
HAL Id: hal-00306299
https://hal.science/hal-00306299

Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unfolding Concurrent Well-Structured Transition
Systems

Frédéric Herbreteau, Grégoire Sutre, The Quang Tran

To cite this version:
Frédéric Herbreteau, Grégoire Sutre, The Quang Tran. Unfolding Concurrent Well-Structured Tran-
sition Systems. Proc. of the 13th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS07), Mar 2007, Portugal. pp.706–720. �hal-00306299�

https://hal.science/hal-00306299
https://hal.archives-ouvertes.fr


Unfolding Concurrent Well-Structured Transition
Systems⋆

Frédéric Herbreteau, Grégoire Sutre, and The Quang Tran

LaBRI, CNRS UMR 5800, Domaine Universitaire, Talence, France
{fh, sutre, tran}@labri.fr

Abstract. Our main objective is to combine partial-order methods withverifi-
cation techniques for infinite-state systems in order to obtain efficient verifica-
tion algorithms for concurrent infinite-state systems. Partial-order methods are
commonly used in the analysis of finite systems consisting ofmany parallel
components. In this paper we propose an extension of these methods to paral-
lel compositions of infinite-state systems. We argue that itis advantageous to
model each component by an event structure as this allows us to exhibit the con-
currency present implicitly in some infinite-state systemssuch as automata with
queues or counters. We generalize the notion of complete prefix from 1-safe Petri
nets to all well-structured transition systems. We give an on-the-fly unfolding al-
gorithm which given event structures representing the components produces an
event structure representing their synchronized product.A prototype implemen-
tation demonstrates the benefits of our approach.

1 Introduction

Partial-order methods [God96, Val91, Pel93] are frequently used for the verification of
programs, in particular for systems of concurrent processes. Indeed, proving that the
computations of such systems meet some requirement often results in the well-known
exponential blow-up due to interleaving of concurrent actions. Partial-order methods
tackle this problem by selecting a hopefully small set of relevant computations that
are sufficient to conclude. Selecting among the interleavings is sound because order-
ing concurrent (independent) actions is irrelevant. Hence, instead of considering to-
tally ordered computations, one analysestraces[Maz86] that stand for all equivalent
computations w.r.t. concurrency. As a consequence, the whole computation tree can
be partially rather than totally ordered resulting inevent structures[NPW81, NRT95].
Efficient exploration techniques, e.g. unfolding [McM95, NRT95], exist for partially-
ordered structures.

Traditionally, partial-order methods have been applied toconcurrentfinite-statepro-
cesses and proved to be successful. In this paper, we apply partial-order methods to
parallel compositions ofinfinite-statesystems such as counter machines and communi-
cating finite-state machines. Verification of infinite-state systems is known to be unde-
cidable, however some classes of infinite-state systems enjoy nice decidability results.

⋆ This work was partially supported by the French Ministry of Research (Project PERSÉEof the
ACI Sécurité et Informatique).



Well-Structured Transition Systems [Fin90, AČJT00, FS01] provide us with a nice
framework based on weak simulation relations that are well-preorders. Since a well-
preorder admits no infinite decreasing sequence, one can consider only a finite prefix
of the computation tree in order to decide properties like boundedness, termination or
covering.

Our contribution. Our goal is to analyse synchronized products of well-structured sys-
tems using a method similar to Petri net unfolding in order toobtain event structures.
The most straightforward approach would be to consider thateach component generates
an (infinite) transition system, then use an on-the-fly variant of the unfolding method for
parallel composition of finite automata. This turns out not to be satisfactory: imagine
that one models a counter by an (infinite) automaton then if, say, three different pro-
cesses want to increase the counter, their actions will get interleaved on the automaton
modeling the counter. As in principle those actions are independent, we lose a good deal
of concurrency present in the original system. Our solutionis to model each component
by an event structure, hence taking advantage of the intrinsic concurrency present in
each component.

