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Abstract. We study the synthesis problem for external linear or branch-
ing specifications and distributed, synchronous architectures with arbi-
trary delays on processes. External means that the specification only re-
lates input and output variables. We introduce the subclass of uniformly
well-connected (UWC) architectures for which there exists a routing al-
lowing each output process to get the values of all inputs it is connected
to, as soon as possible. We prove that the distributed synthesis problem
is decidable on UWC architectures if and only if the set of all sets of
input variables visible by output variables is totally ordered, under set
inclusion. We also show that if we extend this class by letting the routing
depend on the output process, then the previous decidability result fails.
Finally, we provide a natural restriction on specifications under which
the whole class of UWC architectures is decidable.

1 Introduction

Synthesis is an essential problem in computer science considered by Church in [2].
It consists in translating a system property, given in a high level specification
language (such as temporal logic) into a low-level equivalent model (such as a fi-
nite automaton). The problem can be parametrized by the specification language
and the target model. For instance, synthesis for infinite sequential systems from
monadic second order formulas is simply Büchi’s theorem.

In this paper, we address the synthesis problem for distributed open syn-
chronous systems and temporal logic specifications. This specific question has
been first studied in [11], where general synthesis has been proved undecidable for
LTL specifications, and LTL synthesis for pipeline architectures has been shown
non elementarily decidable, the lower bound following from a former result on
multiplayer games [10]. For local specifications, constraining only variables lo-
cal to processes [8], the general problem is undecidable (though doubly flanked
pipelines become decidable.)
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The pipeline architecture has been shown decidable for CTL∗ full specifica-
tions [5], that is, specifications allowed to constrain all variables of the system.
In this case, where decidability of the distributed synthesis is obtained, full
specifications strengthen the result.

A decision criterion, established in [3] for full specifications, implies that the
architecture of Figure 1 is undecidable. The reason is that specifications are
allowed to enforce a constant value on variable t, breaking the link between pro-
cesses p0 and p1. For the undecidability part of the criterion, allowing specifica-
tions on all variables allows easy reductions to the basic undecidable architecture
of Pnueli and Rosner [11], for instance by breaking communication links at will.

In the seminal paper [11], specifications were assumed to be external, or
input-output : only variables communicating with the environment could be con-
strained. The way processes of the system communicate was only restricted by
the communication architecture, not by the specification. This is very natural
from a practical point of view: when writing a specification, we are only con-
cerned by the input/output behavior of the system and we should leave to the
implementation all freedom on its internal behavior. For that reason, solving
the problem for external specifications is more relevant and useful - albeit more
difficult - than a decidability criterion for arbitrary specifications. We will show
that the architecture of Figure 1 is decidable for external specifications, that is,
if we do not constrain the internal variable t.

Contributions. We consider the synthesis problem for synchronous semantics,
where each process is assigned a nonnegative delay. The delays can be used to
model latency in communications, or slow processes. This model has the same
expressive power as the one where delays sit on communication channels, and it
subsumes both the 0-delay and the 1-delay classical semantics [11,5].

To rule out unnatural properties yielding undecidability, the specifications we
consider are external, coming back to the original framework of [11,2]. We first
determine a sufficient condition for undecidability with external specifications,
that generalizes the undecidability result of [11]. We next introduce uniformly
well-connected (UWC) architectures. Informally, an architecture is UWC if there
exists a routing of input variables allowing each output process to get, as soon as
possible, the values of all inputs it is connected to. Using tree automata, we prove
that for such architectures, the sufficient condition for undecidability becomes
a criterion, for external specifications. We also propose a natural restriction on
specifications for which all UWC architectures becomes decidable.
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Fig. 1. Architecture decidable for external/undecidable for full specifications.



