N
N

N

HAL

open science

When the Generative Lexicon meets Computational
Semantics
Renaud Marlet

» To cite this version:

Renaud Marlet. When the Generative Lexicon meets Computational Semantics. 4th International
Workshop on Generative Approaches to the Lexicon (GL 2007), May 2007, Paris, France. hal-

00306307

HAL Id: hal-00306307
https://hal.science/hal-00306307
Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00306307
https://hal.archives-ouvertes.fr

When the Gener ative L exicon meets Computational Semantics

Renaud Marlet
SIGNES group, LaBRI/INRIA
351 cours de la Libération
33405 Talence cedex
France
Renaud.Marlet@inria.fr

Abstract

Computational semantics and lexical semantics have sodstlyrbeen studied separately. As aresult,
computational semantics often constructs meanings witr po little lexical sense, while lexical
semantics generally only apply to simple and small phraae®gposed to complete sentences). We
present here a general framework to incorporate lexicalas#ios information originating from a
generative lexicon into a standard analysis of computatisemantics. This framework is illustrated
on two examples, covering type coercion and selective bgndiln this framework, the coupling
between the analysis and the lexicon is kept low to faddlisgparate evolutions and to adapt to the
partial availability of lexical semantics information.

1 Introduction

The semantic analysis of text relies on two key issues: theagysemantics interface and the lexicon-
semantics interface. However, to some extent, these twesdsave mostly been studied separately.

On the one hand, computational semantics (CS) proposesiseranalyses that specify how to
map a sentence, usually modeled as a syntax tree, into amgeaimmonly expressed as a log-
ical formula (Benthem and Meulen, 1997). These approachesften based on the composition
of typed A-terms, along the lines of Montague semantics (Montagu@é4)19The range of syntactic
constructions that they cover is substantial and growingntjfying determiners, negation, referen-
tial pronouns and ellipsis, subordinate clauses, questiett. Different kinds of underlying logics
are also studied, such as intensional logic to expressfbaiiedal logic to express possibility and
necessity, temporal logic to express past and future, ebaveMer, these approaches generally make
little or no use of lexical semantic information. Lexemes taken as “opaque” predicates and the
relevance of produced formulas is routinely poor because latk of support for polysemy, and in
particular metonymy. For instance, analysing “John begibsok” as3x begin(John =) A book(x) is
mostly useless, if not wrong, because it tells nothing abimiictual action being performed (reading,
writing, etc.) nor about the nature of “book” (physical atijer information).

On the other hand, the Generative Lexicon Theory (GL) pewid framework for the creative
composition of lexical meanings (Pustejovsky, 1995). &asi phenomena of polysemy can be ex-
plained in this setting, as well as their contextual disayuhtion. Rich lexical semantic information
and powerful composition mechanisms obviate the need ticakplist numerous individual mean-
ings for different lexeme associations, as must be the aasedal”’ collocations. However, the GL
focuses on the composition of “referential” lexemes, maudrbs, nouns and adjectives. It provides

little support for other parts of speech such as determipeomnouns or conjunctions. As a result, it
is usually not possible to perform the semantic analysisaafraplete sentence within the GL alone.

On way to bridge the gap between these two complementayngss to incorporate the features
of one into the other. It seems unreasonable to duplicathjmthe GL, the work already done in CS.
This would be a huge task, for which the GL offers no particaldvantage. The modeling of “purely
syntactic” phenomena might in fact be cluttered when fotodae formulated with GL entities.

Conversely, it is not obvious how to integrate the GL into aadalysis. Indeed, the lexicon only
plays a minor role in these approaches. It is used only at ¢génbing of the analysis process, to
provide a basic semantic function or predicate for eachniexa the sentence. It is totally useless
afterwards: the terms are simply composed according tote and to the syntactic structure of the
sentence. Only-reduction delves into the basic semantic terms, but withefining their meaning.
Even if the GL can nonetheless be successfully integrated @nsemantic analysis, a number of
questions are raised. Would it put constraints on the GLwloatid reduce its power and autonomy?
Would the integration be sensitive to evolutions in the Gldel®@ Besides, as there are many proposals
for such semantic analyses, which CS approaches are btsd $oii a GL integration? And what
amount of work can be reused when integrating the GL intoraégech CS analyses?

