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When the Generative Lexicon meets Computational Semantics

Computational semantics and lexical semantics have so far mostly been studied separately. As a result, computational semantics often constructs meanings with poor or little lexical sense, while lexical semantics generally only apply to simple and small phrases (as opposed to complete sentences). We present here a general framework to incorporate lexical semantics information originating from a generative lexicon into a standard analysis of computational semantics. This framework is illustrated on two examples, covering type coercion and selective binding. In this framework, the coupling between the analysis and the lexicon is kept low to facilitate separate evolutions and to adapt to the partial availability of lexical semantics information.

Introduction

The semantic analysis of text relies on two key issues: the syntax-semantics interface and the lexiconsemantics interface. However, to some extent, these two issues have mostly been studied separately.

On the one hand, computational semantics (CS) proposes semantic analyses that specify how to map a sentence, usually modeled as a syntax tree, into a meaning, commonly expressed as a logical formula (Benthem and Meulen, 1997). These approaches are often based on the composition of typed λ-terms, along the lines of Montague semantics [START_REF] Montague | Pour un modèle stratifié de la lexicalisation en génération de texte[END_REF]. The range of syntactic constructions that they cover is substantial and growing: quantifying determiners, negation, referential pronouns and ellipsis, subordinate clauses, questions, etc. Different kinds of underlying logics are also studied, such as intensional logic to express belief, modal logic to express possibility and necessity, temporal logic to express past and future, etc. However, these approaches generally make little or no use of lexical semantic information. Lexemes are taken as "opaque" predicates and the relevance of produced formulas is routinely poor because of a lack of support for polysemy, and in particular metonymy. For instance, analysing "John begins a book" as ∃x begin(John, x)∧book (x) is mostly useless, if not wrong, because it tells nothing about the actual action being performed (reading, writing, etc.) nor about the nature of "book" (physical object or information).

On the other hand, the Generative Lexicon Theory (GL) provides a framework for the creative composition of lexical meanings [START_REF] Pustejovsky | The Generative Lexicon[END_REF]. Various phenomena of polysemy can be explained in this setting, as well as their contextual disambiguation. Rich lexical semantic information and powerful composition mechanisms obviate the need to explicitly list numerous individual meanings for different lexeme associations, as must be the case for "real" collocations. However, the GL focuses on the composition of "referential" lexemes, mainly verbs, nouns and adjectives. It provides little support for other parts of speech such as determiners, pronouns or conjunctions. As a result, it is usually not possible to perform the semantic analysis of a complete sentence within the GL alone.

On way to bridge the gap between these two complementary visions is to incorporate the features of one into the other. It seems unreasonable to duplicate, within the GL, the work already done in CS. This would be a huge task, for which the GL offers no particular advantage. The modeling of "purely syntactic" phenomena might in fact be cluttered when forced to be formulated with GL entities.

Conversely, it is not obvious how to integrate the GL into a CS analysis. Indeed, the lexicon only plays a minor role in these approaches. It is used only at the beginning of the analysis process, to provide a basic semantic function or predicate for each lexeme in the sentence. It is totally useless afterwards: the terms are simply composed according to their type and to the syntactic structure of the sentence. Only β-reduction delves into the basic semantic terms, but without refining their meaning. Even if the GL can nonetheless be successfully integrated into a semantic analysis, a number of questions are raised. Would it put constraints on the GL that would reduce its power and autonomy? Would the integration be sensitive to evolutions in the GL model? Besides, as there are many proposals for such semantic analyses, which CS approaches are best suited for a GL integration? And what amount of work can be reused when integrating the GL into several such CS analyses? Our goal in this paper is to present a general framework to incorporate GL-related information into a CS analysis. We first present a typical CS analysis and illustrate cases where it does not construct appropriate interpretations ( §2). Then we describe how these cases can be fixed using GL-related information ( §3 and §4). Finally, we generalise on these examples and propose a comprehensive framework that integrates GL compositions and CS interpretation, while limiting their coupling ( §5). Given any well-defined CS analysis and any well-defined GL entries and composition processes, this provides an effective mechanisation1 of the semantic analysis of complete sentences that takes into account lexical semantics.

