N

N

Unfolding Concurrent Well-Structured Transition
Systems

Frédéric Herbreteau, Grégoire Sutre, The Quang Tran

» To cite this version:

Frédéric Herbreteau, Grégoire Sutre, The Quang Tran. Unfolding Concurrent Well-Structured Tran-
sition Systems. Proc. of the 13th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACASO07), Mar 2007, Portugal. pp.706-720. hal-00306299

HAL Id: hal-00306299
https://hal.science/hal-00306299
Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00306299
https://hal.archives-ouvertes.fr

Unfolding Concurrent Well-Structured Transition
Systems

Frédéric Herbreteau, Grégoire Sutre, and The Quang Tran

LaBRI, CNRS UMR 5800, Domaine Universitaire, Talence, [Emn
{fh, sutre, tran}@abri.fr

Abstract. Our main objective is to combine partial-order methods withifi-
cation techniques for infinite-state systems in order t@iobefficient verifica-
tion algorithms for concurrent infinite-state systems.tiBaorder methods are
commonly used in the analysis of finite systems consistingnafy parallel
components. In this paper we propose an extension of theedseto paral-
lel compositions of infinite-state systems. We argue th& #dvantageous to
model each component by an event structure as this allowsexhibit the con-
currency present implicitly in some infinite-state systesush as automata with
queues or counters. We generalize the notion of complefix firem 1-safe Petri
nets to all well-structured transition systems. We give msthe-fly unfolding al-
gorithm which given event structures representing the aorapts produces an
event structure representing their synchronized produgtototype implemen-
tation demonstrates the benefits of our approach.

1 Introduction

Partial-order methods [God96, Val91, Pel93] are freqyamked for the verification of
programs, in particular for systems of concurrent procedseleed, proving that the
computations of such systems meet some requirement offaligén the well-known
exponential blow-up due to interleaving of concurrent@csi Partial-order methods
tackle this problem by selecting a hopefully small set oévaht computations that
are sufficient to conclude. Selecting among the interlagvis sound because order-
ing concurrent (independent) actions is irrelevant. Heintgtead of considering to-
tally ordered computations, one analyseses[Maz86] that stand for all equivalent
computations w.r.t. concurrency. As a consequence, thédewdmmputation tree can
be partially rather than totally ordered resultingewent structurefNPW81, NRT95].
Efficient exploration techniques, e.g. unfolding [McM95RMNB5], exist for partially-
ordered structures.

Traditionally, partial-order methods have been appliezbtacurrenfinite-statepro-
cesses and proved to be successful. In this paper, we appiglymader methods to
parallel compositions dhfinite-statesystems such as counter machines and communi-
cating finite-state machines. Verification of infinite-staystems is known to be unde-
cidable, however some classes of infinite-state systenay @ige decidability results.

* This work was partially supported by the French Ministry eS@arch (ProjectERSEEOf the
ACI Sécurité et Informatique).

Well-Structured Transition Systems [Fin90f:ATOO, FSO01] provide us with a nice
framework based on weak simulation relations that are prelbrders. Since a well-
preorder admits no infinite decreasing sequence, one caidesronly a finite prefix
of the computation tree in order to decide properties likertsedness, termination or
covering.

Our contribution. Our goal is to analyse synchronized products of well-stmext sys-
tems using a method similar to Petri net unfolding in ordeolitain event structures.
The most straightforward approach would be to considergheh component generates
an (infinite) transition system, then use an on-the-fly varidithe unfolding method for
parallel composition of finite automata. This turns out robé satisfactory: imagine
that one models a counter by an (infinite) automaton theraif, three different pro-
cesses want to increase the counter, their actions willgetleaved on the automaton
modeling the counter. As in principle those actions arefpedelent, we lose a good deal
of concurrency presentin the original system. Our solusdno model each component
by an event structure, hence taking advantage of the iitramcurrency present in
each component.

Our first contribution is an algorithm for constructing evetructures for com-
ponents modeling counters. It results in event structuliés mvore concurrency than
in [McM95]. We also present a general algorithm that worksdl (infinite) transi-
tion systems. This is not trivial: one wants the most corentrevent structure whereas
concurrency is not explicit in transition systems. Of ceuisur algorithm is less effi-
cient than dedicated algorithms (e.g. for counter autonatavever it exhibits a good
deal of concurrency using local independence. For instamreduces the same event
structures as those reported in [L105] for queue automata.

Our second contribution is a generalization of the unfajdimethod of [ER99] to
parallel composition of potentially infinite event strucets. Our algorithm is both ca-
pable of exploiting concurrency in components as well asragrtbem. In particular
we show that modeling Petri nets as the parallel compositfats places (viewed as
counters) results in very efficient analysis using our atbors.

Of course there is no hope to have a notion of complete prafparallel composi-
tion of infinite systems. There is hope though when the coraptsare well-structured
systems. We give a property-preserving truncation cadtefor event structures of well-
structured transition systems. The resulting (compleatefjjpcontains enough informa-
tion to decide boundedness, termination and quasi-livens®e also show preserva-
tion of well-structure under parallel composition for adiriants of well-structure. Re-
mark that these results cannot be directly obtained fromiqus techniques on well-
structured systems, since the complete prefix is not a corppatial-order representa-
tion of the finite reachability tree of [FSO1].