Finally, we introduce the larger class of well-connected architectures, in which
the routing of input variables to an output process can depend on that pro-
cess. We show that our criterion is not necessary anymore for this larger class.
Whether the restricted external specifications are always decidable for this class,
as it is the case for UWC architectures, remains open. The undecidability proof
highlights the surprising fact that in Figure 1, blanking out a single information
bit in the transmission of x0 to p1 through t suffices to yield undecidability. This
is a step forward in understanding decidability limits for distributed synthesis.

Due to lack of space, proofs are omitted or only sketched in this extended
abstract. A full version is available in [4].

2 Preliminaries

Trees and tree automata. Given two finite sets X and Y , a Y -labeled (full) X-
tree is a (total) function t : X∗ → Y where elements of X are called directions,
and elements of Y are called labels. A word σ ∈ X∗ defines a node of t and t(σ)
is its label. The empty word ε is the root of the tree. A word σ ∈ Xω is a branch.
In the following, a tree t : X∗ → Y will be called an (X,Y )-tree.

A non-deterministic tree automaton (NDTA) A = (X,Y,Q, q0, δ, α) runs on
(X,Y )-trees. It consists of a finite set of states Q, an initial state q0, a transition
function δ : Q × Y → P(QX) and an acceptance condition α ⊆ Qω. A run ρ

of such an automaton over a (X,Y )-tree t is a (X,Q)-tree ρ such that for all
σ ∈ X∗, (ρ(σ · x))x∈X ∈ δ(ρ(σ), t(σ)). A run tree is accepting if all its branches
s1s2 · · · are such that ρ(ε)ρ(s1)ρ(s1s2) · · · ∈ α. The specific acceptance condition
chosen among the classical ones is not important in this paper.

Architectures. An architecture A = (V ] P,E, (Sv)v∈V , s0, (dp)p∈P ) is a finite
directed acyclic bipartite graph, where V ] P is the set of vertices, and E ⊆
(V × P ) ∪ (P × V ) is the set of edges, such that |E−1(v)| ≤ 1 for all v ∈ V .
Elements of P will be called processes and elements of V variables. Intuitively,
an edge (v, p) ∈ V × P means that process p can read variable v, and an edge
(p, v) ∈ P × V means that p can write on v. Thus, |E−1(v)| ≤ 1 means that
a variable v is written by at most one process. Input and output variables are
defined, respectively, by VI = {v ∈ V | E−1(v) = ∅} and VO = {v ∈ V |
E(v) = ∅}. Variables in V \ (VI ∪ VO) will be called internal. We assume that
no process is minimal or maximal in the graph. Each variable v ranges over a
finite domain Sv, given with the architecture. The initial value of the variables
is s0 = (sv

0)v∈V ∈
∏

v∈V S
v. We will consider that |Sv| ≥ 2 for all v ∈ V . In

fact, if not, such a variable would always have the same value, and could be
ignored. It will be convenient in some proofs to assume that {0, 1} ⊆ Sv and
that sv

0 = 0 for all v ∈ V . Each process p ∈ P is associated with a delay dp ∈ N

that corresponds to the time interval between the moment the process reads the
variables v ∈ E−1(p) and the moment it will be able to write on its own output
variables. Note that delay 0 is allowed. In the following, for v ∈ V , we will often
write dv for dp where E−1(v) = {p}.
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Fig. 2. An architecture

An example of an architecture is given in Figure 2, where processes are
represented by boxes and variables by circles.

Runs. When U ⊆ V , SU will denote
∏

v∈U S
v. A configuration of the architecture

is given by a tuple s ∈ SV describing the value of the variables. For s = (sv)v∈V ∈
SV , U ⊆ V , we denote by sU = (sv)v∈U the projection of the configuration s

to the subset of variables U . A run of an architecture is an infinite sequence
of configurations, i.e., an infinite word over the alphabet SV , starting with the
initial configuration s0 ∈ SV given by the architecture. If σ = s0s1s2 · · · ∈ (SV )ω

is a run, then its projection on U is σU = sU
0 s

U
1 s

U
2 · · · . Also, we denote by σ[i]

the prefix of length i of σ (by convention, σ[i] = ε if i ≤ 0). A run tree is a
full tree t : (SVI)∗ → SV , where t(ε) = s0 and for ρ ∈ (SVI)∗, r ∈ SVI , we have
(t(ρ · r))VI = r. The projection of t on U ⊆ V is the tree tU : (SVI)∗ → SU

defined by tU (ρ) = t(ρ)U .