Computational Semantics Interpretation

Many approaches in computational semantics define the meaning of a sentence as a type-driven compositional construction. Each element in the sentence is interpreted as a function, and represented by a λ-term. These semantic functions are combined according to the (binary) tree structure of a syntactic analysis of the sentence, and also depending on their type. Typical combination operations are functional application and functional composition. At the top level, the resulting term, after β-reduction, is a logical formula representing the meaning of the whole sentence, in some given logic. Let us consider the following example.

(1) Every linguist drinks a glass.

In the Government and Binding Theory (GB) -for instance -, this sentence is given both a surface structure and two logical forms, corresponding to two different readings [START_REF] Huang | Logical form[END_REF]. In the logical forms, the quantified determiner phrases are moved up the syntax tree, leaving indexed traces t 1 and t 2 , as illustrated on Figure 1. (In the following, we only consider the interpretation where each linguist has his/her own glass.) For any lexeme or phrase w in the logical form of the sentence, [[w]] stands for the denotation of w, i.e., the semantic function that is the interpretation of w. When w is a lexeme, [[w]] is found in the lexicon; when it is a phrase, it is calculated from the interpretation of subphrases. The meaning of lexemes is read from a lexicon that includes both types and functional values, as illustrated on Figure 2. Following a common practice in the tradition of Montague, atomic types are just "e" (entity) [[every]] : e, t , e, t , t = λP.λQ.∀x P (x) ⇒ Q(x) and "t" (truth-value)2 , and functional type σ → τ is written σ, τ . Some traits of verbs are omitted here, such as tense, mood, etc. Following Davidson, we also include an event argument e in the verb predicates 3 [START_REF] Davidson | Essays on Actions and Events[END_REF], but we extend it to states too (e.g., contain (e, x, y))4 . Additionally, there are specific rules to cope with references t i and binders Λ i .

[[linguist ]] : e, t = λx.linguist (x) [[drinks]] : e, e, t = λx.λz.∃e drink (e, z, x) [[a]] : e, t , e, t , t = λP.λQ.∃x P (x) ∧ Q(x) [[glass ]] : e, t = λx.glass(x) [[t i ]] : e = x i [[Λ i ]] : t, e, t = λP.λx i .P
The compositional meaning of sentence ( 1) is defined based on the syntax tree structure (the logical form depicted on Figure 1) as well as on the types and values listed on Figure 2. In this particular example, all compositions happen to be functional applications from left to right, except for the application of the VP, which is in the opposite direction:

[[every linguist drinks a glass]] = ([[every]] [[linguist ]]) ([[Λ 1 ]] (([[a]] [[glass ]]) ([[Λ 2 ]] (([[drinks]] [[t 2 ]]) [[t 1 ]]))))
After β-reduction, the interpretation of sentence ( 1) is found to be the following.

# [[every linguist drinks a glass]]

= ([[every]] [[linguist ]])(λx 1 .([[a]] [[glass ]])(λx 2 .(([[drinks]] x 2 ) x 1 ))) = ∀x 1 linguist (x 1 ) ⇒ ( ∃x 2 glass(x 2 ) ∧ ∃e drink (e, x 1 , x 2 ) )
This interpretation is wrong5 because it does not convey the idea that the linguist drinks the contents of the glass. It is also incorrect in the sense that "drinks" actually expects a beverage but is provided a container. What is missing is a way to coerce the container into a beverage.

Supporting type coercion via the Generative Lexicon

The GL provides an account for this kind of metonymy phenomenon. Lexical entries for lexeme drink and glass are defined below. (Only qualia and features that are relevant for what follows have been mentioned here6 .)

         glass EVENTSTR E1 = e : state ARGSTR ARG1 = x : container D-ARG1 = y : beverage QUALIA TELIC = contain (e, x, y)                   drink EVENTSTR E1 = e : process ARGSTR ARG1 = x : animated ARG2 = y : beverage QUALIA AGENT = drink (e, x, y)         
When trying to compose entries drink and glass, there is type clash as drink expects a beverage but gets a container. The composition is enabled by the type coercion mechanism of the GL [START_REF] Godard | Towards a proper treatment of coercion phenomena[END_REF], that somehow converts the container into a beverage, shifting the composition parameter from the true argument of glass (x : container) to the default argument (y : beverage). This results in a new lexical construction, with the following kind of structure.

