategy is distributed if any move it predicts for a player
only depends on the causal view of that player. In this context, there exist games
in which neither team 0 nor team 1 have a winning distributed strategy.

We first show that, as in the sequential framework, one can transform a game
G for which team 0 has a distributed strategy with memory µ into a game Gµ

for which team 0 has a memoryless strategy. If G and the memory are finite,
then so is Gµ. We further transform a distributed game G into a classical 2-
players game G̃, such that team 0 has a memoryless distributed strategy in G
if and only if player 0 has a memoryless winning strategy in G̃. This result is
effective: G̃ can be effectively constructed and from a winning strategy of G̃ we
can effectively construct a winning distributed strategy for G and vice versa. We
then show that if the winning condition is a recognizable trace language, then
one can decide whether team 0 has a memoryless distributed winning strategy,
and compute it. The restriction to recognizable specifications is not artificial
and makes it possible to express a relationship between the architecture of the
game and the specification. Moreover, in practice, recognizable languages cover
most interesting properties. As in [6,7], specifications depending on the order of
independent actions lead to undecidability.

Finally, we explain how to simulate distributed games of [7] in our context.
The goals of the two kinds of games are quite different. The aim of [7] is to unify
different approaches and to find generic transformations on distributed games
(e.g., the reduction of the number of players) to get decidability results, while
we first focused on a natural model which we then reduced to sequential games.
Due to space constraints, proofs are omitted.

2 Preliminaries

In this section, we briefly recall definitions of pomsets and Mazurkiewicz traces.
The reader is referred to [3,2] for details.

If (V, 6) is a poset and S ⊆ V , we let ↓S = {e ∈ V | ∃s ∈ S, e 6 s}. When
e ∈ V then we simply write ↓e for ↓{e} and we let ⇓e = ↓e \ {e}. The successor
relation associated with the partial order < is l = < \ <2.

A pomset over an alphabet Σ is a tuple (V, 6, `) where (V, 6) is a poset, and
` : V → Σ is a mapping called the labeling. Elements of V are called events or
vertices. Two pomsets t = (V, 6, `), and t′ = (V ′, 6′, `′) are isomorphic, written
t ∼ t′ if there exists a bijection ϕ : V → V ′ such that `′◦ϕ = ` and for all e, f ∈ V
e 6 f iff ϕ(e) 6′ ϕ(f). If Σ = Σ1×Σ2 and `(e) = (`1(e), `2(e)), we write (`1, `2)
(or even `1, `2) instead of `. If t = (V, 6, `) is a pomset, we denote by max(t)
(resp. by min(t)) the set of maximal (resp. minimal) elements of t. The alphabet
of t is alph(t) = `(V ). We let alphinf(t) =

{
a ∈ alph(t) | `−1(a) is infinite

}
.



A dependence alphabet is a pair (Σ, D) where Σ is a finite alphabet and D
is a reflexive, symmetric binary relation over Σ, called the dependence relation.
We let I = Σ×Σ \D be the independence relation. A (Mazurkiewicz) trace over
(Σ, D) is an isomorphism class of a pomset (V, 6, `) such that, for all e, f ∈ V :
(1) `(e)D`(f) ⇒ e 6 f or f 6 e, (2) elf ⇒ `(e)D`(f) and (3) ↓e is finite. Two
traces t, t′ are independent if (alph(t)×alph(t′))∩D = ∅. We denote by R(Σ, D)
(resp. by M(Σ, D)) the set of traces (resp. of finite traces) over (Σ, D). It is well-
known that M(Σ, D) is a monoid. The free monoid (resp. the free semigroup)
over Σ is denoted by Σ∗ (resp. by Σ+).

A prefix of t = (V, 6, `) is a trace (U, 6, `), where U ⊆ V satisfies ↓U = U .
We write s 6 t is s is a prefix of t. A linearization of t is a labeled total order
(V, 4, `) such that e 6 f implies e 4 f . For any w ∈ Σ∗, there exists a unique
trace [w] of which w is a linearization.

3 Distributed games

A distributed system made up of asynchronous processes interacting together
and with the environment may be viewed as a single asynchronous model having
controllable actions (the system’s ones) and uncontrollable actions (the environ-
ment’s ones). In the game setting, one views actions as players, which are split
in two teams Σ0 (actions of the system) and Σ1 (actions of the environment).
An execution of the system inside the environment corresponds then to a play,
a property of the executions to a winning condition, and a distributed controller
to a winning distributed strategy for team 0.