Related work. The unfolding technique [McM95] has been developed for sdveod-
els of concurrency, e.g. synchronous products of tramsgietems [ER99], high-level
Petri nets [KKO03], extended finite state machines [LI05nsyetric Petri nets [CGPO1].
However, all these techniques deal with finite-state models

In [AJKP98], the authors address the coverability problenirifinite state systems
by combining partial-order reductions and symbolic baakix@mputations. The un-

folding of unbounded Petri nets was recently considereAINOO] Abdulla et al. pro-
pose a backward unfolding technique for coverability asiglyand [DJNO4] presents
an unfolding-based adaptation of Karp and Miller’s aldorit Our method generalizes
these results: it analyses any (infinite) well-structuradsition system [FS01], offering
both forward and backward approaches, hence enabling ¢& cbegering, boundedness
and termination properties.

Outline. Section 2 introduces notations and definitions for tramisisiystems and event
structures. In section 3 we prove well-structure propsifte event structures. Then, in
section 4 we introduce our algorithms for unfolding systeRisally, in section 5 we
give some experimental results showing the benefits of gurcgeh, and we conclude
on future work. Please note that some preliminary (standefinitions along with all
proofs had to be omitted due to space constraints. A longoreds this paper can be
obtained from the authors.

2 Labeled Transition Systems and Event Structures

A binary relation R on some set/ is any subset ot/ x U. We will sometimes view
functions as relations. Given a sub3éiC U, we denote byR[X] therelational image
of X throughR, defined byR[X]| = {y € U/3z € X,z Ry}. Theinverseof R is
the binary relationR—! on U defined byz R~! 2’ iff 2’ Rx. A preorderon some set
U is any reflexive and transitive relation on U. We letx < 2’ denotex < 2/ A z.
Given a preorder onU, theinverserelation<~" is a preorder also writter. For any
subsetX C U, the setx[X] (resp.=[X]) is called theupward closurdresp.downward
closure of X with respect to<. We say thatX is upward-closedresp.downward-
closed if X is equal to its upward closure (resp. downward closurepa#tial order
on U is any antisymmetric preorder di. Given a partial ordeK on U, a maximal
element(resp.minimal elementof some subseX C U is anym € X such that
m’ # m (resp.m’ £ m) forallm’ # min X. We writeMax< (X)) (resp.Min< (X))
for the set of maximal elements (resp. minimal elementsy afith respect to<.

Given a setY, we denote by * (resp.X“) the set of all finite (resp. infinite) se-
quences, as, ..., ax (respas, as, . .., ax, - . .) of elements in. The empty sequence
is writtene and we denote by the setU* \ {¢}.

2.1 Labeled Transition Systems

Definition 2.1. Alabeled transition systeh.TS) is a4-tuple§ = (S, s°, ¥, —) where
S is a set ofstatessY € S is aninitial state X is a set oflabelsand— C S x ¥ x S
is atransition relation

A transition (s, a, s') € — is also writtens % s’. We also writes % whenever
there exists’ such that = 5. A finite path(resp.infinite path in § is any finite (resp.
infinite) sequence = s; 2% s}, 50 2 sh,..., 55 — s}, ... of transitions such that
si_,; = s; for every indexi > 1 in the sequence. We shortly write= s; 2 59 22
S5+ Sp 2 sk+1 -+ - and we say that starts ins;. A finite (resp. infinite)execution

of § is any finite (resp. infinite) path starting in the initial®ta’ of $. Slightly abusing
notations, we will also write = s for every states. Thereachability seposts of § is
the set of states that are visited by some execution.

We now present the composition primitive that we use to bodchplex systems
from basic components: the synchronized product of labesetsitions [Arn94]. In a
synchronized product, components must behave accordswtalled synchronization
vectors. Considen labeled transition systends, . .., 8, with §; = (S;, s9, X;, —).
A synchronization vectas anyn-tuplev in Xg = (X, U {e}) x --- x (X, U {e}),
and asynchronization constraing any subsel’ C Yg of synchronization vectors. In-
tuitively, a labela in a synchronization vector means that the correspondingponent
must take a transition labeled lay whereas am means that the component must not
move.

Definition 2.2. The synchronized produdaf n labeled transition system;, ..., S,
with respect to a synchronization constrairitis the labeled transition systefiy, =
(S@, 80®, E@, —>®) defined byS® = Sl Xoee e XSn, 80® = <S(1), RN S(T)L> ands L@ s’

iff v € V ands(7) =0, s'(i) for everyl <i < n.

2.2 Labeled Event Structures

Definition 2.3. Alabeled event structuf&ES) is a5-tuple& = (E, <, #, X, 1) where
FE is a set ofevents< is a partial order onE, # is a symmetric and irreflexive relation
onE, Y is a set oflabels and! : E — X' is alabeling functionsatisfying:

i) the downward closure-[{e}] is finite for every € E, and
i1) e#e’ ande’ < e” impliese#e” for everye, e’ e¢” € E.

In the previous definition, relations and# are respectively calledausalityand
conflictrelations. Intuitively, an event can occur when (1) every causal evehwith
e’ < e has already occurred and (2) no conflicting eventith ¢’'#e has already
occurred. Conditiont) enforces that any event has finitely many causal events, and
conditioniz) expresses eonflict inheritanceproperty.

