
HAL Id: hal-00306305
https://hal.science/hal-00306305

Submitted on 27 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of cryptographic protocols implemented in
Java Card

Renaud Marlet, Daniel Le Métayer

To cite this version:
Renaud Marlet, Daniel Le Métayer. Verification of cryptographic protocols implemented in Java
Card. e-Smart conference (e-Smart 2003), Sophia Antipolis, Sep 2003, France. pp.électronique. �hal-
00306305�

https://hal.science/hal-00306305
https://hal.archives-ouvertes.fr

Verification of Cryptographic Protocols
Implemented in Java Card

�����

Renaud Marlet Daniel Le Métayer
Trusted Logic

�

June 30, 2003

1 Introduction

Cryptographic protocols are used to ensure secure communications in a hostile environment, when the
decisions taken by the principals depend crucially on the authenticity and integrity of messages that
they receive. Typically, when a message is received, a principal wants to be sure that this message has
been created recently and in good faith for a particular purpose by the principal who claims to have
sent it, and that it has not been altered. Such secure communications are indispensable in areas such
as Internet, e-commerce and mobile applications.

A large number of cryptographic protocols have been specified and implemented. However, many
of them have been shown to be flawed, even long after they were published. This has generated a
line of works concerning the formal specification and verification of protocols, e.g., Casper [Low98],
Capsl [DMR00], Casrul [JRV00]. Still, all these techniques and tools are based on conceptual views
(or models) of protocols and provide no guarantee on their actual implementation. This paper reports
on a method and analysis tool whose goal is precisely to bridge the gap between protocol models that
can be proven flawless and their implementation.

Our target in this work is Java Card applets: In this case, applications on a card represent principals
involved in authentication protocols, with strong security requirements. We have defined a domain-
specific language, called DEXTRA, for expressing requirements regarding the implementation of a
protocol in Java Card. We have also developed a prototype analyzer to verify the compliance of a Java
Card applet with respect to such a specification of a protocol implementation. The verifier relies on
static program analysis techniques.

This work is part of the EVA project1 . The general goal of EVA is to design and develop protocol
verification tools that are suitable for industrial needs. The project has formally defined a protocol
specification language called LAEVA [LMJ01], that is used as the input of several verification tools:
CPV [GL02], Hermes [BLP02], Securify [Cor02]. These tools are based on standard techniques such
as abstraction and model checking.

The rest of the document is organized as follows. Section 2 states the general problem and issues
of protocol implementation verification. Section 3 presents our particular setting: verifying LAEVA
protocols implemented in Java Card. Section 4 describes our approach to address specification and
verification issues. Section 5 presents our language for specifying protocol implementations as well
as the corresponding verifications. Section 6 sketches our static analysis for protocol verification.
Section 7 concludes with future work.

�
Java Card is a trademark of Sun Microsystems, Inc. in the United States and other countries�
Authors: � Renaud.Marlet,Daniel.Le Metayer 	 @trusted-logic.fr — Company Web Site: www.trusted-logic.fr

1EVA is funded by the French national network for software technologies (RNTL). See http://www-eva.imag.fr

1

2 Verification of a Protocol Implementation

In theory, verifying that a protocol implementation is flawless could be decomposed in three stages:
(1) defining a refinement relation between the implementation and the protocol specification, (2) prov-
ing its correctness, and (3) proving the protocol specification flawless. In practice, as explained below,
additional hypotheses are required. Besides, the complexity of verifications leads to approximations
and possibly to partial results. The analysis of Java Card applets also raises specific issues.

2.1 Relating a Protocol to an Implementation

The implementation of a protocol is usually tightly interleaved with the rest of the application code,
with no explicit and obvious connection with data elements mentioned in the protocol specification. A
relation between a protocol specification and its use in an implementation has thus to be made explicit
before verification can proceed. Establishing such a relation raises a number of issues which are listed
below.