Specifications. Specifications over a set U ⊆ V of variables can be given, for
instance, by a µ-calculus, CTL∗, CTL, or LTL formula, with atomic propositions
of the form (v = a) for v ∈ U and a ∈ Sv. We then say that the formula is in
L(U) where L is the logic used. A specification is external if U ⊆ VI ∪ VO. The
validity of an external formula on a run tree t (or simply a run) only depends
on its projection tVI∪VO onto VI ∪ VO.

Programs, strategies. We consider a discrete time, synchronous semantics. In-
formally, at step i = 1, 2, . . ., the environment provides new values for input
variables. Then, each process p reading values written by its predecessors or by
the environment at step i − dp, computes values for the variables it writes to,
and writes them. Let v ∈ V \ VI and let R(v) = E−2(v) be the set of variables
read by the process writing to v. Intuitively, from a word (s0σ)R(v) in (SR(v))+

representing the projection on R(v) of some run prefix, a program (or a strat-
egy) advices a value to write on variable v. But, since the process may have
a certain delay dv, the output of the strategy must not depend on the last dv

values of (s0σ)R(v). Since all runs begin by s0, this initial configuration is ir-
relevant for a strategy which only depends on σR(v). Formally, a program (or

local strategy) for variable v is a mapping fv :
(

SR(v)
)+

→ Sv compatible with

the delay dv, i.e., such that for all ρ, ρ′ ∈ (SR(v))i, if ρ[i − dv] = ρ′[i − dv],
then fv(ρ) = fv(ρ′). This condition ensures that the delay dv is respected when
computing the next value of variable v. A distributed program (or distributed



strategy) is a tuple F = (fv)v∈V \VI
of local strategies. A run σ ∈ (SV )ω is an

F -run (or F -compatible) if for all v ∈ V \ VI, s
v
i = fv(σR(v)[i]). Given an input

sequence ρ ∈ (SVI)ω, there is a unique run σ which is F -compatible and such
that σVI = ρ. The F -run tree is the run tree t : (SVI)∗ → SV such that each
branch is labeled by a word s0s1s2 · · · ∈ (SV )ω which is an F -run. Note that,
in an F -run, the prefix σ[i] only depends on the prefix ρ[i]. This shows that the
F -run tree is unique.

For a variable v ∈ V , we let View(v) = (E−2)∗(v) ∩ VI be the set of input
variables v might depend on. Observe that if s0σ is an F -run then, for all v ∈
V \ VI, for all i > 0, sv

i only depends on σView(v)[i]. This allows us to define the

summary f̂v : (SView(v))+ → Sv such that f̂v(σView(v)[i]) = sv
i , corresponding

to the composition of all local strategies used to obtain the value of v.

Remark 1. The compatibility of the strategies F = (fv)v∈V \VI
with the de-

lays (dv)v∈V \VI
extends to the summaries F̂ = (f̂v)v∈V \VI

. Formally, a map

h : (SView(v))+ → Sv is compatible with the delays if for all ρ ∈ (SView(v))i,
h(ρ) only depends on the prefixes (ρu[i− d(u, v)])u∈View(v), where d(u, v) is the
smallest cumulative delay of transmission between u and v, i.e.,

d(u, v) = min{dv1
+ · · · + dvn

| u E2 v1 E
2 . . . E2 vn = v is a path in A}.