Our first contribution is an algorithm for constructing event structures for com-
ponents modeling counters. It results in event structures with more concurrency than
in [McM95]. We also present a general algorithm that works for all (infinite) transi-
tion systems. This is not trivial: one wants the most concurrent event structure whereas
concurrency is not explicit in transition systems. Of course, our algorithm is less effi-
cient than dedicated algorithms (e.g. for counter automata), however it exhibits a good
deal of concurrency using local independence. For instanceit produces the same event
structures as those reported in [LI05] for queue automata.

Our second contribution is a generalization of the unfolding method of [ER99] to
parallel composition of potentially infinite event structures. Our algorithm is both ca-
pable of exploiting concurrency in components as well as among them. In particular
we show that modeling Petri nets as the parallel compositionof its places (viewed as
counters) results in very efficient analysis using our algorithms.

Of course there is no hope to have a notion of complete prefix for a parallel composi-
tion of infinite systems. There is hope though when the components are well-structured
systems. We give a property-preserving truncation criterion for event structures of well-
structured transition systems. The resulting (complete) prefix contains enough informa-
tion to decide boundedness, termination and quasi-liveness. We also show preserva-
tion of well-structure under parallel composition for all variants of well-structure. Re-
mark that these results cannot be directly obtained from previous techniques on well-
structured systems, since the complete prefix is not a compact partial-order representa-
tion of the finite reachability tree of [FS01].

Related work.The unfolding technique [McM95] has been developed for several mod-
els of concurrency, e.g. synchronous products of transition systems [ER99], high-level
Petri nets [KK03], extended finite state machines [LI05], symmetric Petri nets [CGP01].
However, all these techniques deal with finite-state models.

In [AJKP98], the authors address the coverability problem for infinite state systems
by combining partial-order reductions and symbolic backward computations. The un-

2



folding of unbounded Petri nets was recently considered. In[AIN00] Abdulla et al. pro-
pose a backward unfolding technique for coverability analysis, and [DJN04] presents
an unfolding-based adaptation of Karp and Miller’s algorithm. Our method generalizes
these results: it analyses any (infinite) well-structured transition system [FS01], offering
both forward and backward approaches, hence enabling to check covering, boundedness
and termination properties.

Outline. Section 2 introduces notations and definitions for transition systems and event
structures. In section 3 we prove well-structure properties for event structures. Then, in
section 4 we introduce our algorithms for unfolding systems. Finally, in section 5 we
give some experimental results showing the benefits of our approach, and we conclude
on future work. Please note that some preliminary (standard) definitions along with all
proofs had to be omitted due to space constraints. A long version of this paper can be
obtained from the authors.

2 Labeled Transition Systems and Event Structures

A binary relationR on some setU is any subset ofU × U . We will sometimes view
functions as relations. Given a subsetX ⊆ U , we denote byR[X ] therelational image
of X throughR, defined byR[X ] = {y ∈ U / ∃x ∈ X, xR y}. The inverseof R is
the binary relationR−1 on U defined byxR−1 x′ iff x′ R x. A preorderon some set
U is any reflexive and transitive relation� on U . We letx ≺ x′ denotex � x′ 6� x.
Given a preorder� onU , theinverserelation�−1 is a preorder also written�. For any
subsetX ⊆ U , the set�[X ] (resp.�[X ]) is called theupward closure(resp.downward
closure) of X with respect to�. We say thatX is upward-closed(resp.downward-
closed) if X is equal to its upward closure (resp. downward closure). Apartial order
on U is any antisymmetric preorder onU . Given a partial order≤ on U , a maximal
element(resp.minimal element) of some subsetX ⊆ U is any m ∈ X such that
m′ 6≥ m (resp.m′ 6≤ m) for all m′ 6= m in X . We writeMax≤(X) (resp.Min≤(X))
for the set of maximal elements (resp. minimal elements) ofX with respect to≤.

Given a setΣ, we denote byΣ∗ (resp.Σω) the set of all finite (resp. infinite) se-
quencesa1, a2, . . . , ak (resp.a1, a2, . . . , ak, . . .) of elements inΣ. The empty sequence
is writtenε and we denote byΣ+ the setΣ∗ \ {ε}.