If X and I are sets and J ⊆ I, then for x = (xi)i∈I ∈ XI we let xJ =
(xi)i∈J ∈ XJ . Given sets (Xi)i∈I , and J ⊆ I, we let XJ =

∏
i∈J Xi.

An architecture is a tuple (Σ,P , R, W ) such that Σ is a finite set of actions or
players, P is a finite set of processes, R : Σ → 2P assigns to each a ∈ Σ its read
domain R(a), W : Σ → 2P assigns to each a ∈ Σ its write domain W (a). We
only consider architectures satisfying the following natural restriction, already
considered in [13], and sufficient to get a dependence alphabet on actions.

∀a ∈ Σ, ∅ 6= W (a) ⊆ R(a)

∀a, b ∈ Σ, R(a) ∩ W (b) = ∅ ⇐⇒ R(b) ∩ W (a) = ∅

We define the dependence relation over Σ as D = {(a, b) | R(a) ∩ W (b) 6= ∅}.
Let (Σ,P , R, W ) be an architecture. A distributed game over (Σ,P , R, W )

is given by a tuple G = (Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,W) where Σ0 and Σ1 are
the players of teams 0 and 1 respectively and we have Σ = Σ0 ]Σ1, ∀i ∈ P , Qi

is the set of local states for process i, ∀a ∈ Σ, Ta ⊆ QR(a) × QW (a) gives the
local moves of player a, q0 ∈ Q =

∏
i∈P Qi is the starting position of G, and W

defines the winning condition of G.
The easiest way to define the semantics of the distributed game is via its

sequential game graph whose set of positions is Q, the initial position is q0 and
there is an a-move from p ∈ Q to q ∈ Q (denoted p

a
−→ q) if (pR(a), qW (a)) ∈ Ta



and qP\W (a) = pP\W (a). A sequential play is a sequence q0 a1−→ q1 a2−→ q2 · · · .
Note that in a position p ∈ Q, several players of team 0 and of team 1 may be
simultaneously enabled, hence this sequential game graph does not correspond
to a conventional (sequential) game in which each position is either a position
of player (team) 0 or a position of player (team) 1.

We consider a new symbol ⊥ /∈ Σ with R(⊥) = W (⊥) = P and the alphabet
Σ′ = {(a, p) | a ∈ Σ and p ∈ QW (a)} ∪ {(⊥, q0)} with the dependence relation
D′ = {((a, p), (b, q)) | R(a) ∩ W (b) 6= ∅}. The winning condition of the game
is a set of words W ⊆ Σ′∞ which is closed under the usual trace equivalence
(see [2,3]). With the sequential play π = q0 a1−→ q1 a2−→ q2 · · · of G we associate
the word w = (⊥, q0)(a1, q

1
W (a1))(a2, q

2
W (a2)) · · · over Σ′. Note that the word w

faithfully encodes the sequential play π and team 0 wins the play π if w ∈ W .
A better semantics of these distributed games is to view a play directly as a

rooted trace over the alphabet Σ′. A finite or infinite trace t = (V, 6, (`, σ)) ∈
R(Σ′, D′) is rooted if `−1(⊥) = {x⊥} is a singleton and x⊥ 6 y for all y ∈ V . If
s = (U, 6, (`, σ)) is a nonempty prefix of t then σ̄(s) = (σ̄(s)i)i∈P ∈ Q is defined
by σ̄(s)i = σ(y)i where y is the maximal vertex in {x ∈ U | i ∈ W (`(x))}.

A distributed play of G is a finite or infinite rooted trace t = (V, 6, (`, σ)) ∈
R(Σ′, D′) such that for each a ∈ Σ and x ∈ `−1(a), we have (σ̄(⇓x)R(a), σ(x)) ∈
Ta. The winning condition W is now a subset of R(Σ′, D′) and team 0 wins the
distributed play t if t ∈ W . The two definitions above are indeed equivalent but
the second one is better suited to distributed games and allows a natural defi-
nition of a distributed strategy. In sequential games, one often considers infinite
plays only. We also consider finite plays because it can be more convenient.