A subset ofE is calledconflict-freeif it does not contain any two events that are
in conflict. A configurationis any conflict-free and downward-closed (w.r.t. causglity
subset ofE. We denote by’ (€) (resp.Cs(€)) the set of all configurations (resp. finite
configurations) of a labeled event structdreFor any event € E, the set>[{e}] is
called thdocal configuration ot (it is readily seen that this set is a finite configuration).
We will shortly write[e] the local configuration of when the causality preorder is clear
from the context. An event € E is enabledat some configuratio@, writtenC - ¢, if
e ¢ C'andC U {e} is a configuration. We say that a labeled event structufiaitely-
branchingif every finite configuration has finitely many enabled eveAtvariant of
Konig's lemma applies to finitely-branching labeled evenigures.

Definition 2.4. Amarkingfor a labeled event structuis any functiomi/ fromcCy (&)
to some se§.

A marked LESs any pair(€, M) consisting of a labeled event structiteand a
marking M for &. We denote by§# the labeled transition systeimduced by(&, M)
and defined by} = (M[Cy(€)], M (D), £, —) wheres = s’ iff there exists a finite
configurationC' and an event enabled aiC such thats = M(C), a = I(e) and
s’ = M(C U {e}). Given a labeled transition syste$n a marked LES foiS is any
marked LES€, M) such tha8? coincides with the restriction o to post}. Remark
that(€&, M) is obviously a marked LES fa¥.

3 Truncation for Well-Structured Transition Systems

Well-Structured Transition Systems were introduced im§oj, Af:JTOO] as an abstract
generalization of Petri nets satisfying the sam@notonicityproperty, and hence enjoy-
ing nice decidability properties. It turns out that manysskes of infinite-state systems
are well-structured [FSO01].

We will see in the next section how to algorithmically constiabeled event struc-
tures. However, a labeled event structure is infinite as agdhe underlying system has
an infinite execution. Thus, we need property-preservingdation techniques in order
to decide verification problems using only a finite prefix ofement structure. In this
section, we show how such technigues can be obtained whemtwezlying system is
well-structured.

For simplicity we only focus, without loss of generality, torward analysis tech-
niques for well-structured transition systems. We shovihénlbng version of this paper
how known backward analysis results on well-structureaiditeon systems can be cap-
tured by this forward analysis. Moreover, we do not discufasctvity issues (such
as whether preorders need to be decidable, whether sucstatrs need to be com-
putable, etc.) since they are basically the same as in [FS01]

3.1 Synchronized Product of Well-Structured Transition Systems

Recall that our main objective is to verify complex systerbsamed by (potentially
nested) synchronized products of basic components. Thadijrst show that well-
structure is preserved under synchronized product. Oweptation of well-structured
transition systems differs from (and generalizes) thedzstedh (non-labeled) one as we
need to take care of labels.

Until the end of this sub-section, we assume that each sabefdY is partitioned
into a setX; of local labels(for internal transitions) and a sef, of global labels
(for synchronizable transitions). In order to account fus tseparation between inter-
nal transitions and synchronizable ones, we assume (1§¥kay synchronization con-
straintV” implicitly contains the se¥. = {(r,e,...,¢),...,{e,...,&,T,&,.. ., &), ...,
(e,...,e,7) /T € X} of synchronization vectors, and (2) that no local labet X,
may appear in a synchronization vectofof V;.. NaturallyV,- becomes the set of local
labels of any synchronized product w.i.

A preordered LTSs any LTSS = (S, s, X, —) equipped with a preordet on S.
We say that< is compatibleg(resp transitively compatiblereflexively compatiblewith

— if for every transitions — s’ andt¢ > s there exists’ > s’ such that = ¢’ for
someo € X* satisfying:

oe Xk if a € X, oe Xt if a € X, cef{etuX, ifae X,
o € XraX? otherwise | o€ XalX? otherwise |o=a otherwise

(compatibility) (transitive compatibility) (reflexive copatibility)

Moreover we also say that is strictly compatiblewith — if both < and< are com-
patible with— (recall thats < s’ is defined bys < s’ £ s). Of course, this strictness
notion may be combined with transitive and reflexive conipéties.

Remark 3.1.The previous definitions of compatibility coincide with tldefinitions
given in [FSO01] wher¥ = X is a singleton.

Any synchronized produdg of n preordered LTS$81, <1),..., (S,, <,) may
be equipped with theroduct preorder<, defined bys <, s’ iff s(i) =<; s’(i) for
everyl < i < n. The following proposition shows that all six compatilyilitotions
defined above are preserved under synchronized product.

Proposition 3.2. Let Cond denote any compatibility condition amor¢non-strict),
strict} x {(standard), transitive, reflexiye Any synchronized product of preordered
LTSs with compatibility”ond also has compatibility”ond.

Recall that avell-preorderon some set/ is any preorder onU such that any infi-
nite sequencey, ..., xx, . .. of elements ir/ contains an increasing paif < z; with
i < j. A well-preordered LTS5 any preordered LTS, <) where= is a well-preorder
on the state sef of 8. Since the product preorder of anyvell-preorders is also a well-
preorder (from Higman’s lemma), we obtain that well-presidg is preserved under
synchronized product.

Proposition 3.3. Any synchronized product of well-preordered LTSs is a welbr-
dered LTS.