                        drink (a) glass EVENTSTR E1 = e 1 : process E2 = 1 e 2 : state ARGSTR              ARG1 = x 1 : animated ARG2 = 2 y : beverage ARG3 =          glass EVENTSTR E1 = 1 e 2 : state ARGSTR ARG1 = x 2 : container D-ARG1 = 2 y : beverage QUALIA TELIC = contain(e 2 , x 2 , y)                       QUALIA AGENT = drink (e 1 , x 1 , y)                        
Informally, if we omit the quantifiers, the meaning associated to drink (a) glass is thus given by the formula glass(x 2 ) ∧ contain(e 2 , x 2 , y) ∧ drink (e 1 , x 1 , y). Alternatively, the telic quale of glass could have been added as adjunct to the agentive quale of drink, yielding a similar formula. Now the question is whether this formula can somehow be "injected" into the CS interpretation. More precisely, we are looking for a conversion (or coercion) function that could adapt the interpretation of glass when eventually composed with the interpretation of drinks. In other words, we are looking for a function conv such that:

conv([[a]] [[glass]]) (λx 2 .(([[drinks]] x 2 ) x 1 )) = ∃x 2 ∃y ∃e 1 ∃e 2 glass(x 2 ) ∧ contain(e 2 , x 2 , y) ∧ drink (e 1 , x 1 , y)
As can be shown after a few β-reductions and α-renamings, one solution for this equation is: conv = λP.λR.P (λz.∃y ∃e contain (e, z, y) ∧ R(y))

If conv is applied at the "right" time during CS interpretation, the analysis of (1) becomes correct:

[[every linguist drinks a glass]] = ([[every]] [[linguist ]])(λx 1 .conv([[a]] [[glass ]])(λx 2 .(([[drinks]] x 2 ) x 1 )))
= ∀z linguist (z) ⇒ ∃x glass(x) ∧ ∃e 2 ∃y contain(e 2 , x, y) ∧ ∃e 1 drink (e 1 , z, y)

We can recognize as a subterm of conv the telic quale of glass, selected by the type coercion mechanism. This actually generalizes to other common type coercions.

Interestingly, the same conv operator also works for other quantifying determiners. Consider, for instance, the following sentence.

(2) A linguist drinks every glass.

It has the following, correct interpretation, when conv is "injected" at the same time as above.

[[A linguist drinks every glass]]

= ([[a]] [[linguist ]])(λx 1 .conv([[every]] [[glass ]])(λx 2 .(([[drinks]] x 2 ) x 1 )))
= ∃z ∀x linguist (z) ∧ (glass(x) ⇒ (∃e 2 ∃y contain(e 2 , x, y) ∧ ∃e 1 drink (e 1 , z, y)))

The same "fixed" interpretation also works for the following sentences:

(3) A linguist drinks a glass.

(4) Every linguist drinks every glass.

It actually is not really surprising because the quantifier applying to linguist comes into play after the VP is fully interpreted. Knowing that the "fixed" interpretation works for drinks a glass (1) and drinks every glass (2), it consequently also works for (3) and (4).

Supporting selective binding via the Generative Lexicon

Another classical example is the "fast typist". In a typical CS interpretation, this phrase is analysed as follows.

[[fast ]] : ( e, t ), ( e, t ) = λP.λx.P (x) ∧ fast (x) [[typist ]] : e, t = λx.typist (x)

# [[fast typist ]] = [[fast ]]([[typist ]]) = λx.typist (x) ∧ fast (x)
This makes little sense because of a type clash: fast actually expects an event when typist expects an individual. The selective binding rule of the GL [START_REF] Pustejovsky | The Generative Lexicon[END_REF] is devised to handle such a case: when an entry γ 1 of type τ 1 , τ 1 is combined with an entry γ 2 of type τ 2 , if the qualia structure of γ 2 has a quale q that involves a type τ 1 , then γ 1 and γ 2 can be composed into an entry of type τ 2 , based on γ 2 , where γ 1 applies to quale q. In our example, the event expected by fast can be found in the telic quale of typist. Although the telic role expresses a persistent property, the corresponding event is only to be understood as a possible [START_REF] Busa | The semantics of agentive nominals in the generative lexicon[END_REF], as opposed to systematic, i.e., realised in all circumstances. This corresponds to a modal interpretation, which may be represented by the possibility operator "♦" [START_REF] Bouillon | Polymorphie et sémantique lexicale : le cas des adjectifs[END_REF]. This leads to the following semantics for "fast typist". (We omit here additional constraints expressing that x is human, etc.)