Let t = (V, 6, `, σ) ∈ R(Σ, D) be a rooted trace and let J ⊆ P . The trace ∂J t
is the prefix of t defined by the set of vertices U = ↓{x ∈ V | W (`(x)) ∩ J 6= ∅}.

An asynchronous mapping [1] is a function µ : M(Σ, D) → M such that
µ(∂A∪Bt) only depends on µ(∂At) and µ(∂Bt), and µ(∂R(a)t.a) only depends
on µ(∂R(a)t) and a. Asynchronous mappings can be computed by deterministic
asynchronous transition systems. A distributed memory on a game G is an asyn-
chronous mapping µ : M(Σ′, D′) → M . It will be used by players of team 0 as
an abstraction (computed in M) of their causal view of the play. A distributed
strategy with memory µ for team 0 (µ-DS) is a pair (f, µ) where f is a partial
function f :

⋃
a∈Σ0

QR(a) × MR(a) × {a} → QW (a) such that if f(p, m, a) = q,
then (p, q) ∈ Ta. Intuitively, if f(p, m, a) = q, then the strategy f dictates an
a-move to q ∈ QW (a) when the memory of the play that a can observe using µ

is m ∈ MR(a). If f(p, m, a) is undefined, the a-move is disabled by the strategy.
Note that several players of team 0 may be simultaneously enabled by f during
a play. In the sequel we write f instead of (f, µ), µ being understood.

Let f be a µ-DS. Let µ̄(t) = (µ(∂i(t)))i∈P . A distributed play t = (V, 6
, `, σ) ∈ R(Σ′, D′) is an f -play if

∀x ∈ V, σ(x) = f(σ̄(⇓x)R(a), µ̄(⇓x)R(a), a)

The play t is f -maximal if f(σ̄(∂R(a)t)R(a), µ̄(∂R(a)t)R(a), a) is undefined for all
a ∈ Σ0 such that ∂R(a)t is finite. The maximality condition is natural: if the DS



of team 0 dictates some a-moves at some f -play t, then the f -play t is not over
and we do not have to decide whether it is winning or not for team 0. Note that
this applies also if t is infinite and corresponds to some fairness condition: along
an infinite f -play, a move of team 0 cannot be ultimately enabled by f . Observe
that any f -play t is the prefix of some f -maximal f -play. If each f -maximal
f -play is in W then f is a winning distributed strategy (WDS) for team 0.

A distributed game is not necessarily determined in the sense that it is pos-
sible that neither team 0 nor team 1 have a WDS, even with perfect memory.
For instance, consider G = (Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ, q0,W) with Σ0 = {a},
Σ1 = {b}, P = {1, 2}, R(a) = W (a) = {1}, R(b) = W (b) = {2}, Q1 = Q2 = {1},
Ta = Q2

1, Tb = Q2
2, q0 = (1, 1), and W = M(Σ′, D′)∪ {(⊥, q0)(a, 1)ω(b, 1)ω}. As-

sume that team 0 has a DS. If f((⊥, q0)(a, 1)n, a) 6= ∅ for all n > 0, then team 0
loses if team 1 does not play at all, yielding the play (⊥, q0)(a, 1)ω . Conversely,
if there exists n > 0 such that f((⊥, q0)(a, 1)n, a) = ∅, then team 0 loses if team
1 makes infinitely many moves. Symmetrically, team 1 does not have a WDS.

Actually, this non-determinacy is not a problem. For the distributed con-
trol problem, we are looking for a WDS allowing controllable events (team 0)
to enforce good behaviors but we are not interested in a winning distributed
strategy for the uncontrollable events: uncontrollable events are played by an
environment, and there is no reason to consider only distributed environments.

A memoryless distributed strategy (MDS) is a µ-DS with |µ(M(Σ′, D′))| = 1,
that is, the memory does not record any information. In this case, we write
f(p, a) instead of f(p, m, a). A perfect-memory distributed strategy is a µ-DS
with µ(t) = t. It provides for a move to x with `(x) = a the full causal view
µ̄(⇓x)R(a) = (∂i⇓x)i∈R(a). Since σ̄(⇓x)R(a) can be computed from (∂i⇓x)i∈R(a),
one can drop the state component in f and write f(m, a) instead of f(p, m, a).
As in the sequential case, one can embed a given memory into the game.