Our goal in this paper is to present a general framework wrpurate GL-related information into
a CS analysis. We first present a typical CS analysis andrdliescases where it does not construct
appropriate interpretations (82). Then we describe howealmses can be fixed using GL-related
information (83 and 84). Finally, we generalise on thesargtas and propose a comprehensive
framework that integrates GL compositions and CS integtiaat, while limiting their coupling (85).
Given any well-defined CS analysis and any well-defined Ghi@hand composition processes, this
provides an effective mechanisattoof the semantic analysis of complete sentences that takes in
account lexical semantics.

2 Computational Semantics I nterpretation

Many approaches in computational semantics define the mgahia sentence as a type-driven com-
positional construction. Each element in the sentencdasgareted as a function, and represented by a
A-term. These semantic functions are combined accordinget¢hinary) tree structure of a syntactic
analysis of the sentence, and also depending on their typecal combination operations are func-
tional application and functional composition. At the tepdl, the resulting term, aftét-reduction,

is a logical formula representing the meaning of the wholdgesee, in some given logic. Let us
consider the following example.

(1) Every linguist drinks a glass.

In the Government and Binding Theory (GB) — for instance —is #entence is given both a surface
structure and two logical forms, corresponding to two défé readings (Huang, 1994). In the logical
forms, the quantified determiner phrases are moved up thaxslyee, leaving indexed tracgsandt,,

as illustrated on Figure 1. (In the following, we only coreidhe interpretation where each linguist
has his/her own glass.)

We make a difference here between formalisation and mes#ismi. Formalisation often relates to the use of formal
notations as well as formal practices to provideedter groundfor descriptive or explanatortheories, whereas mechani-
sation refers to the specification well-defined, operativprocedures tgystematically proceghe langage (although with
some approximation).

SN TN

S Every linguist Ay S
A A
DP VP DP S
SN N ANV
Det NP \% DP a glass Ao S
N
Det NP t1 VP
/N
Every linguist drinks a glass drinks t,

Figure 1: Surface structure example, as well as one of itpwesible logical forms

For any lexeme or phrase in the logical form of the sentencéw] stands for the denotation
of w, i.e., the semantic function that is the interpretationvofWhenw is a lexeme[w] is found in

the lexicon; when it is a phrase, it is calculated from therptetation of subphrases. The meaning

of lexemes is read from a lexicon that includes both typesfandtional values, as illustrated on
Figure 2. Following a common practice in the tradition of Negue, atomic types are just “e” (entity)

[every] :{((et),((et),t)) = APAQ.Vz P(x) = Q(x)

[linguist] : (e 1) = Az.linguist(x) ' -

[drinks] : (e (et)) = \z.\z.3edrink(e, z,z) %1]]]] : " <2 o) :iim b
[a] (e, t), (e 1), 1)) = APAQ.3z P(x) A Q(x) il AR ABL= ARAL
[glass] (e 1) = \z.glasgz)

Figure 2: Semantic lexicon example, with types and funetimalues

and “t” (truth-value¥, and functional typer — is written (o, 7). Some traits of verbs are omitted
here, such as tense, mood, etc. Following Davidson, we atdode an event argumeatn the verb
predicated (Davidson, 1980), but we extend it to states too (ecgntair(e, x,y))*. Additionally,
there are specific rules to cope with referengeand binders\;.

2The truth-value type “t” is not to be confused with traceg
3An event argumenté” is not to be confused with the entity type “e”.
“It is not required here that we extend it to nouns as well, glgsse,).

The compositional meaning of sentence (1) is defined baseitieosyntax tree structure (the
logical form depicted on Figure 1) as well as on the types aaldes listed on Figure 2. In this
particular example, all compositions happen to be funaliapplications from left to right, except for
the application of the VP, which is in the opposite direction

[every linguist drinks a glass]
= ([every[[linguist]) ([A1] (([a] [glass]) ([A2] (([drinks] [t2]) [t1]))))

After g-reduction, the interpretation of sentence (1) is foundedhe following.

[every linguist drinks a glass]
— (levery] [linguist])(Aa1.([a] [glass]) (. (([drinks] 2) 1))
= V1 linguist(xy) = (Jx2 glasgzo) A e drink(e, z1, z2))

This interpretation is wrormgbecause it does not convey the idea that the linguist drimkgontents
of the glass. Itis also incorrect in the sense that “drinkguially expects a beverage but is provided
a container. What is missing is a way to coerce the contairera beverage.