The strategy fv is memoryless if it does not depend on the past, that
is, if there exists g : SR(v) → Sv such that fv(s1 · · · si · · · si+dv

) = g(si) for
s1 · · · si+dv

∈ (SR(v))+. In case dv = 0, this corresponds to the usual definition
of a memoryless strategy.

Distributed synthesis problem. Let L be a specification language. The distributed
synthesis problem for an architecture A is the following: given a formula ϕ ∈
L, decide whether there exists a distributed program F such that every F -
run (or the F -run tree) satisfies ϕ. We will then say that F is a distributed
implementation for the specification ϕ. If for some architecture the synthesis
problem is undecidable, we say that the architecture itself is undecidable (for
the specification language L).

3 Architectures with uncomparable information

In this section, we state a necessary condition for decidability.

Definition 2. An architecture has uncomparable information if there exist vari-
ables x, y ∈ VO such that View(x) \ View(y) 6= ∅ and View(y) \ View(x) 6= ∅.
Otherwise the architecture has linearly preordered information.

For instance, the architectures of Figures 1 and 3 have linearly preordered
information. The following proposition extends the undecidability result of [11,3].

Proposition 3. Architectures with uncomparable information are undecidable
for LTL or CTL external specifications.



4 Uniformly well-connected architectures

This section introduces the new class of uniformly well-connected (UWC) archi-
tectures and provides a decidability criterion for the synthesis problem on this
class. It also introduces the notion of robust specifications and shows that UWC
architectures are always decidable for external and robust specifications.

A routing for an architecture A = (V ∪P,E, (Sv)v∈V , s0, (dp)p∈P ) is a family
Φ = (fv)v∈V \(VI∪VO) of memoryless local strategies. Observe that a routing
does not include local strategies for output variables. Informally, we say that an
architecture is uniformly well connected if there exists a routing Φ that allows
to transmit to every output variable v, with a minimal delay, the value of the
variables in View(v).

Definition 4. An architecture A is uniformly well-connected (UWC) if there
exist a routing Φ and, for every v ∈ VO and u ∈ View(v), a decoding function

gu,v :
(

SR(v)
)+

→ Su that can reconstruct the value of u, i.e., such that for any

Φ-compatible sequence σ = s1s2 · · · ∈
(

SV \VO

)+
, we have for i > 0

su
i = gu,v(σR(v)[i+ d(u, v) − dv]) (1)

In case there is no delay, the uniform well-connectedness refines the notion of
adequate connectivity introduced by Pnueli and Rosner in [11], as we no longer
require each output variable to be communicated the value of all input variables,
but only those in its view. In fact, this gives us strategies for internal variables,
that are simply to route the input to the processes writing on output variables.

Observe that, given an architecture, there is a finite number of routings and
a finite number of decoding functions, so that the property of being UWC is NP.
Actually, the problem is NP-complete: using a natural reduction, this follows
from the NP-hardness of the multicast problem [7], which is a special instance
of the network information flow problem [1].

We first show that distributed programs are somewhat easier to find in a
UWC architecture. As a matter of fact, in such architectures, to define a dis-
tributed strategy it suffices to define a collection of input-output strategies that
respect the delays given by the architecture.

Lemma 5. Let A = (V ∪ P,E, (Sv)v∈V , s0, (dp)p∈P ) be a UWC architecture.
For each v ∈ VO, let hv : (SView(v))+ → Sv be an input-output mapping which
is compatible with the delays of A. Then there exists a distributed program F =
(fv)v∈V \VI

over A such that hv = f̂v for all v ∈ VO.

We now give a decision criterion for this specific subclass of architectures.

Theorem 6. A UWC architecture is decidable for external (linear or branching)
specifications if and only if it has linearly preordered information.

We have already seen in Section 3 that uncomparable information yields
undecidability of the synthesis problem for LTL or CTL external specifications.



We prove now that, when restricted to the subclass of UWC architectures, this
also becomes a necessary condition.