[[fast typist ]] = λx.typist (x) ∧ ∃e ♦(type(e, x) ∧ fast (e))
The question again is how to fix the wrong CS interpretation using the GL mechanism, but staying at the CS level.

One possible answer is, like in Section 3, to apply a conversion operator before combining the semantics of the noun with that of the adjective: conv ′ = λP.λR.λx.R(x) ∧ ∃e.♦P (λe ′ .type(e ′ , x))(e)

[[fast typist ]] = (conv ′ [[fast ]])([[typist ]]) = λx.typist (x) ∧ ∃e ♦(type(e, x) ∧ fast (e))
We can also recognise as a subterm of conv ′ the telic quale of typist.

More generally, when lexicon entries γ 1 and γ 2 are composed according to selective binding via quale q, their corresponding CS interpretation can be composed as follows.

conv ′ = λP.λR.λx.R(x) ∧ ∃e (P (q(γ 2 )(x))(e) [[γ 1 γ 2 ]] = (conv ′ [[γ 1 ]])([[γ 2 ]])
In the case where q = TELIC, then q(γ) is to be understood as the contents of the telic quale modified by the possibility modality.

Synchronising the two calculi into a general framework

We now generalise on the preceding examples and define a way to associate CS and GL. Given a CS interpretation [[•]], as well as a lexicon L equiped with a set of GL composition mechanisms, we build a new interpretation [[•]] mix that combines them. Intuitively, the mixed interpretation [[•]] mix is constructed as an instrumented semantics 7 that modifies the CS interpretation [[•]]. The CS interpretation and the GL compositions are "synchronised" in the sense that both processes are somehow performed in parallel on the same syntactic structure, synchronizing at each node level, i.e., stopping and cooperating before pursuing. The mixed interpretation is formally defined as follows.

The domain of the mixed interpretation is the product domain: elements are pairs (ϕ, γ) where ϕ is a semantic function in the domain of [[•]], and γ is a lexical entry in L, possibly obtained by the GL composition of other L entries.

The mixed interpretation works bottom up on the same syntactic tree structure as the original CS interpretation. We assume that movements, if any, have already been performed. (The CS interpretation actually does not have to be based on GB; it just has to be functional and compositional, e.g., based on categorial grammars.) The mixed interpretation is defined inductively as described below.

For any leaf w in the syntax tree, we define:

[[w]] mix = ([[w]], entry(w))
It is important to note that the lexicon does not have to be complete. If w is absent from L, then entry(w) = ⊥, where ⊥ denotes an undefined entry.

For any non-leaf (binary) tree w 0 in the syntax tree, w 0 results from the association of two subterms w 1 and w 2 , that represent subphrases, specifier, morphemes, etc. Assuming that the mixed interpretations

[[w 1 ]] mix = (ϕ 1 , γ 1 ) and [[w 2 ]] mix = (ϕ 2 , γ 2 ) have been calculated, we want to express [[w 0 ]] mix = (ϕ 0 , γ 0 ).
As modeled and illustrated in the previous sections, the CS interpretation defines:

[[w 0 ]] = compos func ([[w 1 ]], [[w 2 ]])
where compos func is some functional operation depending on the types of

[[w 1 ]] and [[w 2 ]].
Regarding the GL, a lexical composition compos lex for L entries γ 1 and γ 2 may or may not be defined. There are thus two cases:

(a) If a composition compos lex (γ 1 , γ 2 ) is defined in L, then the mixed interpretation [[w 0 ]] mix = (ϕ 0 , γ 0 ) is defined as follows:

ϕ 0 = compos func (χ 1 (ϕ 1 ), χ 2 (ϕ 2 )) γ 0 = compos lex (γ 1 , γ 2 ) χ i = effect i (compos lex )
where effect i (compos lex ) denotes the effect that the composition compos lex has on its ith argument. In other words, ϕ 1 and ϕ 2 are composed via compos func as in the original CS interpretation, except that they are first converted as specified by χ 1 and χ 2 . These conversions account for the GL composition of lexical entries γ 1 and γ 2 .