3 Supporting type coercion via the Generative L exicon
The GL provides an account for this kind of metonymy phenamnenLexical entries for lexeme

drink andglass are defined below. (Only qualia and features that are reldoamvhat follows have
been mentioned héftg

glass drink
EVENTSTR|[EL = e : state | EVENTSTR|[EL = e : process |
ARGl = 7z : container ARG1 = z : animated
ARGSTR ARGSTR
D-ARG1 = y : beverage ARG2 = y : beverage
QUALIA [TELIC = contain(e,z,y) | QUALIA [AGENT = drink(e, z,y) |

When trying to compose entrigsink andglass, there is type clash alrink expects deverage
but gets acontainer. The composition is enabled by thge coerciormechanism of the GL (Godard
and Jayez, 1993), that somehow convertsdietainer into a beverage, shifting the composition
parameter from the true argumentghss (x : container) to the default argumenty(: beverage).
This results in a new lexical construction, with the follogikind of structure.

5The sharp sign “#" denotes a semantically incorrect formula

SFor instance, a richer entry fglass would include anAGENT quale to express that a glass is an artefact (blown).
Also the TELIC quale could be refined into two subqualia (Bassac and BouiR607): an “agentive of the telic” quale,
expressing a precondition (the fact that somebody had totpewbeverage in the glass), and a “formal of the telic” quale
expressing a result (the fact that the glass contains therdg®). In the following, theeLic feature is to be understood
as the formal part of the telic quale. Besides, the teliglass could also include an adjunct predicatgnk(e’, z, y) to
express that the purpose of the glass is not only to contaeverage (or liquid) but also to allow somebody to drink out
of it. As for drink, a richer entry would also includeTELIC feature to express that the purpose of drinking is (often) to
qguench one’s thirst.

[drink (a) glass

E1l = ey : process
EVENTSTR

E2 =[1]ey : state
[ARG1 = z; : animated

ARG2 =[2]y : beverage
—glass

ARGSTR EVENTSTR[EL =[1]e; : state |

ARG3 = ARG1 = x5 : container
D-ARG1 =[2]y : beverage

QUALIA [TELIC = contain(es, z2,y) |

ARGSTR[

QUALIA [AGENT = drink(e1, z1,y) |

Informally, if we omit the quantifiers, the meaning assaaiatodrink (a) glass is thus given by the
formulaglasgz2) A containles, 2, y) A drink(eq, z1,y). Alternatively, the telic quale ajlass could
have been added as adjunct to the agentive qualeink, yielding a similar formula.

Now the question is whether this formula can somehow be ¢te@ into the CS interpretation.
More precisely, we are looking for a conversion (or coergimmction that could adapt the interpre-
tation of glass when eventually composed with the interpretatiordoinks. In other words, we are
looking for a functionconv such that:

conv([a] [glass]) (Az2.(([drinks] x2) z1))
= dxo Jy ey Jes glassxs) A contain(es, x2,y) A drink(eq, z1,y)
As can be shown after a fed+reductions ande-renamings, one solution for this equation is:

conv = AP.AR.P(\z.3y Je contair(e, z,y) A R(y))

If conv is applied at the “right” time during CS interpretation, tualysis of (1) becomes correct:
[every linguist drinks a glass]
= ([every] [linguist])(Az1.conv([a] [glass]) (Azo.(([drinks] x2) x1)))
= Vz linguist(z) = Jx glasgz) A Jex Jy containes, x,y) A Jey drink(e1, z,y)

We can recognize as a subtermcofiv the telic quale ofjlass, selected by the type coercion mecha-
nism. This actually generalizes to other common type coBgCi

Interestingly, the sameonv operator also works for other quantifying determiners. ider, for
instance, the following sentence.

(2) A linguist drinks every glass.

It has the following, correct interpretation, whesnv is “injected” at the same time as above.

[A linguist drinks every glass]
— (la] [linguist]) (\z1.conv([every] [glass]) (s (([drinks] z2) 1))
= JzVz linguist(z) A (glasgx) = (Je2 Jy contain(eq, z,y) A Jey drink(ey, z,y)))

The same “fixed” interpretation also works for the followisgntences:

(3) Alinguist drinks a glass.
(4) Every linguist drinks every glass.
It actually is not really surprising because the quantifigolgng to linguist comes into play after

the VP is fully interpreted. Knowing that the “fixed” integiation works fordrinks a glass (1) and
drinksevery glass (2), it consequently also works for (3) and (4).

4 Supporting selective binding viathe Generative L exicon

Another classical example is the “fast typist”. In a typi€8 interpretation, this phrase is analysed as
follows.