Proposition 1. Let G be a distributed game and let µ be a distributed memory
on G. One can construct a distributed game Gµ such that there exists a µ-WDS
for G iff there exists a WMDS in Gµ. Moreover, if G is finite and µ is realized
by a finite asynchronous automaton, then Gµ is finite.

4 Global game

In order to use known results of game theory, we want to define a classical two-
players global game G̃ = (Z, T ) such that team 0 has a WMDS in the distributed

game G iff player 0 has a winning memoryless strategy in the global game G̃.
The positions of the global game are Z = Z0∪Z1 where Z0 = Q×Σ0 are the

positions of player 0 and Z1 = Q× (Σ1 ∪ {0, 1, 2}) are the positions of player 1.
The initial position is (q0, 0) ∈ Z1. In a position (q, a), the first component
describes the current global state of the play and the second component is used
both to determine whose turn it is and which action should be executed. The
set T ⊆ (Z0 × Z1) ∪ (Z1 × Z) of moves is defined as follows:

– (p, b) −→ (p, a) with b ∈ {0, 1, 2} and a ∈ Σ. Player 1 decides that the
next move should be an a-move. In this global game, player 1 is in charge



of deciding which actions are used and in which order. This allows him to
investigate all possible linearizations of distributed plays.

– (p, a) −→ (q, 1) with a ∈ Σ, (pR(a), qW (a)) ∈ Ta and qP\W (a) = pP\W (a). This
a-move is executed by player 0 or player 1 depending on whether a ∈ Σ0 or
a ∈ Σ1.

– (p, a) −→ (p, 2) with a ∈ Σ0. Player 0 refuses to make an a-move.
– (q, b) −→ (q0, 0) with b ∈ {0, 1, 2}. These reset-moves are used by player 1 to

show that player 0 is not following a distributed strategy.

Note that player 1 may perform several consecutive moves.
A global play is a finite or infinite sequence z = z0z1z2 · · · ∈ Z∞ starting from

the initial position z0 = (q0, 0) and such that zn −→ zn+1 is a move for all n > 0.
Let z = z0z1z2 · · · ∈ Z∞ be a global play and let zn = (qn, an) ∈ Z for n > 0.
We define by induction the sequence (tn)n>0 ∈ M(Σ′, D′)N associated with z.
If zn = (q0, 0) then tn = (⊥, q0). If an+1 ∈ Σ ∪ {2} then tn+1 = tn. Finally, if
an = a ∈ Σ and an+1 = 1 then tn+1 = tn ·(a, qn+1

W (a)). We prove by induction that

tn is a distributed play and σ̄(tn) = qn for all n > 0. The only non trivial case
is when an = a ∈ Σ and an+1 = 1. By induction, tn is a distributed play and
σ̄(tn) = qn. We have (qn

R(a), q
n+1
W (a)) ∈ Ta and qn

R(a) = σ̄(∂R(a)tn)R(a). Therefore,

tn+1 is a distributed play and using qn+1
P\W (a) = qn

P\W (a) we get σ̄(tn+1) = qn+1.

The global play z is consistent if for all j, k > 0 with aj = ak = a ∈ Σ0

and qj

R(a) = qk
R(a) we have aj+1 = ak+1 and qj+1

W (a) = qk+1
W (a). The global play

z is fair if {n > 0 | an = 0} is finite and for all a ∈ Σ0, {n > 0 | an = a} is
infinite. If z is both consistent and fair then we let N(z) = max{n | an = 0}. The
sequence (tn)n>N(z) is increasing and admits a least upper bound t(z) which is
a distributed play of G.

The winning condition W̃ of G̃ only involves infinite plays z ∈ Zω. If z is not
consistent then player 0 loses the game since this reveals that he does not mimic
a memoryless distributed strategy. If z is not fair then player 1 loses the game.
Finally, if z is both consistent and fair then player 0 wins the game iff t(z) ∈ W .

A (global) strategy (S) for player 0 in G̃ is a mapping g : Z∗Z0 → Z1 such
that g(z(p, a)) = (q, b) implies (p, a) −→ (q, b). A global play z = z0z1z2 · · · ∈ Z∞

is played according to g (g-play) if each move of player 0 is done according to
g: zk ∈ Z0 implies zk+1 = g(z0 · · · zk). If player 0 wins all infinite g-plays then
g is a winning strategy (WS) for player 0. A strategy g is memoryless if for all
x, x′ ∈ Z∗ and y ∈ Z0, we have g(xy) = g(x′y). We write MS and WMS for
memoryless strategy and winning memoryless strategy.