We assume that the architecture A is UWC and has linearly preordered
information, and therefore we can order the output variables VO = {v1, . . . , vn}
so that View(vn) ⊆ · · · ⊆ View(v1) ⊆ VI.

In the following, in order to use tree-automata, we extend a strategy f :
(SX)+ → SY by f(ε) = sY

0 so that it becomes a (SX , SY )-tree. We proceed
in two steps. First, we build an automaton accepting all the global input-output
0-delay strategies implementing the specification. A global input-output 0-delay
strategy for A is a (SView(v1), SVO)-tree h satisfying h(ε) = sVO

0 . This first step
is simply the program synthesis for a single process with incomplete information
(since we may have View(v1) ( VI). This problem was solved in [6] for CTL∗

specifications.

Proposition 7 ([6, Th. 4.4]). Given an external specification ϕ ∈ CTL∗(VI ∪
VO), one can build a NDTA A1 over (SView(v1), SVO)-trees such that h ∈ L(A1)
if and only if the run tree induced by h satisfies ϕ.

If L(A1) is empty, then we already know that there are no distributed im-
plementations for the specification ϕ over A. Otherwise, thanks to Lemma 5,
we have to check whether for each v ∈ VO there exists an (SView(v), Sv)-tree hv

which is compatible with the delays and such that the global strategy
⊕

v∈VO
hv

induced by the collection (hv)v∈VO
is accepted by A1. Formally, the sum of strate-

gies is defined as follows. Let X = X1 ∪X2 ⊆ VI and Y = Y1 ] Y2 ⊆ VO, and for
i = 1, 2 let hi be a (SXi , SYi)-tree. We define the (SX , SY )-tree h = h1 ⊕ h2 by
h(σ) = (h1(σ

X1), h2(σ
X2)) for σ ∈ (SX)∗.

To check the existence of such trees (hv)v∈VO
, we will inductively eliminate

the output variables following the order v1, . . . , vn. It is important that we start
with the variable that views the largest set of input variables, even though,
due to the delays, it might get the information much later than the remaining
variables. Let Vk = {vk, . . . , vn} for k ≥ 1. The induction step relies on the
following statement.

Proposition 8. Let 1 ≤ k < n. Given a NDTA Ak accepting (SView(vk), SVk)-
trees, we can build a NDTA Ak+1 accepting (SView(vk+1), SVk+1)-trees, such that
a tree t is accepted by Ak+1 if and only if there exists a (SView(vk), Svk)-tree hvk

which is compatible with the delays and such that hvk ⊕ t is accepted by Ak.

The proof of Proposition 8 divides in two steps. Since Vk = {vk} ∪ Vk+1, for
each (SView(vk), SVk)-tree t we have t = tvk⊕tVk+1 (recall that tU is the projection
of t on U). So one can first turn the automaton Ak into A′

k that accepts the trees
t ∈ L(Ak) such that tvk is compatible with the delays (Lemma 9). Then, one can
build an automaton that restricts the domain of the directions and the labeling
of the accepted trees to SView(vk+1) and SVk+1 respectively.

Lemma 9. Let v ∈ U ⊆ VO. Given a NDTA A over (SView(v), SU )-trees one
can build a NDTA A′ = compatv(A) also over (SView(v), SU )-trees such that
L(A′) = {t ∈ L(A) | tv is compatible with the delays}.



Proof. Intuitively, to make sure that the function tv is compatible with the
delays, the automaton A′ will guess in advance the values of tv and then check
that its guess is correct. The guess has to be made K = max{d(u, v), u ∈
View(v)} steps in advance and consists in a function g : (SView(v))K → Sv that
is already compatible with the delays and that predicts what will be the v-values
K steps later. During a transition, the guess is sent in each direction r ∈ SView(v)

as a function r−1g defined by (r−1g)(σ) = g(rσ) which is stored in the state of
the automaton. Previous guesses are refined similarly and are also stored in the
state of the automaton so that the new set of states is Q′ = Q × F where F
is the set of functions f : (SView(v))<K → Sv which are compatible with the
delays, where Z<K =

⋃

i<K Zi. The value f(ε) is the guess that was made K
steps earlier and has to be checked against the current v-value of the tree.