[fast] : (((e, 1)), ({e,1))) = AP.\x.P(z) A fast(x)
[typist] : (e,t) = Az.typist(x)
[fast typist] = [fast]([typist]) = Ax.typist(x) A fast(x)
This makes little sense because of a type cléastactually expects an event whérpist expects an
individual. Theselective bindingule of the GL (Pustejovsky, 1995) is devised to handle sucise:
when an entryy; of type (7, 1) is combined with an entry, of type 7, if the qualia structure ofs
has a quale that involves a type, thenvy; and~, can be composed into an entry of typg based

on 2, where~; applies to qualeg. In our example, the event expected flagt can be found in the
telic quale oftypist.

typist

EVENTSTR[EL = e : process |
ARGSTR[ARG1 = z : human |
QUALIA [TELIC = type(e,) |

Classically, the resulting GL composition is then as folbow

fast typist
EVENTSTR[EL = e : process |

ARGSTR[ARG1 = z : human |
QUALIA [TELIC = type(e, z) A fast(e) |

Although the telic role expresses a persistent propemyctinresponding event is only to be under-
stood as a possible (Busa, 1997), as opposed to systenmticealised in all circumstances. This cor-
responds to a modal interpretation, which may be repreddatehe possibility operator$” (Bouil-
lon, 1997). This leads to the following semantics for “faglist”. (We omit here additional constraints
expressing that is human, etc.)

[fast typist] = Ax.typist(z) A Je O(type(e, z) A fast(e))

The question again is how to fix the wrong CS interpretatiangthe GL mechanism, but staying
at the CS level.

One possible answer is, like in Section 3, to apply a convarsperator before combining the
semantics of the noun with that of the adjective:

conv' = AP.ARz.R(x) A Je.OP (e .type(e’, x))(e)
[fast typist] = (conv'[fast])([typist]) = \z.typist(xz) A Je O(type(e, x) A fast(e))

We can also recognise as a subternaafv’ the telic quale ofypist.
More generally, when lexicon entries and~, are composed according to selective binding via
qualegq, their corresponding CS interpretation can be composediiasvé.

conv' = AP.ARz.R(x) A Je (P(q(y2)(x))(e)

[71 72l = (conv'[v])([r2])

In the case wherg = TELIC, theng(~) is to be understood as the contents of the telic quale modified
by the possibility modality.

5 Synchronising thetwo calculi into a general framework

We now generalise on the preceding examples and define a vesgdciate CS and GL. Given a CS
interpretation]-], as well as a lexicoi equiped with a set of GL composition mechanisms, we build a
new interpretatiorf-] mix that combines them. Intuitively, theixed interpretatiorf-]mix is constructed

as an instrumented semanfiteat modifies the CS interpretatidr]. The CS interpretation and the
GL compositions are “synchronised” in the sense that batkhgsses are somehow performed in par-
allel on the same syntactic structure, synchronizing ab eacle level, i.e., stopping and cooperating
before pursuing. The mixed interpretation is formally dediras follows.

The domain of the mixed interpretation is the product domalements are pair§p,) where
¢ is a semantic function in the domain pj, and+ is a lexical entry inL, possibly obtained by the
GL compoaosition of othel. entries.

The mixed interpretation works bottom up on the same syiot&rete structure as the original CS
interpretation. We assume that movements, if any, havadrbeen performed. (The CS interpre-
tation actually does not have to be based on GB; it just hag toifictional and compositional, e.g.,
based on categorial grammars.) The mixed interpretatidefised inductively as described below.

For any leafw in the syntax tree, we define:

[w]mix = ([w], entry(w))
It is important to note that the lexicon does not have to bepieta. If w is absent fromL, then
entry(w) = L, where L denotes an undefined entry.

For any non-leaf (binary) treey in the syntax treeyw, results from the association of two sub-
termsw; andws, that represent subphrases, specifier, morphemes, etaimigs that the mixed
interpretationgw; mix = (¢1,71) andJwa]mix = (p2,v2) have been calculated, we want to express

[wolmix = (#0,70)-
As modeled and illustrated in the previous sections, then@8pretation defines:

[[w()]] = Composfunc([[w1]]> [[w2]])

wherecomposg, .. is some functional operation depending on the typeswej and[w-].