For instance (cf. §3), when a composition compos lex translates into the adjunction of some quale q 2 of γ 2 to some quale q 1 of γ 1 , where q 2 (γ 2 ) is expressed as pred (e, x, y) and x is the variable denoted by γ 2 , then the situation is as follows.

q 1 (γ 0 ) = q 1 (γ 1 ) ∧ q 2 (γ 2 ) and ∀ q = q 1 q(γ 0 ) = q 1 (γ 1 ) χ 1 = λx.x χ 2 = λP.λR.P (λx.∃y ∃e q(γ 2 ) ∧ R(y))

In other words, γ 0 has the same qualia as γ 1 , except for the adjunction of q 2 (γ 2 ) to quale q 1 . Moreover, the interpretation ϕ 1 is unaltered (χ 1 is the identity function) whereas the interpretation ϕ 2 is converted to incorporate the contents of quale q 2 of γ 2 , and to apply to the third argument of q 2 (γ 2 ) rather than to the second one. The other arguments are existentially quantified.

(b) In case the lexicon L does not define entry γ 1 or γ 2 , or if no composition mechanism compos lex is defined for γ 1 and γ 2 , then the standard interpretation is used as default (χ 1 and χ 2 are identity functions). Moreover, if there is an entry in the lexicon for the lexical head of the phrase, then it is used as a default entry γ 0 , which further allows possible compositions. In other words:

ϕ 0 = compos func (ϕ 1 , ϕ 2 ) γ 0 = entry(lexhead(w 0 )) if any, otherwise ⊥
It is the best that we can do given the limited available information.

For instance, an auxiliary verb w 1 whose lexicon entry is γ 1 can be combined with a verb w 2 whose lexicon entry is γ 2 . In this case, the lexical head of w 0 = w 1 w 2 is the verb: lexhead(w 0 ) = w 2 . The lexicon entry corresponding to the composition of w 1 and w 2 is then γ 0 = entry(lexhead(w 0 )) = entry(w 2 ) = γ 2 , i.e., the lexicon entry of the verb.

Similarly, when a determiner is combined with a noun to form a determiner phrase (DP), the lexicon entry of the noun (lexical head of the DP) is used as the entry for the whole DP8 . This is actually used to correctly interprete example sentence (1): generative lexicons usually do not define any entry for determiner a, let alone any composition mechanism to combine an entry for a with an entry for glass. In our setting, we thus have γ 1 = entry(a) = ⊥ and γ 2 = entry(glass), as well as compos lex (γ 1 , γ 2 ) = ⊥. The result is then defined as γ 0 = entry(lexhead(a glass)) = entry(glass ) = glass. This allows entry glass to be appropriately combined with drink later in the interpretation.

As a fallback, it is thus always possible to consider a GL composition as undefined, i.e., γ 0 = ⊥. In the extreme case where, for all items of a given sentence, there are no applicable entries γ in the semantic lexicon, or no applicable composition mechanisms compos lex , the mixed interpretation

[[•]] mix coincides with the standard interpretation [[•]].

Conclusion

Given an arbitrary computational semantics analysis (with only a few assumptions) and an arbitrary generative lexicon (a subset of entries and composition mechanisms), as well as a small number of operations to map GL composition information into CS terms, we have defined an effective, mixed semantic analyser, that applies to the same syntactic constructs as the original CS process but produces GL-refined analyses.

Arguably, this mixed interpretation provides in some sense the best of both worlds: CS and GL are both used for what they are good, i.e., respectively syntax-semantics interface and lexicon-semantics interface. This of course does not prohibit uses of the GL to also address syntactic phenomena.

It can be noted that the coupling between CS and GL is very limited, which facilitates the separate evolution both of CS features (support of additional syntactic constructs, refinements in the target logics, etc.) and GL features (general model, composition mechanisms, actual lexicon entries, etc.).