Transitions of A
′ will be defined using the function ∆ : F ×SView(v) → P(F)

given by ∆(f, r) = {f ′ | f ′(σ) = f(rσ) for |σ| < K − 1}. Note that the values
f ′(σ) for |σ| = K − 1 do not depend on f and correspond to the new guess g
refined by r as intuitively described above. Now, the transition function of A′ is

δ′
(

(q, f), (f(ε), s)
)

=

{

(qr, fr)r∈SView(v)

∣

∣

∣

(qr)r∈SView(v) ∈ δ(q, (f(ε), s)) and
fr ∈ ∆(f, r) for all r ∈ SView(v)

}

.

Finally, the set of initial states of A′ is I ′ = {q0} × F and α′ = π−1(α) where
π : (Q×F)ω → Qω is the projection on Q, i.e., a run of A

′ is accepted if and only
if its projection on Q is an accepted run of A. One can check that the automaton
A′ satisfies the requirements of Lemma 9. ut

Proof (of Proposition 8). We consider the NDTA compatvk
(Ak). It remains

to project away the Svk component of the label and to make sure that the
SVk+1 component of the label only depends on the SView(vk+1) component of
the input. The first part is the classical projection on SVk+1 of the automaton
and the second part is the narrowing construction introduced in [6]. The au-
tomaton Ak+1 fulfilling the requirements of Proposition 8 is therefore given by
narrowView(vk+1)(projVk+1

(compatvk
(Ak))). Note that, even when applied to a

NDTA, the narrowing construction of [6] yields an alternating tree automaton.
Here we assume that the narrowing operation returns a NDTA using a classical
transformation of alternating tree automata into NDTA [9]. The drawback is
that this involves an exponential blow up. Unfortunately, this is needed since
Lemma 9 requires a NDTA as input. ut

We can now conclude the proof of Theorem 6. Using Proposition 8 induc-
tively starting from the NDTA A1 of Proposition 7, we obtain a NDTA An

accepting a (SView(vn), Svn)-tree hvn if and only if for each 1 ≤ i < n, there
exists a (SView(vi), Svi)-tree hvi which is compatible with the delays and such
that hv1 ⊕· · ·⊕hvn is accepted by A1. Therefore, using Remark 1 and Lemma 5,
there is a distributed implementation for the specification over A if and only if
L(compatvn

(An)) is nonempty. The overall procedure is non-elementary due to
the exponential blow-up of the inductive step in Proposition 8. ut



We now show that we can obtain decidability of the synthesis problem for the
whole subclass of UWC architectures by restricting ourselves to specifications
that only relate output variables to their own view.

Definition 10. A specification ϕ ∈ L with L ∈ {LTL,CTL,CTL∗} is robust
if it is a (finite) disjunction of formulas of the form

∧

v∈VO
ϕv where ϕv ∈

L(View(v) ∪ {v}).

Proposition 11. The synthesis problem for UWC architectures and external
robust CTL∗ specifications is decidable.

Proof. Let A = (V ∪P,E, (Su)u∈V , s0, (dp)p∈P ) be a UWC architecture and ϕ be
an external and robust CTL∗ specification. Without loss of generality, we may as-
sume that ϕ =

∧

v∈VO
ϕv where ϕv ∈ CTL∗(View(v)∪{v}). Using Proposition 7,

for each v ∈ VO we find a NDTA Av accepting a strategy h : (SView(v))∗ → Sv

if and only if the induced run tree tv : (SView(v))∗ → SView(v)∪{v} satisfies ϕv.
Using Remark 1 and Lemma 5 one can show the following claim from which
Proposition 11 follows.