A well-structuredLTS is any well-preordered LTS with (standard) compatipili
It follows from the two previous propositions that wellstture is preserved under
synchronized product.

3.2 Finite Property-Preserving Truncation of Well-Structured LES

The intuition behind well-structure is that any state mayaakly simulated by any
greater state, and thus we may forget about smaller staters pdrforming reachability
analysis. The well-preordering condition between statesantees termination of the
analysis [FS01]. We show in this sub-section how to exteeddhideas to the partial-
order verification of well-structured labeled transitigistems.

Recall that any marked LE&, M) induces a labeled transition syst&i . We lift
the well-structure notions defined in the previous subisedtom labeled transition
systems to labeled event structurespreordered marked LE§esp.well-preordered
marked LE$is any marked LESE, M) equipped with a preorder (resp. well-preorder)

=< onM][C¢(€)]. Given any preordered marked LES, M, <), we say that&, M, <)
has compatibilityCond € {(non-strict), stric} x {(standard), transitive, reflexiye
wheneves} has compatibilityCond.

Consider any preordered marked LES M, <) whereé = (E,<,#,X,1). A
cutoff eventis anye.,;, € E such thatM ([ec.t]) = M([e]) for some event with
e < eqyut- ThetruncationT (€, M, <) of (€, M, <) is the set of events having no strictly
causal cutoff event, formall§ (£, M, <) = E\ {e € E/Jecut € Ecut,eut < €}
whereFE..,,; denotes the set of cutoff eventsdnObserve thal (€, M, <) is downward-
closed, and that any minimal cutoff event (i.e. any everlin< (E.,;)) is a maximal
event of T(€, M, <) but the converse does not hold in general. In order to preserv
termination and boundedness properties, this truncatiterion “respects” causality,
and this leads to larger truncations than in [McM95] whegetthincation only preserves
reachability properties.

We will show in the rest of this sub-section how to use the ¢ation to decide
several verification problems. Unfortunately the trunmatinay be infinite in general,
as it may be “too deep” and/or “too wide”. A well-preorderiagndition avoids the
first possibility, and a branching finiteness assumptiamielates the second.

Proposition 3.4. The truncation of any well-preordered finitely-branchingnked LES
is finite.

Given any labeled transition systeiywe say tha$ terminategqresp. isoounded if
§ has no infinite execution (resp. has a finite reachabilitpsst;). The two following
propositions show that, assuming an adequate compatibditdition, the truncation
defined above contains enough information to decide tetinimand boundedness.
Remark that in these two propositions, the finiteness requeént on the truncation can
be dropped when the marked LES is finitely-branching and-pselbrdered.

Proposition 3.5. For any preordered finitely-branching marked LES, M, <) with
transitive compatibilityS} terminates iffT(€, M, <) is finite and contains no cutoff
event.

In order to decide boundedness, we will need “strict” cuefénts, and we will
also require a partial-ordet. Formally, astrict cutoff events anye.,; € F such that
M ([ecut]) > M([e]) for some event with e < e.,,;. Observe that any strict cutoff event
is also a cutoff event. Avartially-ordered marked LE® any preordered marked LES
(€, M, =) where= is a partial order o/ [C;(€)]. Notice that the following proposition
does not hold for general preordered marked LES.

Proposition 3.6. For any partially-ordered marked LE&, M, <) with strict compat-
ibility, 837 is bounded iffM [{C € C(€) / C C T(E, M, =)} is finite andT (&, M, <)
contains no strict cutoff event.

We now turn our attention to the quasi-liveness problem tvhassuming an ad-
equate compatibility condition, reduces to the computatbthe upward closure of
postg, . For any labeled transition systein= (S, s%, X, —), we say that a given label

&

a € X' is quasi-liveif there is an execution i containing a transition labeled with

The truncation that we have used so far would be sufficient¢tideé quasi-liveness, but
in order to improve efficiency, we consider a refined notioowbff events which leads
to smaller truncations (that still contain enough inforimato decide quasi-liveness).
This refined notion is based on the size of configurations gMeM95]. Formally,
given any preordered marked LES, M, <) whereé = (E, <, #,X 1), we denote
by < the preorder o€y (€) defined byC < C” iff Card(C') < Card(C”). Note that
C <1 C" meansCard(C) < Card(C"). A <-cutoff events anye,,;, € E such that
M ([ecut]) = M([e]) for some event with [e] < [ec,t]. The<a-truncationd (€, M, <)
of (€, M, <) is the set of events having no strictly causaicutoff event, formally
T (&, M, =) =FE\{e€ E/Jecs € EZ;,ecur < e} WhereES,, denotes the set of
<-cutoff events in.

For clarity, any (standard) cutoff event will now be called autoff event, and the
(standard) truncation will now be called thietruncation and be denoted By (&, M, <
). It is readily seen thaf_ (&, M, <) C J-(&, M, <). Hence<-truncations are also
finite for well-preordered finitely-branching marked LES®®tice that the following
proposition requires reflexive compatibility of the invergreorder- of < (this re-
quirement was called “downward compatibility” in [FS01]).