We can now state the main result of this section.

Theorem 1. The following conditions are equivalent for a distributed game G:

1. There exists a WMDS for team 0 in the distributed game G.
2. There exists a WMS for player 0 in the global game G̃.
3. There exists a WS for player 0 in the global game G̃.

The following proposition gives the construction used for the implication (1 ⇒ 2).



Proposition 2. Let f be a deterministic WMDS for team 0 in G. For (p, a) ∈
Z0, we define g((p, a)) = (p, 2) if f(pR(a), a) = ∅ and g((p, a)) = (q, 1) with
qP\W (a) = pP\W (a) and f(pR(a), a) = {qW (a)} otherwise. Then, g is a WMS for

player 0 in the global game G̃.

To prove the implication (2 ⇒ 1) of Theorem 1, we exploit reset-moves.

Lemma 1. Let g be a WMS of player 0 in the global game G̃. Let (p1, a) ∈ Z0

and (p2, a) ∈ Z0 be accessible in g-plays and such that p1
R(a) = p2

R(a). Then,

g(p1, a) = (p1, 2) iff g(p2, a) = (p2, 2) and if g(p1, a) = (q1, 1) and g(p2, a) =
(q2, 1) then q1

W (a) = q2
W (a).

Using this lemma, we can now transform a WMS in G̃ into a WMDS in G.

Proposition 3. Let g be a WMS of player 0 in the global game G̃. For (p, a) ∈
Z0 accessible by a g-play, we define f(pR(a), a) = ∅ if g(p, a) = (p, 2) and
f(p, a) = {qW (a)} if g(p, a) = (q, 1). Then, f is a WMDS of team 0 in the
distributed game G.

Even if W is rational (W = [L], where L ∈ Rat(Σ∗)), determining if team 0
has a W(M)DS is undecidable. Indeed, on M(Σ, D) = A∗ ×B∗, determining if a
rational trace language L is [Σ∗] is undecidable [2]. From such a language L, we
construct a 2-processes game in which team 0 has a WMDS iff L = [Σ∗]: Σ0 = ∅,
Σ1 = A ] B, R(a) = W (a) = {1} for a ∈ A and R(b) = W (b) = {2} for b ∈ B.
Finally, |Q| = 1 (so that we identify Σ′ and Σ), and W = L∪(R(Σ, D)\M(Σ, D)).
Players of team 1 nondeterministically choose a move in some finite local game,
so that any possible trace is a play. Now, team 0 has a WMDS iff he has a WDS
iff team 1 cannot generate a finite trace outside L, that is, iff L = [Σ∗].

We now explain how to use Theorem 1 to decide if team 0 has a WDS. Denote
by Lin(t) the set of all linearizations of t ∈ R(Σ, D). Properties considered in
practice are recognizable (i.e., Lin(W) is rational), and as noted in [6], there are
many temporal logics expressing only recognizable specifications. To determine
whether team 0 has a WMDS in G with W recognizable, we could enumerate
all memoryless distributed strategies for player 0, and check whether one is win-
ning. This amounts to testing an inclusion between recognizable trace languages.
Theorem 1 provides a better algorithm. The principle is to build the global game
G̃, to transform it into a parity game and to apply known algorithms.

Let A be a parity automaton accepting Lin(W). The winning condition W̃

for player 0 on the global game G̃ can be defined by W̃ = W̃c ∩ (Lin(W)∪W̃nf),

where W̃c = {z ∈ Zω | z is consistent}, and W̃nf = {z ∈ Zω | z is not fair}. We

describe informally how to construct a parity automaton accepting W̃ . One can
build a Büchi automaton accepting consistent plays in Zω: it records all transi-
tions (pR(a), qW (a)) performed by player 0, as well as the refused transitions. It
falls into the unique rejecting state as soon as an inconsistent move is detected.
One can also build a parity automaton checking that a play, supposed consistent,
is not fair, by checking that there is an infinite number of reset moves (a Büchi



condition) or that, for some a ∈ Σ0, there is only a finite number of states of the
form (p, a) (co-Büchi conditions). From the parity automaton A and from these

automata, it should now be clear how to build a parity automaton for W̃ .
Observe that using Proposition 1, one can also determine whether team 0

has a µ-WDS for a given finite distributed memory µ.