Claim. There exists a distributed implementation of ϕ over A if and only if for
each v ∈ VO, the automaton compatv(Av) is nonempty. ut

5 Well-connected architectures

It is natural to ask whether the decision criterion for UWC architectures can
be extended to a larger class. In this section, we relax the property of uniform
well-connectedness and show that, in that case, linearly preordered information
is not anymore a sufficient condition for decidability.

Definition 12. An architecture is said to be well-connected, if for each output
variable v ∈ VO, the sub-architecture consisting of (E−1)∗(v) is uniformly well-
connected.

The architecture of Figure 2 is well-connected but not UWC when the vari-
ables are boolean. This follows from similar results on the multicast problem [7].
Hence, the subclass of UWC architectures is strictly contained in the subclass
of well-connected architecture. Note that the size of the variable domains has a
major influence: any well-connected architecture with sufficiently large domain
sizes is UWC.

The following theorem asserts that, unfortunately, the decision criterion can-
not be extended to well-connected architectures.

Theorem 13. The synthesis problem for LTL specifications and well-connected,
linearly preordered architectures is undecidable.

Let A be the architecture of Figure 3, in which all the delays are set to 0,
and which is clearly well-connected and linearly preordered. To show its unde-
cidability, fix a deterministic Turing machine M with tape alphabet Γ and state



set Q. We reduce the non halting problem of M starting from the empty tape to
the distributed implementability of an LTL specification over A. Let Sz = {0, 1}
for z ∈ V \ {x, y} and Sx = Sy = Γ ] Q ] {#} where # is a new symbol. As
usual, the configuration of M defined by state q and tape content γ1γ2, where
the head scans the first symbol of γ2, is encoded by the word γ1qγ2 ∈ Γ ∗QΓ+.
An input word u ∈ 0∗1p0{0, 1}ω encodes the integer n(u) = p and similarly for v.
We construct an LTL specification ϕM forcing any distributed implementation
to output on variable x the n(u)th configuration of M starting from the empty
tape. Processes p0 and p6 play the role of the two processes of the undecidable
architecture of Pnueli and Rosner. The difficulty is to ensure that process p6

cannot receive relevant information about u.
The specification ϕM is a conjunction of five properties described below that

can all be expressed in LTL(VI ∪ VO).

1. The processes pi for i 6= 6 have to output the current values of u and w

until (including) the first 1 occurs on w. Afterwards, they are unconstrained.
Process p6 must always output the value of w on w6. Moreover, after the first
1 on w, it also has to output the current value of u on u6. We can describe
this property with a formula α.

2. If the input word on u (resp. v) is in 0q1p0{0, 1}ω, then the corresponding
output word x (resp. y) is in #q+pΓ ∗QΓ+#ω. This can be expressed by a
formula β.

3. We next express with a formula γ that if n(u) = 1, then the output on x is
the first configuration C1 of M starting from the empty tape.

4. We say that the input words are synchronized if u, v ∈ 0q1p0{0, 1}ω or if
u ∈ 0q1p+10{0, 1}ω and v ∈ 0q+11p0{0, 1}ω. We use a formula δ to express
the fact that if u and v are synchronized and n(u) = n(v), then the outputs
on x and y are equal.

5. Finally, one can express with an LTL formula ψ that if the input words are
synchronized and if n(u) = n(v) + 1, then the configuration encoded on x is
obtained by a computation step of M from the configuration encoded on y.

We first show that there exists a distributed implementation of ϕM over A.
Let ⊕ be the addition modulo 2 (xor). Process p0 forwards u to z0. Process q

u w v

x z0p0 q

z1 z2 z3 z4

p1 p2 p3 p4 p5 p6

u1 w1 u2 w2 u3 w3 u4 w4 u5 w5 u6 w6

y

Fig. 3. Undecidable, well-connected, comparable-information architecture



forwards u to z1, u⊕w to z2 and w to z3. The strategy for z4 is not memoryless.
Process q forwards w to z4 until (including) the first 1 on w and then it forwards
u⊕w to z4. Formally, fz4(u, 0qb) = b and fz4(ub1, 0

q1wb2) = b1⊕b2. We also use
memoryless strategies for the processes pi so that α is satisfied. For instance, the
strategy for p1 is f1(b1, b2) = (b1, b1 ⊕ b2) and the strategy for p6 (y excluded)
is f6(b3, b4) = (b3 ⊕ b4, b3). It is easy to see that with these strategies, the first
property α of the specification is satisfied.