Scope of the Protocol within the Implementation. The implementation of a real application may
simultaneously rely on several protocols. Consequently, messages considered in the model of a pro-
tocol may be interleaved in the implementation with other, unrelated messages. The boundary of the
targeted protocol within the implementation thus has to be defined. Besides, the implementation may
involve more actors than the principals mentioned in the protocol specification. In this case, those
extra actors have to be assumed as trusted.

Message Fragmentation. For style or clarity reasons, protocol specifications may split a single set
of information to be communicated into several successive messages. Likewise, an implementation
may have to split information into several actual messages, because of message size limitations. For
instance data in APDU messages are often limited to 255 bytes. As a result, relating an implementation
to a protocol specification requires relating sets of messages rather than just individual messages.

Data Representation and Processing. After data are received and before they are sent, they may
be encrypted or decrypted, duplicated, fragmented, stored and later retrieved, transformed, encoded
into several actual pieces of data, etc. In fact, most of the data operations in an implementation
involving a protocol are generally not related to the protocol but to the actual application processing.
These operations have to be abstracted away for a protocol implementation to be related to a protocol
specification. Besides, data representation details (e.g., little-endian or big-endian integers) are also
left unspecified in protocol definitions.

Error Recovery. Most protocols are expressed as successions of communications and state changes.
But the behaviors in the case of unexpected events (e.g., if a signature is incorrect) are generally left
unspecified: the procotol just “fails”, there is no error recovery. However, a realistic application does
not abort in case of a protocol failure. Whether the failure originates from an intended attack or
from unintentional communication errors (including disconnections), the application has to be robust,
reliable. Actual implementations thus include recovery mechanisms, to always keep the system in an
active and consistent state.

2

2.2 Hypotheses For Proving a Protocol Implementation Flawless

Another significant issue when turning to a real implementation concerns the fact that proving a pro-
tocol flawless generally relies on idealized hypotheses that may not hold in absolute terms. The
following assumptions are common in the protocol verification literature:

Perfect Cryptography. Protocol cryptography is generally assumed to be perfect : crypted data
cannot be deciphered if the encryption key is unknown. In practice, crypanalysis attacks may reveal
data without the key being known, possibly depending on the key size, on the strength of the en-
cryption algorithm, or even on hardware-software protections (e.g., against DPA attacks). In practice,
cryptography thus offers only “probabilistic” protection.

Perfect Nonces. Protocol nonces are also generally assumed perfect, i.e., new nonces are not equal
to any past nonce. However, in practice, past nonces are not memorized to make sure new ones are
indeed different. Challenges often are random numbers and collisions are thus theoretically possible.
Strictly speaking, the freshness of nonces is thus also “probabilistic”.

Complete Models. Protocol specifications are deemed to model all actors and all knowledge ex-
change: attackers are assumed to have no initial knowledge (other than specified) and to be able
to gain knownledge only by observing communications or forging messages. In practice, this may
require organizational measures, hardware protections, etc. At the software level, it is possible to
observe all possible communications of an implementation, providing security hypotheses on the un-
derlying operating system.

2.3 The Asnwers of a Verifier

After a relation between a protocol specification and an implementation is stated, compliance can be
verified. In pratice, this verification problem is undecidable and require approximations to guarantee
termination. Hence, three kinds of answers can be expected to the question “ does application �
implement protocol � (according to relation �) ? ”:

(1) � certainly implements � ,

(2) � possibly implements � (or, likewise, � possibly does not implement �),

(3) � certainly does not implement � .

While security evaluation requires “positive” answers, i.e., answers (1) and human-controlled forms
of (2), the search for attacks and flaws is more concerned with “negative” answers, i.e., answers (3)
and human-discovered errors based on answers (2).

3 Verifying LAEVA protocols implemented in Java Card

In this work, we consider the special case of protocols expressed in LAEVA, and applications imple-
mented in Java Card.