5 Related approaches

A distributed game G = 〈P, E, Tr, Acc, q0〉 as in [7] is built from n local games
G1, . . . , Gn, where Gi = 〈Pi, Ei, Tri, q

0
i 〉 with Tri ⊆ (Pi × Ei). Positions of the

environment are E =
∏

i Ei. The position set of the players is P =
∏

i(Pi∪Ei)\E.
Transitions of the players are defined with a cartesian product: Trp = (

∏
i(Tri ∪

∆i))∩(P ×E) where ∆i = {(xi, xi) | xi ∈ Ei} is the diagonal. Transitions of the
environment are simply given by a subset Tre of E × P , and Tr = Tre ] Trp. A
play of G starts in position q0 ∈ E, and moves from the environment and from
the players alternate. Hence, any infinite play is in (E · P )ω, and the winning
condition is a subset Acc ⊆ (E · P )ω.

There is a natural translation from these games to our setting. With G, we
associate the distributed game Ḡ = (Σ0, Σ1, (Ta)a∈Σ , q0,W) as follows. The set
of processes is P = {1, . . . , n} and the local states are Qi = Pi ∪ Ei for i ∈ P .
Team 0 is defined by Σ0 = {1, . . . , n} with R(i) = W (i) = {i} for all i ∈ Σ0. The
transitions for player i are simply Ti = Tri. Team 1 consists of a single player e
(the environment) with R(e) = W (e) = P . Its transitions are Te = Tr∩ (E×P ).

To define the winning condition W , we associate with each infinite play w =
e0x1e1 · · · ∈ (E · P )ω of G with e0 = q0 a distributed play trace(w) ∈ R(Σ′, D′)
as the least upper bound of (ti)i>0 where the increasing sequence (tn)n>0 is
defined inductively by t0 = (⊥, q0) and tn+1 = tn · (e, xn+1) ·

∏
i|xn+1

i
∈Pi

(i, en+1
i ).

Finally, the winning condition is W = trace(Acc) ∪ {t ∈ M(Σ′, D′) | σ̄(t) ∈ E}.
The distributed games of [7] are thus a special case of our games in which

all players of team 0 are completely local and the environment consists of a
single global player. Note that, in the game G, information between players can
only flow through environment moves and the environment can decide which
information is exchanged between players.

However, the crucial difference between games of [7] and the ones presented
here concerns the definition of strategies. In [7], a strategy is a tuple of mappings
fi : (EiPi)

+ → Ei. Hence a move of player i only depends on its local view
consisting of the history on its process only. In our setting, the strategy of player
i which is the mapping f(−, i) is based on its causal view ∂R(i)t. Since actions of
the environment are global, the causal view is almost the complete global view
of the game. It is therefore clear that if there exists a WS for the players in G,
then there exists a WDS for team 0 in Ḡ. The converse is false: it is easy to find
a game G not determined while there is a winning strategy for team 0 in Ḡ. Yet,
one can prove that if a game G of [7] is determined, then there is a WDS for
team 0 in Ḡ iff players have a WS in G.

If we want to get an equivalence, we have to restrict the memory used by our
strategies to the local view, that is, to change the notion of memory used by the



strategies. The i-projection of t ∈ M(Σ, D′) is Πi(t) where Πi is the morphism
from M(Σ′, D′) to Q∗

i defined by Πi(x, q) = qi if x = e or x = i and Πi(x, q) = ε
otherwise. Since player i is only aware of move he takes part in, we have to
abstract away from unobservable stuttering of the environment. For this we use
the congruence on Q∗

i generated by p3
i = pi for pi ∈ Ei and we write w≡ for the

equivalence class of w ∈ Q∗
i . We say that a distributed strategy f is local if for

all i ∈ Σ0, f(t, i) depends only on i and Πi(t)≡.

Proposition 4. The players have a WS in G iff team 0 has a local WDS in Ḡ.

In the distributed control problem presented in [6], the environment performs
local moves and the transitions of a controllable action is defined by a cartesian
product of local transition functions. It is therefore straightforward to translate
as above these games to our framework. Since local strategies are used in [6],
Propositions 4 also holds.
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