"as defined in the abstract interpretation framework usedrimyramming languages (Jones and Nielson, 1994)

Regarding the GL, a lexical compositi@ompos,., for L entriesy; and~; may or may not be
defined. There are thus two cases:

(a) If a compositiorcomposy., (71, 72) is defined inL, then the mixed interpretatiofw]mix =
(v0,70) is defined as follows:

$0 = cOMPpOoSgac(X1(¥1), X2(2))

Yo = compose, (71, 72)

Xi = effect;(compos;,)

whereeffect;(compos,.,) denotes the effect that the compositmmpos,., has on itsth argument. In
other wordsp; andys are composed vieomposg,,,. as in the original CS interpretation, except that
they are first converted as specifiedpyandy-. These conversions account for the GL composition
of lexical entriesy; and~s.

For instance (cf. 83), when a compositiaampos,., translates into the adjunction of some
qualeg, of vo to some quale; of ;, wheregy(v2) is expressed asred (e, z, y) andz is the variable
denoted byys, then the situation is as follows.

a1(10) = q1(m) Aa2(r2) and Vg #q1 q(v0) = a1(n)
X1 = AT.x
X2 = APAR.P(Az.3y Je q(v2) A R(y))

In other words;y, has the same qualia gs, except for the adjunction ef(v2) to qualeg;. More-
over, the interpretatiorp; is unaltered {; is the identity function) whereas the interpretatips is
converted to incorporate the contents of qual®f ., and to apply to the third argument @f(~2)
rather than to the second one. The other arguments arerdgidfitequantified.

(b) In case the lexicoi does not define entry; or v,, or if no composition mechanistempos.,
is defined fory; and~., then the standard interpretation is used as defauliafd - are identity
functions). Moreover, if there is an entry in the lexicon foe lexical head of the phrase, then it is
used as a default entry;, which further allows possible compositions. In other vord

o = COMPOStnc (1, 2)
~o = entry(lexhead(wy)) if any, otherwisel

It is the best that we can do given the limited available imfation.

For instance, an auxiliary verto; whose lexicon entry is; can be combined with a vert,
whose lexicon entry is,. In this case, the lexical head @f, = w;ws is the verb:lexhead(wg) = wo.
The lexicon entry corresponding to the compositiomgfandws is theny, = entry(lexhead(wg)) =
entry(wy) = 72, i.e., the lexicon entry of the verb.

Similarly, when a determiner is combined with a noun to forrdederminer phrase (DP), the
lexicon entry of the noun (lexical head of the DP) is used asethtry for the whole D® This is
actually used to correctly interprete example sentencegdnerative lexicons usually do not define
any entry for determinea, let alone any composition mechanism to combine an entra feith an
entry forglass. In our setting, we thus havg = entry(a) = L and~, = entry(glass), as well as
compos,., (71,72) = L. The result is then defined ag = entry(lexhead(a glass)) = entry(glass) =
glass. This allows entnyglassto be appropriately combined witlrink later in the interpretation.

8As far as this mixed interpretation is concerned, we are stimeegardind DPs and NPs: if the phrase is analysed as a
noun phrase (NP) rather than a determiner phrase, the lédad is still the noun.

As a fallback, it is thus always possible to consider a GL cositppn as undefined, i.eyg = L.
In the extreme case where, for all items of a given sentehege tare no applicable entrigsn the
semantic lexicon, or no applicable composition mechanismsos,.,, the mixed interpretatioft] mix
coincides with the standard interpretatipfu

6 Conclusion

Given an arbitrary computational semantics analysis (aitly a few assumptions) and an arbitrary
generative lexicon (a subset of entries and compositiorharésms), as well as a small number of
operations to map GL composition information into CS terms,have defined an effective, mixed
semantic analyser, that applies to the same syntacticraststas the original CS process but produces
GL-refined analyses.

Arguably, this mixed interpretation provides in some sehsdest of both worlds: CS and GL are
both used for what they are good, i.e., respectively syatarantics interface and lexicon-semantics
interface. This of course does not prohibit uses of the Gldo address syntactic phenomena.

It can be noted that the coupling between CS and GL is verydiiwhich facilitates the separate
evolution both of CS features (support of additional syitaconstructs, refinements in the target
logics, etc.) and GL features (general model, compositiestranisms, actual lexicon entries, etc.).

In particular, the mixed interpretation is applicable ewdren only partial information is available
from the lexicon, for instance when lexical entries or GL @asitions are missing. This has two
major advantages. First, it allows the gradual additioreridal semantics information in a semantic
analysis system. The semantic lexicon does not have to bplet@before the first sentence can be
processed. Second, it also allows the gradual addition oér@h composition mechanisms. This
makes sense for parts of speech that are not (yet) suppaortbe KL, as well as for mechanisms that
have been described but not yet been mechanised.