2.1 Labeled Transition Systems

Definition 2.1. A labeled transition system(LTS) is a4-tupleS = (S, s0, Σ,→) where
S is a set ofstates, s0 ∈ S is an initial state, Σ is a set oflabelsand→⊆ S × Σ × S
is a transition relation.

A transition(s, a, s′) ∈ → is also writtens
a
−→ s′. We also writes

a
−→ whenever

there existss′ such thats
a
−→ s′. A finite path(resp.infinite path) in S is any finite (resp.

infinite) sequenceπ = s1
a1−→ s′1, s2

a2−→ s′2, . . . , sk
ak−→ s′k, . . . of transitions such that

s′i−1 = si for every indexi > 1 in the sequence. We shortly writeπ = s1
a1−→ s2

a2−→

s3 · · · sk
ak−→ sk+1 · · · and we say thatπ starts ins1. A finite (resp. infinite)execution

3



of S is any finite (resp. infinite) path starting in the initial state s0 of S. Slightly abusing
notations, we will also writes

ε
−→ s for every states. Thereachability setpost∗

S
of S is

the set of states that are visited by some execution.
We now present the composition primitive that we use to buildcomplex systems

from basic components: the synchronized product of labeledtransitions [Arn94]. In a
synchronized product, components must behave according toso-called synchronization
vectors. Considern labeled transition systemsS1, . . . , Sn with Si = (Si, s

0
i , Σi,→i).

A synchronization vectoris anyn-tuplev in Σ⊗ = (Σ1 ∪ {ε}) × · · · × (Σn ∪ {ε}),
and asynchronization constraintis any subsetV ⊆ Σ⊗ of synchronization vectors. In-
tuitively, a labela in a synchronization vector means that the corresponding component
must take a transition labeled bya, whereas anε means that the component must not
move.

Definition 2.2. Thesynchronized productof n labeled transition systemsS1, . . . , Sn

with respect to a synchronization constraintV is the labeled transition systemS⊗ =

(S⊗, s0
⊗, Σ⊗,→⊗) defined by:S⊗ = S1×· · ·×Sn, s0

⊗ = 〈s0
1, . . . , s

0
n〉 ands

v

−→⊗ s
′

iff v ∈ V ands(i)
v(i)
−−→ s

′(i) for every1 ≤ i ≤ n.

2.2 Labeled Event Structures

Definition 2.3. A labeled event structure(LES) is a5-tupleE = (E,≤, #, Σ, l) where
E is a set ofevents,≤ is a partial order onE, # is a symmetric and irreflexive relation
onE, Σ is a set oflabels, andl : E → Σ is a labeling functionsatisfying:

i) the downward closure≥[{e}] is finite for everye ∈ E, and
ii) e#e′ ande′ ≤ e′′ impliese#e′′ for everye, e′, e′′ ∈ E.

In the previous definition, relations≤ and# are respectively calledcausalityand
conflict relations. Intuitively, an evente can occur when (1) every causal evente′ with
e′ ≤ e has already occurred and (2) no conflicting evente′ with e′#e has already
occurred. Conditioni) enforces that any event has finitely many causal events, and
conditionii) expresses aconflict inheritanceproperty.

A subset ofE is calledconflict-freeif it does not contain any two events that are
in conflict. A configurationis any conflict-free and downward-closed (w.r.t. causality)
subset ofE. We denote byC(E) (resp.Cf (E)) the set of all configurations (resp. finite
configurations) of a labeled event structureE. For any evente ∈ E, the set≥[{e}] is
called thelocal configuration ofe (it is readily seen that this set is a finite configuration).
We will shortly write[e] the local configuration ofe when the causality preorder is clear
from the context. An evente ∈ E is enabledat some configurationC, writtenC ⊢ e, if
e 6∈ C andC ∪ {e} is a configuration. We say that a labeled event structure isfinitely-
branchingif every finite configuration has finitely many enabled events. A variant of
König’s lemma applies to finitely-branching labeled event structures.

Definition 2.4. A markingfor a labeled event structureE is any functionM fromCf (E)
to some setS.