In particular, the mixed interpretation is applicable even when only partial information is available from the lexicon, for instance when lexical entries or GL compositions are missing. This has two major advantages. First, it allows the gradual addition of lexical semantics information in a semantic analysis system. The semantic lexicon does not have to be complete before the first sentence can be processed. Second, it also allows the gradual addition of more GL composition mechanisms. This makes sense for parts of speech that are not (yet) supported by the GL, as well as for mechanisms that have been described but not yet been mechanised.

Future work includes the explicit definition of more mappings from GL compositions to CS conversions (i.e., functions effect i ) as well as a comparison of the treatment of quantifiers for dotted types as in [START_REF] Asher | The metaphysics of words in context[END_REF] and [START_REF] Jacquey | Ambiguïtés lexicales et Traitement Automatique des Langues : Modélisation de la polysémie logique et applications aux déverbaux d'action ambigus en français[END_REF].

Also interesting would be a comparison with approaches where the lexicon-semantics and syntaxsemantics interfaces are studied within the same framework, such as the Meaning-Text Theory (MTT) [START_REF] Mel | Dependency Syntax: Theory and Practice[END_REF]. In this theoretical framework, practical procedures have been defined to transform a meaning, expressed as a semanteme graph, into a textual representation [START_REF] Bohnet | On using a parallel graph rewriting formalism in generation[END_REF]. Even if this differs from the above in that it addresses text generation rather than text analysis9 , and semanteme graphs rather than logical formulas, this does not preclude inspiring comparisons. The fact is that the MTT includes a rich lexicon model, the Explanatory and Combinatorial Dictionary (ECD), that has been formalized [START_REF] Mel | A formal lexicon in Meaning-Text Theory (or how to do lexica with words)[END_REF] and that has computational instances [START_REF] Altman | La bdéf : base de définitions dérivée du dictionnaire explicatif et combinatoire[END_REF]. In this lexicon model, there is a particular emphasis on collocation information, expressed as lexical functions, which allows in particular the selection of appropriate lexemes and forms when generating text (Polguère, 1998). However, it seems that phenomena like metonymy have to be explicited for each lexeme, although polysemy templates allow for some factorisation.
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 1 Figure 1: Surface structure example, as well as one of its two possible logical forms

Figure 2 :

 2 Figure 2: Semantic lexicon example, with types and functional values

  e : process ARGSTR ARG1 = x : human QUALIA TELIC = type(e, x) e : process ARGSTR ARG1 = x : human QUALIA TELIC = type(e, x) ∧ fast (e)

We make a difference here between formalisation and mechanisation. Formalisation often relates to the use of formal notations as well as formal practices to provide a better ground for descriptive or explanatory theories, whereas mechanisation refers to the specification of well-defined, operative procedures to systematically process the langage (although with some approximation).

The truth-value type "t" is not to be confused with traces "ti".

An event argument "e" is not to be confused with the entity type "e".

It is not required here that we extend it to nouns as well, e.g., glass(e, x).

The sharp sign "#" denotes a semantically incorrect formula.

For instance, a richer entry for glass would include an AGENT quale to express that a glass is an artefact (blown). Also the TELIC quale could be refined into two subqualia[START_REF] Bassac | The telic relationship in compounds[END_REF]: an "agentive of the telic" quale, expressing a precondition (the fact that somebody had to pour the beverage in the glass), and a "formal of the telic" quale, expressing a result (the fact that the glass contains the beverage). In the following, the TELIC feature is to be understood as the formal part of the telic quale. Besides, the telic of glass could also include an adjunct predicate drink (e ′ , z, y) to express that the purpose of the glass is not only to contain a beverage (or liquid) but also to allow somebody to drink out of it. As for drink, a richer entry would also include a TELIC feature to express that the purpose of drinking is (often) to quench one's thirst.

As far as this mixed interpretation is concerned, we are agnostic regardind DPs and NPs: if the phrase is analysed as a noun phrase (NP) rather than a determiner phrase, the lexical head is still the noun.

MTT equative rules can in theory also be used for analysis, but in practice this direction is not as easy and as developped as generation is. Conversely, the Generative Lexicon theory as well as most Computational Semantics approaches are more geared towards analysis than generation.
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