Future work includes the explicit definition of more mapm@rigom GL compositions to CS con-
versions (i.e., functionsffect;) as well as a comparison of the treatment of quantifiers fteddypes
as in (Asher and Pustejovsky, 2000) and (Jacquey, 2001).

Also interesting would be a comparison with approaches atier lexicon-semantics and syntax-
semantics interfaces are studied within the same framewadk as the Meaning-Text Theory (MTT)
(Mel’€uk, 1988). In this theoretical framework, practical prwess have been defined to transform a
meaning, expressed as a semanteme graph, into a textusdeamtion (Bohnet and Wanner, 2001).
Even if this differs from the above in that it addresses texigyation rather than text analysiand
semanteme graphs rather than logical formulas, this daggedude inspiring comparisons. The fact
is that the MTT includes a rich lexicon model, the Explanatand Combinatorial Dictionary (ECD),
that has been formalized (Mélik and Polguére, 1987) and that has computational insggAdEnan
and Polguére, 1997). In this lexicon model, there is a pdeicemphasis on collocation information,
expressed as lexical functions, which allows in partictitee selection of appropriate lexemes and
forms when generating text (Polguére, 1998). Howevergirgethat phenomena like metonymy have
to be explicited for each lexeme, although polysemy tereplatlow for some factorisation.

SMTT equative rules can in theory also be used for analysisinlpractice this direction is not as easy and as developped
as generation is. Conversely, the Generative Lexicon yheoivell as most Computational Semantics approaches age mor
geared towards analysis than generation.

Acknowledgements

We wish to thank Christian Bassac for fruitful discussiond aelpful comments on earlier versions
of this paper.

References

Joel Altman and Alain Polguere. 1997. La bdéf : base de défirsitdérivée du dictionnaire explicatif
et combinatoire. IrProceedings of the 1st International Conference on Meailexg Theory
pages 43-54.

Nicholas Asher and James Pustejovsky. 2000. The metaghyfsieords in contextSubmitted to the
Journal of Logic, Language and Information

Christian Bassac and Pierrette Bouillon. 2007. The telitigship in compounds. In James Puste-
jovsky et al., editorGenerative approaches to the lexicdfiuwer. To appear.

Johan van Benthem and Alice ter Meulen, editors. 13¢andbook of logic and languagdhe MIT
Press.

Bernd Bohnet and Leo Wanner. 2001. On using a parallel graphting formalism in generation.
In Proceedings of the 8th European workshop on Natural Languagneration (EWNLG’01)
pages 1-11, Morristown, NJ, USA. Assaociation for Compotal Linguistics.

Pierrette Bouillon. 1997 Polymorphie et sémantique lexicale : le cas des adject#s.D. thesis,
Université de Paris 7.

Federica Busa. 1997. The semantics of agentive nominaleeiigénerative lexicon. In Patrick St.
Dizier, editor,Predicative Forms in Natural Languag&luwer.

Donald Davidson. 198CEssays on Actions and Even@Glarendon, Oxford.

Daniele Godard and Jacques Jayez. 1993. Towards a propgném of coercion phenomena. In
Proceedings of the sixth conference of the European chaptee Association for Computational
Linguistics pages 168-177, Morristown, NJ, USA, April. ACL.

C.-T. James Huang. 1994. Logical form. In Gert Webelhutitpgdsovernment and binding theory
and the minimalist progranpages 127-173. Blackwell, Oxford.

Evelyne Jacquey. 200 Ambiguités lexicales et Traitement Automatique des LangModélisation
de la polysémie logique et applications aux déverbaux @iacmbigus en francaisPh.D. thesis,
Université de Nancy 2, December.

Neil D. Jones and Flemming Nielson. 1994. Abstract intégtien: a semantics-based tool for pro-
gram analysis. IrHandbook of Logic in Computer Scienqeges 527-629. Oxford University
Press.

Igor Mel'€uk and Alain Polguére. 1987. A formal lexicon in MeaningdT&heory (or how to do
lexica with words).Computational Linguistigsl3(3—4):261-275.

Igor Mel’'€uk. 1988.Dependency Syntax: Theory and Practidde SUNY Press.

Richard Montague. 19740rmal Philosophy. Selected Papers of Richard Montagiade University
Press. Edited and with an introduction by Richmond H. Thanas

Alain Polguére. 1998. Pour un modeéle stratifié de la lexsedilbn en génération de texfEraitement
Automatique des Langues (T.A,139(2):57-76.

James Pustejovsky. 199%he Generative Lexicormhe MIT Press.