Proposition 3.7. For any preordered marked LES, M, =) with reflexive compatibil-
ity, the two following assertions hold:

i) the setsM [{C € C¢(€) / C C T, (€, M, =X)}] andpostg,, have the same upward
&

closure w.r.t.<.
ii) for any global labek, a is quasi-live inS! iff a labels an event ifi, (€, M, <).

Remark that the previous proposition also holds for thedaeshtruncation (i.e. we
may replacel, by T- in the proposition). We may even further refine the truneatio
by considering a preorder afy(€) that refinesd (i.e. a preorder that is contained in
<1). However Proposition 3.7 may not hold for this refined pdesrunless we assume
stronger requirements on the preordered marked ((E3/,). In particular, if every
label is global then Proposition 3.7 still holds for the graphic preorder between
configurations defined in [ERV02].

4 Compositional Unfoldings of Concurrent Systems

We now give algorithms for unfolding given systems into laldesvent structures. Fig-
ure 1(a) depicts an LES, modeling a positive counter initialized tio Black (resp.
white) events represent increasing) events (resp. decreasing) events) and arrows
represent the causality relation. Since this counter t&lided to1, both— and-+ are
initially enabled, however one needs to first unfolg @avent before unfolding a second
—, and so on. Thus, unfolding, is achieved by first building the lowest two events
(initialization phase), and then extending evergvent with new— and+ events (ex-
tension phase).

All our unfolding algorithms rely on this principle. The foling Unfold builds
on-the-fly LES for given systems:

N v [[[
| | | | |

s wa
—_ — .33 /3 *

(a) (b)

Fig. 1. LES for counters with: (ayo = 1 andk = 1, (b) vo = 3 andk = 2.

Unfold()
PE:=Init()
for (P,A) € PE do
NewPE: =Ext end(P, A)
PE:= (PE\{(P,A)})UNewPE
end

Pairs(P, A) correspond to new extensiord3is the preset of the new event (e.g. the low-
est black event in Figure 1(a)) andis the set of actions to extend with (e{gr, —}).
Extending creates new events using MewEvent function that also updates causal-
ity and conflict relations. Thebnfold computes new pending extensions. Notice that
this algorithm terminates iExtend eventually always returns an empty set, which is
the case for well-structured LESs if we do not extend cutegéints as defined in sec-
tion 3.2.

In the sequel, we detdihit andExtend functions for three types of systems. We first
considercounterdor which we give dedicated functions. Ad hoc algorithmsaiveays
more efficient and can be defined for other datatypes forriest&IFO queues [LI0O5].
However, it is not always possible nor wanted to have spealfjorithms, hence in
section 4.2 we define functions that compute a concurreriteddtES for any given
LTS. Finally, in section 4.3, we consider the unfolding ofislgronized products of
systems.

4.1 Unfolding Counters

A counteris a datatype with values ranging over the set of natural rawsMy equipped
with two operations+ and — that respectively increase and decrease its value, and
initial valuevy, € N. It may be viewed as an LTS, = (N, v, {+,—}, —) where

n 5 n+1for anyn € Nandn — n — 1 for all n > 0. Places of Petri nets are
examples of such counters.

We aim at definingnit andExtend functions that build an LES for a counter. Fig-
ure 1 depicts two different LESS, and £, modeling a counter. The labelifg as-
sociates+ (resp.—) to every black (resp. white) event and the natural markinfg
associates to evelyf € C;(€) the valuevy + Card({e € C' /l.(e) = +}) — Card({e €
C/l.(e)=—-}).Both(€,, M.) and(E, M,.) are marked LESs fd8...

In these LESs, causality betweerand+ events correspond to intuitive constraints:
a counter must be increased before being decreased. However- 0, it may be de-
creased times without any increasing. Alsa, events are concurrent since there is no

constraint for increasing. Hence, labeled event strus@yeandé&, differ in the degree
of concurrency betwee#t events. Choosing the degree> 1 of concurrency is a mat-
ter of modeling leading to more or less concurrent truneatdepending on the system
that is analysed, in particular for synchronized produttsxSs (see section 4.3).

Init createsyy (0, {—}) andk (0, {+}) pending extensions. TheBxtend simply
follows the the principle depicted in Figures 1(a) and 1(b).

Extend(P, A)
if (—€A) e :=NewEvent(—,P)
if (+€A4) for ic[1;k] do ef: =NewEvent(+, P)
return {({e}}, {+.—}) /i€ [1;H]}

Using our algorithm, one obtains tfie;, = 1,k = 1) counter LES in Figure 1(a),
which corresponds to McMillan’s unfolding of a counter [M&B]. However, Fig-
ure 1(b) shows that our approach yields the ability to cheosee or less concurrent
models using parametér

4.2 Unfolding Labeled Transition Systems

Defining the semantics of given systems as LESs or desigrdigated unfolding al-
gorithms for those systems is often very hard. However, mgstems can easily be
described as LTSs. Hence, being able to compute a markeddrE®y LTS is a solu-
tion to benefit from intrinsic concurrency in those systems.

A trivial LES for any LTS is its reachability tree, howeveregy event in a reach-
ability tree is either in causality or in conflict with any ethevent. We introduce an
algorithm that computes@ncurrentmarked LES for any given LTS. Figure 2(b) de-
picts a prefix of the LES ; computed by our algorithm for a FIFO queue L pover
messagesa, b}. Concurrency essentially corresponds to independengedids inS ;-
whenever two or more actions are commutative. Moreoveratgorithm inferslocal
concurrency: the same actions can be concurrent in soneedstéit and conflicting in
some other state.