3.1 LAEVA Protocol Specifications

The protocol specification language LAEVA was designed with the following constraints: it should be
suitable for e-commerce protocols, it should be close to the (often informal) languages used in the pro-

3

tocol literature, it should be precise, i.e., formally defined and it should enable verifications [LMJ01].
Presenting LAEVA is out of scope for this report; we only provide here a taste of LAEVA through the
example of the Diffie Hellman protocol.

Diffie_Hellman

// Declarations
A, B : principal
P, G, Xa, Xb : number

one() : number
kap(number, number, number) : number hash

// kap(P, G, X) is meant to be GˆX mod P

// Initial knowldege
A knows A, B, kap, one
B knows B, kap

// Notations
alias Ka = kap(P, G, Xa)
alias Kb = kap(P, G, Xb)
alias Kab = kap(P, Ka, Xb)
alias Kba = kap(P, Kb, Xa)
axiom kap(p,kap(p,g,y),x) = kap(p,kap(p,g,x),y)
[p, g, x, y : number]

a, b : principal

// Message exchange
{
1. A -> B : P, G
2. A -> B : Ka
3. B -> A : Kb
4. A -> B : { one() }_(kap(P, Kb, Xa) % kap(P, Ka, Xb))

}

// Session and Property
s. session A=a, B=b
claim Agreement(Kba@s.A, Kab@s.B)

Principals and data (called numbers) are explicitly declared. Initial knownledge (using construct
knows) is declared as well. Then comes a sequence of exchanged messages. The interested reader is
refered to [LMJ01] and the EVA web site (http://www-eva.imag.fr) for details.

3.2 Analysing Java Card Applets

In this work, we consider the special case of applications implemented in Java Card2. As explained
below, several arguments motivate the choice of Java Card to study the verification of protocol imple-

2More precisely, we support Java Card 2.1.2 [Sun01]; we do not support yet Java Card 2.2.

4

mentations. This choice also raises new challenges:

Addressing Java Card Implementations. There are several reasons why smart cards and Java Card
are a good target for studying the verification of protocol implementations:

� Applications on a card naturally represent principals. In fact, smart card applications, espe-
cially in the banking and identity area, already make use of cryptographic and authentication
protocols, with strong security requirements.

� A smart card can be considered as a safe: it comes with strong guarantees that are taken as
assumptions by protocols (see Section 2.2).

� Java Card includes all cryptographic features that are needed to implement authentication pro-
tocols, as well as a firewall that guarantees applet isolation and thus supports the privacy hy-
potheses. As a matter of fact, Java Card stands out as a standard for such applications.

Analysing Java Card. The choice of Java Card for applications involving protocols has a number
of advantages over other langages regarding static program analysis:

� Generally speaking, Java is simpler to analyze, either at source level compared to C, or at object
file level compared to machine code. In particular, it is well typed and it does not involve pointer
arithmetic.

� Besides, unsupported complex program features make the analysis of Java Card easier: com-
pared to Java, there is no dynamic loading, no threads, and the standard API is small.

� Because the cryptographic API is well-defined, it is easier to relate the operations of a protocol
with a corresponding implementation.

Verification Challenges. However, Java Card program analysis also brings new challenges:
� Memory can be dynamically allocated. Data structures are generally allocated and their size

fixed at installation and/or personalization. While dynamic memory allocation is not a new
problem, the required precision to make meaningful verification is a new challenge.

� Communication with a Java Card applet is low-level: a message consists of a byte array3. This
makes program analysis much more difficult because each array element has to be precisely
modeled.

� Besides, unconventional features have to be addressed, such as persistency, transient data, reset,
firewall rules, etc.

4 A Pragmatic Approach

Rather than trying to solve the problem in its most general form, we follow a pragmatic approach:

Specification of a Protocol Implementation. First, we merge the protocol specification and the
relationship between the protocol and the implementation (see 2.1) into a single specification. More
precisely, our analyzer takes two pieces of information as input: a Java Card applet implementation �

3As of version 2.2, a terminal may also perform remote method invocations (RMI) in the Java Card applet. Communi-
cated data types in this case are thus higher level, which facilitates program analysis.