4



A marked LESis any pair(E, M) consisting of a labeled event structureE and a
markingM for E. We denote bySM

E
the labeled transition systeminduced by(E, M)

and defined bySM
E

= (M [Cf (E)], M(∅), Σ,→) wheres
a
−→ s′ iff there exists a finite

configurationC and an evente enabled atC such thats = M(C), a = l(e) and
s′ = M(C ∪ {e}). Given a labeled transition systemS, a marked LES forS is any
marked LES(E, M) such thatSM

E
coincides with the restriction ofS to post∗

S
. Remark

that(E, M) is obviously a marked LES forSM
E

.

3 Truncation for Well-Structured Transition Systems

Well-Structured Transition Systems were introduced in [Fin90, AČJT00] as an abstract
generalization of Petri nets satisfying the samemonotonicityproperty, and hence enjoy-
ing nice decidability properties. It turns out that many classes of infinite-state systems
are well-structured [FS01].

We will see in the next section how to algorithmically construct labeled event struc-
tures. However, a labeled event structure is infinite as soonas the underlying system has
an infinite execution. Thus, we need property-preserving truncation techniques in order
to decide verification problems using only a finite prefix of anevent structure. In this
section, we show how such techniques can be obtained when theunderlying system is
well-structured.

For simplicity we only focus, without loss of generality, onforward analysis tech-
niques for well-structured transition systems. We show in the long version of this paper
how known backward analysis results on well-structured transition systems can be cap-
tured by this forward analysis. Moreover, we do not discuss effectivity issues (such
as whether preorders need to be decidable, whether successor states need to be com-
putable, etc.) since they are basically the same as in [FS01].

3.1 Synchronized Product of Well-Structured Transition Systems

Recall that our main objective is to verify complex systems obtained by (potentially
nested) synchronized products of basic components. Thus, we first show that well-
structure is preserved under synchronized product. Our presentation of well-structured
transition systems differs from (and generalizes) the standard (non-labeled) one as we
need to take care of labels.

Until the end of this sub-section, we assume that each set of labelsΣ is partitioned
into a setΣτ of local labels(for internal transitions) and a setΣγ of global labels
(for synchronizable transitions). In order to account for this separation between inter-
nal transitions and synchronizable ones, we assume (1) thatevery synchronization con-
straintV implicitly contains the setVτ = {〈τ, ε, . . . , ε〉, . . . , 〈ε, . . . , ε, τ, ε, . . . , ε〉, . . . ,
〈ε, . . . , ε, τ〉 / τ ∈ Στ} of synchronization vectors, and (2) that no local labelτ ∈ Στ

may appear in a synchronization vector ofV \Vτ . NaturallyVτ becomes the set of local
labels of any synchronized product w.r.t.V .

A preordered LTSis any LTSS = (S, s0, Σ,→) equipped with a preorder� onS.
We say that� is compatible(resp.transitively compatible, reflexively compatible) with

5



→ if for every transitions
a
−→ s′ andt � s there existst′ � s′ such thatt

σ
−→ t′ for

someσ ∈ Σ∗ satisfying:
{

σ ∈ Σ∗
τ if a ∈ Στ

σ ∈ Σ∗
τ a Σ∗

τ otherwise

{

σ ∈ Σ+
τ if a ∈ Στ

σ ∈ Σ∗
τ a Σ∗

τ otherwise

{

σ ∈ {ε} ∪ Στ if a ∈ Στ

σ = a otherwise

(compatibility) (transitive compatibility) (reflexive compatibility)

Moreover we also say that� is strictly compatiblewith → if both � and≺ are com-
patible with→ (recall thats ≺ s′ is defined bys � s′ 6� s). Of course, this strictness
notion may be combined with transitive and reflexive compatibilities.

Remark 3.1.The previous definitions of compatibility coincide with thedefinitions
given in [FS01] whenΣ = Στ is a singleton.

Any synchronized productS⊗ of n preordered LTSs(S1,�1), . . . , (Sn,�n) may
be equipped with theproduct preorder�⊗ defined bys �⊗ s

′ iff s(i) �i s
′(i) for

every1 ≤ i ≤ n. The following proposition shows that all six compatibility notions
defined above are preserved under synchronized product.