The strategy fx (respectively fy) is to output the pth configuration of M
starting from the empty tape when u (respectively v) encodes p. Then, the rest
of the specification, β ∧ γ ∧ δ ∧ ψ, is satisfied.

Remark 14. Actually, one can define another distributed implementation by
changing only the strategy fz4 : at each step, process q transmits to p6 the value
of u at the preceding step as the mod 2 difference between z3 and z4, until the
first 1 occurs on w. Formally, fz4(u ·a1 ·a2, 0

qb) = a1⊕b and we adapt the strate-
gies of p1, . . . , p6 so that α is satisfied. By xoring its two arguments, process p6

can then recover the whole history of u, except the bit occurring simultaneously
with the first 1 of w. Hence, we are almost in the situation of the decidable
architecture of Figure 1, but surprisingly, missing only one bit of information
suffices to induce undecidability.

Let now F = (fv)v∈V \VI
be a distributed implementation of ϕM on the

architecture A of Figure 3. We prove that fx must simulate the computation of
M starting from the empty tape.

Let q ≥ 0. For u = 0q1u′, we define u0 = 0q0u′. The next lemma states that
strategies fz3 (resp. fz4) must output the same sequence for u and u0 if the
input word w is suitable. This is the main technical lemma whose proof relies
on the specification α.

Lemma 15. Let u,w ∈ 0q1{0, 1}ω. For k ∈ {3, 4}, we have for all n > 0:

f̂zk(u0[n], w[n]) = f̂zk(u[n], w[n]). (2)

Lemma 16. If x is computed by fx from the input word u then for all p > 0
we have

∀q ≥ 0, u ∈ 0q1p0{0, 1}ω =⇒ x = #p+qCp#
ω (3)

where Cp is the p-th configuration reached by M starting from the empty tape.

Proof. The proof is by induction on p. The case p = 1 follows from the specifica-
tion γ. Assume now that u ∈ 0q1p+10{0, 1}ω and let v = 0q+11p0ω and w = 0q1ω.
By induction, for u0 ∈ 0q+11p0{0, 1}ω the output is x = #q+1+pCp#

ω. Using δ,
we deduce that on the input triple (u0, v, w) the output is y = x = #q+1+pCp#

ω.
Now, by Lemma 15, on the input pairs (u0, w) and (u,w), the outputs on z3 and
z4 are the same. Hence, on the input triples (u0, v, w) and (u, v, w) the outputs
on y must be y = #q+1+pCp#

ω by the above. Using ψ, we deduce that on the
input triple (u, v, w) the output on x must be x = #q+1+pCp+1#

ω. This con-
cludes the proof since x only depends on u. ut

It is then easy to get the undecidability of the architecture A of Figure 3 by
considering the specification ϕM ∧ G(x 6= halt).



6 Conclusion

In this paper, we have argued that it is meaningful to rule out specifications for
distributed architectures constraining internal variables. We have shown that
every decidable architecture is linearly preordered, and that this condition is
sufficient for deciding external specifications on UWC architectures. On the other
hand, we have exhibited a linearly preordered, yet undecidable well-connected
architecture for external LTL specifications, by simulating the loss of a single
information bit on the UWC architecture of Figure 1.

Finally, we have shown that all UWC architectures are decidable for external
and robust specifications, i.e., specifications constraining external variables which
are causally related by a communication path. A challenging problem is to find
whether this still holds for well-connected architectures.
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