5

and the specification of a protocol implementation
�

, written in a dedicated language called DEX-
TRA. In such a specification, as opposed to LAEVA specifications, messages are given a low-level
representation based on byte formats, to be easily mapped into Java Card applet messages. This spec-
ification allows data fragments to be named, including random data (for nonces) as well as encrypted
or signed data.

Moreover, an actual protocol specification � , written in LAEVA, can be automatically extracted
from

�
, and proved flawless using the other tools developed in the EVA project. In other words, the

verification of a protocol specification is performed on � , while the implementation verification is
performed on

�
. The extraction of the protocol specification � is straightforward, which makes the

approch more robust.

Detection of Wrong Implementations by Static Program Analysis. Second, as a preliminary step,
we focus on negative answers (see 2.3): verification fails when it can be shown that the implementation
does not comply to the protocol specification.

Our approach to verifying the specification of a protocol implementation
�

against an implemen-
tation � is based on static program analysis. The application � is executed on abstract domains, taking
in turn each expected input message patterns, as specified in

�
, and checking the correctness with

respect to the corresponding expected output message.

5 Checking Implementations against DEXTRA Specifications

This report does not present a formal definition of DEXTRA. It only provides, through examples4, an
overview of the specification language and associated verification.

5.1 Basic Information Communication

A DEXTRA specification consists of information declarations, followed by message exchanges be-
tween the CAD and the applet. As explained above, all messages are APDUs, i.e., byte arrays. The
following example illustrates a simple DEXTRA specification.

Number myInfo1, myInfo2;
CAD -> Applet : [8*myInfo1, 16*myInfo2];
Applet -> CAD : [16*myInfo2];

Two data involved in the protocol are first declared: myInfo1 and myInfo2. The protocol then
states that the applet first receives a message consisting of 8 bytes from myInfo1, followed by
16 bytes from myInfo2. The applet then has to provide as a response a 16 bytes message taken from
myInfo2. The following Java Card code fragment is compliant with the above protocol.

byte[] apduBuffer = apdu.getBuffer();
byte[] info1 = new byte[8];
byte[] info2 = new byte[16];
for (short i = 0; i < 8; i++)

info1[i] = apduBuffer[i];
Util.arrayCopy(apduBuffer, 8, 16, info2, 0);

4Some of these examples are extracted and adapted from the specification of a protocol implementation concerning an
electronic purse.

6

Util.arrayCopy(info2, 0, 16, apduBuffer, 42);
apdu.setOutgoingAndSend(42, 16);

Note that information transfer can be performed explicitly on byte array elements or using API method
Util.arrayCopy. Array indices are verified with precision to make sure all specified bytes are
correctly read (on reception) or written (on sending

5.2 Cryptographic Information Communication

The following protocol fragment illustrates the communication of encrypted information.

SecretKey myKey;
Number myInfo;
...
Applet -> CAD : [..., 8*{8*myInfo}_(16*myKey), ...];

This protocol fragment specifies that the applet has to return a message consisting of 8 bytes originat-
ing from the encryption of myInfo by myKey, that is a 16-byte key. The following Java Card code
excerpt is compliant with the above protocol fragment.

Key key = (DESKey) KeyBuilder.buildKey(
KeyBuilder.TYPE_DES,
KeyBuilder.LENGTH_DES3_2KEY, false);

key.setKey(buffer, offset);

Cipher algDES_ECB_noPad = Cipher.getInstance(
Cipher.ALG_DES_ECB_NOPAD, false);

algDES_ECB_noPad.init(key, Cipher.MODE_ENCRYPT);
algDES_ECB_noPad.doFinal(infoBuf, off, len, apduBuf, off2);

The above Java Card code shows the construction of both the key and encipherment algorithm, as well
as the information encryption and copy into the APDU buffer for message emission.