Proposition 3.2. Let Cond denote any compatibility condition among{(non-strict),
strict} × {(standard), transitive, reflexive}. Any synchronized product of preordered
LTSs with compatibilityCond also has compatibilityCond.

Recall that awell-preorderon some setU is any preorder� onU such that any infi-
nite sequencex1, . . . , xk, . . . of elements inU contains an increasing pairxi � xj with
i < j. A well-preordered LTSis any preordered LTS(S,�) where� is a well-preorder
on the state setS of S. Since the product preorder of anyn well-preorders is also a well-
preorder (from Higman’s lemma), we obtain that well-preordering is preserved under
synchronized product.

Proposition 3.3. Any synchronized product of well-preordered LTSs is a well-preor-
dered LTS.

A well-structuredLTS is any well-preordered LTS with (standard) compatibility.
It follows from the two previous propositions that well-structure is preserved under
synchronized product.

3.2 Finite Property-Preserving Truncation of Well-Structured LES

The intuition behind well-structure is that any state may beweakly simulated by any
greater state, and thus we may forget about smaller states when performing reachability
analysis. The well-preordering condition between states guarantees termination of the
analysis [FS01]. We show in this sub-section how to extend these ideas to the partial-
order verification of well-structured labeled transition systems.

Recall that any marked LES(E, M) induces a labeled transition systemSM
E

. We lift
the well-structure notions defined in the previous sub-section from labeled transition
systems to labeled event structures. Apreordered marked LES(resp.well-preordered
marked LES) is any marked LES(E, M) equipped with a preorder (resp. well-preorder)

6



� on M [Cf (E)]. Given any preordered marked LES(E, M,�), we say that(E, M,�)
has compatibilityCond ∈ {(non-strict), strict} × {(standard), transitive, reflexive}
wheneverSM

E
has compatibilityCond.

Consider any preordered marked LES(E, M,�) whereE = (E,≤, #, Σ, l). A
cutoff eventis anyecut ∈ E such thatM([ecut]) � M([e]) for some evente with
e < ecut. ThetruncationT(E, M,�) of (E, M,�) is the set of events having no strictly
causal cutoff event, formallyT(E, M,�) = E \ {e ∈ E / ∃ ecut ∈ Ecut, ecut < e}
whereEcut denotes the set of cutoff events inE. Observe thatT(E, M,�) is downward-
closed, and that any minimal cutoff event (i.e. any event inMin≤(Ecut)) is a maximal
event ofT(E, M,�) but the converse does not hold in general. In order to preserve
termination and boundedness properties, this truncation criterion “respects” causality,
and this leads to larger truncations than in [McM95] where the truncation only preserves
reachability properties.

We will show in the rest of this sub-section how to use the truncation to decide
several verification problems. Unfortunately the truncation may be infinite in general,
as it may be “too deep” and / or “too wide”. A well-preorderingcondition avoids the
first possibility, and a branching finiteness assumption eliminates the second.

Proposition 3.4. The truncation of any well-preordered finitely-branching marked LES
is finite.

Given any labeled transition systemS, we say thatS terminates(resp. isbounded) if
S has no infinite execution (resp. has a finite reachability setpost∗

S
). The two following

propositions show that, assuming an adequate compatibility condition, the truncation
defined above contains enough information to decide termination and boundedness.
Remark that in these two propositions, the finiteness requirement on the truncation can
be dropped when the marked LES is finitely-branching and well-preordered.

Proposition 3.5. For any preordered finitely-branching marked LES(E, M,�) with
transitive compatibility,SM

E
terminates iffT(E, M,�) is finite and contains no cutoff

event.

In order to decide boundedness, we will need “strict” cutoffevents, and we will
also require a partial-order�. Formally, astrict cutoff eventis anyecut ∈ E such that
M([ecut]) ≻ M([e]) for some evente with e < ecut. Observe that any strict cutoff event
is also a cutoff event. Apartially-ordered marked LESis any preordered marked LES
(E, M,�) where� is a partial order onM [Cf(E)]. Notice that the following proposition
does not hold for general preordered marked LES.