Init defines initially pending extensidfi, X) and markingV/ (#) = s° for the given
LTS (S, sY, X, —). Assume that, in Figure 2(b) has not been extended so far=
{eo} and A = {?a, ?b,!a,!b}. ExtendingP results in creating new even{ss, es, e4}
in causality withey (75 is not enabled iV ({eo })). Now, extending® = {eq, e2} with
label!a does not create any event since addipgo P yields the expected extension.
Hence, outExtend function first looks for concurrent events that can extéhdand

VEoNEo NS N N N N N N N N

(b)
Fig. 2. LES for @-initialized FIFO channels with messages: @} and (b){a, b}.

10

then creates new events only for the labelsiify I(X) that were not matched by this
first step.

Extend(P, A)
X: =0
for eeE s.t. l(e)e A and PFe do X:=XUe
for a€ A\I(X) s.t. M(P)> do e:=NewEvent(a,P); X:=XU/{e}
for ee X do C(&):=C(&) U {PU{e}}; M(CU{e}):=—=[M(P),l(e)]
return {(PU{e},X)/ec X}

Notice that in this algorithmpP is always a configuratiorExtend explores the
configuration space of the LES.

However,Extend is not correct so far as it does not add any conflict whereas Fig
ure 2(b) clearly shows the need for it. Missing conflicts ae¢edted as follows. As-
sume that ; in Figure 2(b) only containg, ande; without conflict so far. Extending
({eo},!b) leads to configuratiokiey, e; } with M ({eg,e1}) = —[M ({eo}),] = ab.
Next, extending {e;1 },!a), leads to associating, to {e;} which results to be impos-
sible since—[M ({e1}),!a] = ba # M ({eo,e1}). Hence, conflict must be added be-
tweeney ande; using theCheckConflict function below wherExtend detects the
problem.

| CheckConflict(P, PE) |
l(e

for e€e E s.t. Pke and (M(P) ;43 or M(PU{e})# —[M(P),l(e)]) do
e’ =choose in Max<(P)
E:=E\{e"€E/e<e” and € <e'}
Ce):=ce)\{Ccec()/{ec}teC}
PE:=(PENC(E)U{(P',X)/P €C(8),(ec P, P're)or (¢ € P, P'+e)}
#=# U {(e,¢), (¢,)}

end

return Sort(PE)

CheckConflict updatesP E' since whenever one needs to add conflict between 2 events
eg and ey, every configuration irC(€) that contains both events must be discarded
and every configuration that containg(resp.e;) has potentially mistaken extensions.
Notice that pending extensio(®, A) in PE are eventually sorted w.r.t increasing size
of P. This is due to a natural hypothesis madedyend: if P is to be extended, then

all the extensions of an§’ C P are up-to-date.

Figure 2 depicts the marked LES obtained for LTS modelingdFtfueues in the
standard way (one state per queue content, and transitionsFiFO policy) by ap-
plying our algorithm. They exactly correspond to the LES pabed by the method
in [LIO5].

4.3 Unfolding Synchronized Products of Components

Sections 4.1 and 4.2 present unfolding algorithms for sisgimponents. We now intro-

duce an algorithm for unfolding complex systems built fromchronized components.
Consider Petri nedV in Figure 3(a). In our framework, each plaegis modeled by

a counter LES and each transitionby a synchronization vector between actions of

11

P11t P2

o B0 (05295 he) i s (e Sig0 s hT)
o RO L
3 ta P4 (e&,f&',s,s) 0 (e7, ff',s,e)

(@ (b)
Fig. 3. A Petri netN (a) and a marked LES fa¥ (b).

these counters. Since tokens in Petri nets are concurrecegses, we chooseéa =
2,k = 2) counter LESE; for p; since itinitially contains 2 tokens. Similarly we choose
a (1,1) counter LESE3 for ps. Placep, is initially empty and can simultaneously
contain 2 tokens, thus we model it by(@ 2) counter LESE,. Finally, we choose a
(0,1) counter LESE, for py. In the case of unbounded places, one can chbh@sethe
number of entering edges.

Lete? (resp.f2, g¢ andh?) denote theéth event labeled by € {+, —}in &; (resp.
&o, €3 and &,) w.r.t. causality. The semantics &f is modeled in the synchronized
product of&;, €2, €3 and &4 by the synchronization vectors-, +, ¢, ¢) for ¢; and
(e, —,—,+) for ta.

Figure 3(b) depicts LES 5 obtained for/V using our unfolding algorithm. To each
eventiné y is associated a tuple of components’ events by mappindE; U {¢}) x
<o x (B, U{e}) — E, for instance)(io) = (ey, fo,&,¢). Conflict and causality
relations in€ ; are defined from components’ ones. Basically, conflict apppeden
a components’ event is used by two or more global eventsgg.gn i, andis, and
causality inherits from components, efjf — f; entailsic — i». Formally, let
(e1,...,en)F(el, ... el) iff there existsi s.t.e; = e} or e;#;e;. The global causal-
ity and conflict relations are respectively the smallestigborder< and the smallest
symmetric and irreflexive relatio# satisfying for every global eventse’, ¢”:

— if e#te’ ande’ < e thene#te”, and
— if A(e)#\(e') thene#te’, and
— if there existsi s.t. (A(e)); <; (A(e’)); and we do not have#e’ thene < ¢’.