Similarly, information decryption occurs at message reception. Signed information may also be
expressed in DEXTRA specification, using syntax myInfo%myKey.

5.3 Nonces and Random Numbers

The following protocol fragment illustrates the communication of nonces.

Random N1, N2;
...
Applet -> CAD : [..., 8*N2, ...];

This protocol fragment specifies that the applet has to return 8 bytes originating from a random num-
ber. The following Java Card code excerpt is compliant with the above protocol fragment.

RandomData rnd = RandomData.getInstance(
RandomData.ALG_SECURE_RANDOM);

rnd.generateData(sessionData, offset1, len); // N1
rnd.generateData(sessionData, offset2, 8); // N2

7

Contrary to the declaration of numbers and secret keys, the order of the nonce names matters: each
random number successively generated is associated with the successive nonce names in the declara-
tion.

5.4 Determination and Undetermination in Messages

As illustrated by the above examples, a DEXTRA specification expresses what messages are received.
This is mainly a binding requirement: received data are given names as indicated by message compo-
nents. A specification also expresses what messages are sent. This is a verification requirement: sent
data have to include the named data as specified.

Message formats may also express determined, undetermined and arbritrary values, as illutrated
by the the following example.

CAD -> Applet [42, num, 8*hostChallenge, ˆ, 6*ˆ];

This message pattern splits the byte array into groups of contiguous bytes and expresses the following
constraints regarding the received data. The first byte is given value 42; this is mainly used to identify
commands and options involved in a protocol. The second byte is bound to name num and can be
reused in the rest of the protocol messages. The following segment is an 8-byte segment bound to
name hostChallenge. Symbol ˆ indicates a 1-byte undetermined value while 6* expresses a
6-byte undetermined segment.

The above message is a received message. It corresponds to value assignement in the implementa-
tion. Messages that are sent have a different interpretation: they result in verifications. In other words,
the implementation has to return response messages as indicated. This is illustrated by the following
example.

Applet -> CAD [0xB3, ˆ, _, 8*cardChallenge];

For verification to succeed, the sent message has to be 11 bytes long. The first byte in the sent data
must be 0xB3. The second byte (ˆ) is undetermined: it must not be any named information; for
instance, it is an error if it is a byte from cardChallenge. On the contrary, the third byte () is
arbitrary: it is unchecked; in particular, it could be a byte from cardChallenge. And the last
8 bytes have to be 8 bytes originating from cardChallenge.

5.5 Initial Knowledge

There is a slight difference between LAEVA and DEXTRA concerning the initial knowledge of prin-
cipals. In LAEVA, initial knowledge is simply declared. In DEXTRA, it has to be indirectly commu-
nicated through installation and personalization commands.

6 Checking Wrong Implementations by Static Program Analysis

As said earlier, we focus on negative answers (see 2.3): the implementation is analyzed to verify that
it cannot send messages other than those defined in the specification of the protocol implementation.
This section outlines the static analysis that supports this verification.

Verification is performed by executing the application on abstract domains, taking in turn as input
each message pattern sent by the CAD. The abstract domains used for this execution manipulate
symbolic information. Values can be known constants (e.g., 42), fragments of symbolic information

8

(e.g., hostChallenge) or undetermined values (ˆ). The processing of named pieces of data by the
applet includes signature, decryption and encryption (using named keys), as well as random numbers.
In this execution, dynamic memory allocation is supported.

The analyzer follows all execution paths from the call of an entry point method (e.g., process)
until either it returns or throws an exception. Infinite paths originating from loops and recursion
are folded into (approximated) finite paths. Computations whose value is static also help trim the
execution tree. To cover message sequencing with high precision, the heap state is maintained across
all successive calls to entry point methods. The state graph of the applet can thus be fully explored.

For each termination point of the different, possibly approximated, execution path, the output
response is checked. Two cases may arise:

� If an exception is raised, it is not considered as a failure from the point of view of verification:
the application may fail for reasons that are independent of the protocol.