Proposition 3.6. For any partially-ordered marked LES(E, M,�) with strict compat-
ibility, SM

E
is bounded iffM [{C ∈ Cf (E) / C ⊆ T(E, M,�)}] is finite andT(E, M,�)

contains no strict cutoff event.

We now turn our attention to the quasi-liveness problem which, assuming an ad-
equate compatibility condition, reduces to the computation of the upward closure of
post∗

SM

E

. For any labeled transition systemS = (S, s0, Σ,→), we say that a given label

a ∈ Σ is quasi-liveif there is an execution inS containing a transition labeled witha.

7



The truncation that we have used so far would be sufficient to decide quasi-liveness, but
in order to improve efficiency, we consider a refined notion ofcutoff events which leads
to smaller truncations (that still contain enough information to decide quasi-liveness).
This refined notion is based on the size of configurations as in[McM95]. Formally,
given any preordered marked LES(E, M,�) whereE = (E,≤, #, Σ, l), we denote
by � the preorder onCf (E) defined byC � C′ iff Card(C) ≤ Card(C′). Note that
C � C′ meansCard(C) < Card(C′). A �-cutoff eventis anyecut ∈ E such that
M([ecut]) � M([e]) for some evente with [e] � [ecut]. The�-truncationT�(E, M,�)
of (E, M,�) is the set of events having no strictly causal�-cutoff event, formally
T�(E, M,�) = E \ {e ∈ E / ∃ ecut ∈ E�

cut, ecut < e} whereE�

cut denotes the set of
�-cutoff events inE.

For clarity, any (standard) cutoff event will now be called a⊂-cutoff event, and the
(standard) truncation will now be called the⊂-truncation and be denoted byT⊂(E, M,�
). It is readily seen thatT�(E, M,�) ⊆ T⊂(E, M,�). Hence�-truncations are also
finite for well-preordered finitely-branching marked LESs.Notice that the following
proposition requires reflexive compatibility of the inverse preorder� of � (this re-
quirement was called “downward compatibility” in [FS01]).

Proposition 3.7. For any preordered marked LES(E, M,�) with reflexive compatibil-
ity, the two following assertions hold:

i) the setsM [{C ∈ Cf (E) / C ⊆ T�(E, M,�)}] andpost∗
SM

E

have the same upward

closure w.r.t.�.
ii) for any global labela, a is quasi-live inSM

E
iff a labels an event inT�(E, M,�).

Remark that the previous proposition also holds for the standard truncation (i.e. we
may replaceT� by T⊂ in the proposition). We may even further refine the truncation
by considering a preorder onCf (E) that refines� (i.e. a preorder that is contained in
�). However Proposition 3.7 may not hold for this refined preorder unless we assume
stronger requirements on the preordered marked LES(E, M,�). In particular, if every
label is global then Proposition 3.7 still holds for the lexicographic preorder between
configurations defined in [ERV02].

4 Compositional Unfoldings of Concurrent Systems

We now give algorithms for unfolding given systems into labeled event structures. Fig-
ure 1(a) depicts an LESEa modeling a positive counter initialized to1. Black (resp.
white) events represent increasing (+) events (resp. decreasing (−) events) and arrows
represent the causality relation. Since this counter is initialized to1, both− and+ are
initially enabled, however one needs to first unfold a+ event before unfolding a second
−, and so on. Thus, unfoldingEa is achieved by first building the lowest two events
(initialization phase), and then extending every+ event with new− and+ events (ex-
tension phase).

All our unfolding algorithms rely on this principle. The following Unfold builds
on-the-fly LES for given systems:

8



(a) (b)

Fig. 1. LES for counters with: (a)v0 = 1 andk = 1, (b) v0 = 3 andk = 2.

Unfo ld()
PE:=Init()
for (P, A) ∈ PE do

NewPE:=Extend(P, A)
PE:= (PE \ {(P, A)}) ∪ NewPE

end

Pairs(P, A) correspond to new extensions:P is the preset of the new event (e.g. the low-
est black event in Figure 1(a)) andA is the set of actions to extend with (e.g.{+,−}).
Extending creates new events using theNewEvent function that also updates causal-
ity and conflict relations. ThenUnfold computes new pending extensions. Notice that
this algorithm terminates ifExtend eventually always returns an empty set, which is
the case for well-structured LESs if we do not extend cut-offevents as defined in sec-
tion 3.2.