As Figure 3(b) shows, unfolding a synchronized product oBEEonsists in associ-
ating components’ events into global events w.r.t. synaizaiion vectors, conflict and
causality relations. Since components’ LES maybe infinkeuse an on-the-fly algo-
rithm that proceeds as followhknit initializes every component (in particul&F;) and
extendsall their initially pending extensiond), A;). This is necessary due to synchro-
nization. Next, extendingP, A) in the global LES consists, for every synchronization
vectorv € A, in finding all tuples(ey, ..., e,) of components’ events which are in-
stances ofv that extendP. A new global event is created for each such instance
(e1,...,en) and each conflict-free preset of global events that match the presets of
everye;. Finally, every component such thgt+# ¢ is extended since the successors of
e; may be needed to extend further.

Extend(P, A)
NewE := 0
if (P=0)

12

Eg: ={{e1,...,en) /(l(e1),...,l(en)) € A and e; € Min<,(E;) U{e}}
el se
Eg:={(e1,...,en) /{l(e1),...,l(en)) € Aand Je' € Max<(P), Ji, e; € (A(e'));®}
for (e1,...,en) € Eg doO
for psc {E' c2F /Ve,e € E', e fte’ and Vi, (\(E)); = ee;} do
e : = NewEvent((l(e1),...,l(en)),ps)
Ae) 1= (e1,...,en)
for ie[l;n] s.t. lle;) #¢ and e;e =0 do PE; : =Extend,;(PE;, X;)
NewE := NewE U {e}
end
end
return {(>[e],X¥g) /e € NewE}

In this algorithm, we denote bye = Max<((>[e]) \ {e}) the preset ok w.r.t.
causality, and bye = Min<((<[e]) \ {e}) the postset ot. X; denotes the set of
actions of componerit Notice thatExtend;(PE;, ;) is a slight abuse of notations as
PFE; is asetof pending extensions.

Extend first checks that components’ events have not been exterstebejore
doing so ¢;e = 0) since an event may be associated to many global eventsabékrig
of global events and configurations are defined componesg;a&ind global conflict and
causality relations are computed as defined previously.

Using our algorithm, one can compute a marked unfoldiggof a synchronized
product of components as depicted in Figure 3. Furtherndoyesan itself be used as a
component, giving raise to hierarchical unfolding of systeand components.

5 Experimental Results

We have implemented the algorithms and truncation teclesiguesented in this paper
in a tool called Bu. This tool is implemented in Objective Caml, and permits the
verification of termination, boundedness and quasi-ligerfer synchronized products
of well-structured components. Components may be counfeiesues or finite-state
(control) automata. For the particular case of boundedsystsuch as bounded Petri
nets, ESu is also able to compute reachability set.

To our knowledge, Bu is the first tool able to analyse infinite-state systems using
forward unfolding techniques. Hence, in order to evalulageltenefits of our approach
we have compared$t with two tools for Petri nets: theE environment which pro-
vides an unfolding tool for bounded Petri nets [Pep], anddlbéTINA which analyzes
arbitrary Petri nets using structural analysis techniguesforward Karp-Miller reach-
ability analysis [Tin]. Petri nets are modeled is &by synchronized counter compo-
nents. Experiments were conducted on an Intel XEON 2.2 Ghtmst with 6 GB of
RAM. In the following tablesE (resp.E.f, N, S) denotes the number of events in the
truncation (resp. of cutoff events, of nodes iNA’s tree, of markings in TNA's tree),
and a ‘—' means that the analysis exhausted memory or didnish fivithin 10 minutes.

The Petri net depicted below represents a concurrent Peotlansumer Petri Net
with n independent production lines andmachines on each line. The products from
thesen lines are combined into another product that is then stargaacep,. PEP's

13

unfolder cannot analyze this Petri net as it is unboundesad gerforms very well on
this example, but this is not very surprising as this Pettiim@xtremely concurrent.
Observe that the number of events in the truncation is apmiately the number of
transitions in the Petri net.

TINA Esu
mxmn N| T(s) E|ch|T(S)
3x3 49 0.01| 10, 4/0.01
5x5 4634 0.04| 25/ 5|0.01
7x 7 (1109424124.41 50, 8(0.01
7% 10 - —{| 71| 8/0.03
10 x 10 - —{| 96| 6|0.04
20 x 25 - —{1491 11| 1.4

We also experimented on a more challenging and well-knovamgke: the swim-
ming pool. The swimming pool has much less explicit conauryeas most transitions
share places. We usedNR’'s bounded swimming pool Petri net which is a variant of
the classical one with an additional place that limits thenbar of clients [Tin]. In the
following table, the size denotes the number of resourcédseswimming pool.