� If a message is sent, it is matched against the corresponding expected message in the specifica-
tion of the protocol implementation, as indicated above. Verification fails if any discrepancy is
found: the implementation certainly does not implement the given protocol (see Section 2.3).
For instance, the verifier detects any emission of a piece of information that is not explicitly
mentioned in the corresponding expected response messages.

Installation and personalization are modeled by corresponding abstract calls to methods install
and process.

Our analyzer actually works on Java Card object files (i.e., CAP files) rather than source code.
Therefore, we do not have to assume the correctness of compilation, optimization, or conversion; the
verification is performed on the final form of the application, before it is loaded on a card.

7 Future Work

We believe that the verification of actual implementations of cryptographic protocols (as opposed to
models of such protocols) has not received enough attention from the community in the past. We have
described in this paper the first results towards bridging this gap in the verification chain. This work
paves the way for the development of new tools which could benefit the security industry and could
be used in the certification of critical pieces of software such as cryptographic protocols.

A number of possible extensions to this work are currently underway, relating to both DEXTRA
and the verification tools.

For the moment, a specification in DEXTRA can only address a subset of the features existing in
LAEVA. The tool will be extended to address features such as hashing, axioms and multiple sessions.

Currently, our verifier does not check if all bytes of a given information are actually sent. It verifies
that at least a fraction of this information is sent, or that no fraction at all is sent. This catches most
error cases and agrees with the verification objective, which is to prove compliance with model rather
than functional correctness.

For the moment, we only consider applets that communicate via APDU messages, thus excluding
communications via shareable interfaces. We relate protocol messages to Java Card command and
response APDU messages, i.e., byte arrays. If shareable interfaces are actually used in the implemen-
tation, other communicating agents on the card are assumed to be safe. In other words, we check
only one principal, represented by an applet instance. This principal is assumed to encompass the
applet as well as all actors on the card that may, directly or indirectly, communicate with the applet.
Alternatively, this assumption can be relaxed by just making sure that no information involved in the
protocol can be communicated to other actors on the card.

9

References

[BLP02] Liana Bozga, Yassine Lakhnech, and Michaël Périn. L’outil de vérification HERMES. Tech-
nical Report EVA-6-v1, Verimag, Grenoble, France, May 2002. Available from http:://www-
eva.imag.fr.

[Cor02] Véronique Cortier. L’outil de vérification SECURIFY. Technical Report EVA-7-v1, Lab-
oratoire Spécification Vérification (LSV), Cachan, France, May 2002. Available from
http:://www-eva.imag.fr.

[DMR00] Grit Denker, Jonathan Millen, and Harald Ruess. The Capsl integrated protocol environ-
ment. Technical report, SRI International, 2000.

[GL02] Jean Goubault-Larrecq. Outils CPV et CPV2. Technical Report EVA-8-v1, Laboratoire
Spécification Vérification (LSV), Cachan, France, May 2002. Available from http:://www-
eva.imag.fr.

[JRV00] Florent Jacquemard, Micahel Rusinowitch, and Laurent Vigneron. Compiling and verifying
security protocols. In Springer Verlag, editor, 7th International Conference on Logic for
Programming and Automated Reasoning, Lecture Notes in Artificial Intelligence, November
2000.

[LMJ01] Daniel Le Metayer and Florent Jacquemard. Langage de spécification de protocole cryp-
tographiques de EVA : syntaxe concrète. Technical Report EVA-1-v3.17, Trusted Logic,
November 2001. Available from http:://www-eva.imag.fr.

[Low98] Gavin Lowe. Casper: a compiler for the analysis of security. Tech-
nical report, University of Leicester, UK, July 1998. Available at
http://www.mcs.le.ac.uk/˜glowe/Security/Casper/index.html.

[Sun01] Sun Microsystems. Java Card 2.1.2 Development Kit, 5 April 2001. See http://java.sun.com/
products/javacard/dev kit.html.

10