PeEP TINA Esu
Sizd E] Eq| T(s) N] S| T6)| ElE«] T(s)
3||3759318009159.5 126 56| 0.00| 18 3| 0.01
10 - - —{| 12012 3003 0.05| 60| 10/ 0.2Q
20 - - —{| 255024 53130 3.35|120| 20| 3.02
30 — — —{|1669536 324632 44.74|180 30(20.64
40 - - —{|65160481221759297.19|240 40(64.04

Future work will focus on improving and extending our methmdther frameworks
for the analysis of infinite state systems. In particular weno focus on abstraction
algorithms in order to build more compact and concurrenhestuctures that would
abstract away causality and conflict information that islevant w.r.t. to a desired prop-
erty. We also plan to consider acceleration techniques aslddr truncating unfold-
ings, hence enforcing the termination of our algorithmslevpreserving reachability
properties.

AcknowledgementsThe authors wish to thank Igor Walukiewicz for insightfulnco
ments and suggestions on a preliminary version of this paper

References

[ACJTOO] P. A. Abdulla, K.Cemns, B. Jonsson, and Y. K. Tsay. Algorithmic analysis of
programs with well quasi-ordered domairaformation and Computatiqri60(1—
2):109-127, 2000.

14

[AINOO]

[AJKP98]

[Arn94]

[CGPO1]

[DINO4]

[ER99]

[ERVO02]
[Fin90]
[FS01]

[God96]

[KKO3]

[LI05]

[Maz86]
[McM95]
INPW81]
[INRT95]
[Pel93]
[Pep]

[Tin]
[Valoi]

P. A. Abdulla, S. P. lyer, and A. Nylén. Unfoldings ahbounded petri nets. Froc.
of 12th Int. Conf. on Computer Aided Verification (CAV’0@lume 1855 of ecture
Notes in Computer Scienggages 495-507. Springer, 2000.

P. A. Abdulla, B. Jonsson, M. Kindahl, and D. Pelédgeneral approach to partial
order reductions in symbolic verification (extended alzsjraln Proc. of 10th Int.
Conf. on Computer Aided Verification (CAV '98plume 1427 ol ecture Notes in
Computer Sciencgages 379—-390. Springer, 1998.

A. Arnold. Finite Transition Systems. Semantics of Communicatinge®wsPren-
tice Hall Int., 1994.

J-M. Couvreur, S. Grivet, and D. Poitrenaud. Urifajdof products of symmet-
rical petri nets. InProc. 22nd Int. Conf. on Application and Theory of Petri Nets
(ICATPN’01) volume 2075 ol ecture Notes in Computer Scienpages 121-143.
Springer, 2001.

J. Desel, G. Juhés, and C. Neumair. Finite unfoldiofjunbounded petri nets. In
Proc. 25th Int. Conf. on Applications and Theory of PetrisN¢€CATPN'04) volume
3099 ofLecture Notes in Computer Scienpages 157-176. Springer, 2004.

J. Esparza and S. Rémer. An unfolding algorithm farcéyonous products of tran-
sition systems. 1r10th Int. Conf. on Concurrency Theory (CONCUR’'9@)Iume
1664 ofLecture Notes in Computer Scienpages 2—20. Springer, 1999.

J. Esparza, S. Romer, and W. Vogler. An improveméntioMillan’s unfolding
algorithm. Formal Methods in System Desjg?0(3):285-310, 2002.

A. Finkel. Reduction and covering of infinite reabfidy trees. Information and
Computation89(2):144-179, 1990.

A. Finkel and P. Schnoebelen. Well-structured fteomssystems everywherelhe-
oretical Computer Scien¢c@56(1-2):63-92, 2001.

P. Godefroid.Partial-order methods for the verification of concurrensms: An
approach to the state-explosion problerolume 1032 of ecture Notes in Computer
Science Springer, New York, NY, USA, 1996.

V. Khomenko and M. Koutny. Branching processes ofthigvel petri nets. IfProc.
9th Int. Conf. on Tools and Algorithms for the Constructiom aAnalysis of Systems
(TACAS’03) volume 2619 ofLecture Notes in Computer Sciengages 458-472.
Springer, 2003.

Y. Leiand S. P. lyer. An approach to unfolding asynmhous communication proto-
cols. InProc. 13th Int. Symp. on Formal Methods (FM’08plume 3582 ot.ecture
Notes in Computer Scienggages 334-349. Springer, 2005.

A. W. Mazurkiewicz. Trace theory. lxdvances in Petri Netsolume 255 ot ecture
Notes in Computer Scienggages 279-324. Springer, 1986.

K. L. McMillan. A technigue of state space search é&n unfolding. Formal
Methods in System Desigf(1):45-45, 1995.

M. Nielsen, G. Plotkin, and G. Winskel. Petri netgemt structures and domains,
part |. Theoretical Computer SciencE3:85-108, 1981.

M. Nielsen, G. Rozenberg, and P. S. Thiagarajannditen systems, event struc-
tures and unfoldingdnformation and Computatiqri18(2):191-207, 1995.

D. Peled. All from one, one for all: on model checkumging representatives. In
Proc. of the 5th Int. Conf. on Computer Aided Verification Y®8), volume 697 of
Lecture Notes in Computer Scienpages 409-423. Springer, 1993.

Feptool. Homepageht t p: / / pept ool . sour cef or ge. net /.

TINA tool. Homepageht t p: / / www. | aas. fr/tinal.

A. Valmari. Stubborn sets for reduced state spaceeg®ion. InProc. of 10th Int.
Conf. on Applications and Theory of Petri Nets (ICATPN,;9@mber 483 in Lecture
Notes in Computer Science. Springer, 1991.

15