In the sequel, we detailInit andExtend functions for three types of systems. We first
considercountersfor which we give dedicated functions. Ad hoc algorithms arealways
more efficient and can be defined for other datatypes for instance FIFO queues [LI05].
However, it is not always possible nor wanted to have specificalgorithms, hence in
section 4.2 we define functions that compute a concurrent marked LES for any given
LTS. Finally, in section 4.3, we consider the unfolding of synchronized products of
systems.

4.1 Unfolding Counters

A counteris a datatype with values ranging over the set of natural numbersN, equipped
with two operations:+ and− that respectively increase and decrease its value, and
initial value v0 ∈ N. It may be viewed as an LTSSc = (N, v0, {+,−},→) where

n
+
→ n + 1 for any n ∈ N andn

−
→ n − 1 for all n > 0. Places of Petri nets are

examples of such counters.
We aim at definingInit andExtend functions that build an LES for a counter. Fig-

ure 1 depicts two different LESsEa andEb modeling a counter. The labelinglc as-
sociates+ (resp.−) to every black (resp. white) event and the natural markingMc

associates to everyC ∈ Cf (E) the valuev0 + Card({e ∈ C / lc(e) = +})−Card({e ∈
C / lc(e) = −}). Both(Ea, Mc) and(Eb, Mc) are marked LESs forSc.

In these LESs, causality between− and+ events correspond to intuitive constraints:
a counter must be increased before being decreased. However, if v0 > 0, it may be de-
creasedv0 times without any increasing. Also,+ events are concurrent since there is no

9



constraint for increasing. Hence, labeled event structuresEa andEb differ in the degree
of concurrency between+ events. Choosing the degreek ≥ 1 of concurrency is a mat-
ter of modeling leading to more or less concurrent truncations depending on the system
that is analysed, in particular for synchronized products of LESs (see section 4.3).

Init createsv0 (∅, {−}) andk (∅, {+}) pending extensions. Then,Extend simply
follows the the principle depicted in Figures 1(a) and 1(b).

Extend(P, A)
if (− ∈ A) e−:=NewEvent(−, P)
if (+ ∈ A) for i ∈ [1; k] do e+

i :=NewEvent(+, P)
return {({e+

i }, {+,−}) / i ∈ [1; k]}

Using our algorithm, one obtains the(v0 = 1, k = 1) counter LES in Figure 1(a),
which corresponds to McMillan’s unfolding of a counter [McM95]. However, Fig-
ure 1(b) shows that our approach yields the ability to choosemore or less concurrent
models using parameterk.

4.2 Unfolding Labeled Transition Systems

Defining the semantics of given systems as LESs or designing dedicated unfolding al-
gorithms for those systems is often very hard. However, mostsystems can easily be
described as LTSs. Hence, being able to compute a marked LES for any LTS is a solu-
tion to benefit from intrinsic concurrency in those systems.

A trivial LES for any LTS is its reachability tree, however every event in a reach-
ability tree is either in causality or in conflict with any other event. We introduce an
algorithm that computes aconcurrentmarked LES for any given LTS. Figure 2(b) de-
picts a prefix of the LESEf computed by our algorithm for a FIFO queue LTSSf over
messages{a, b}. Concurrency essentially corresponds to independence diamonds inSf :
whenever two or more actions are commutative. Moreover, ouralgorithm inferslocal
concurrency: the same actions can be concurrent in some state ofSf and conflicting in
some other state.

Init defines initially pending extension(∅, Σ) and markingM(∅) = s0 for the given
LTS (S, s0, Σ,→). Assume thate0 in Figure 2(b) has not been extended so far:P =
{e0} andA = {?a, ?b, !a, !b}. ExtendingP results in creating new events{e2, e3, e4}
in causality withe0 (?b is not enabled inM({e0})). Now, extendingP = {e0, e2} with
label !a does not create any event since addinge3 to P yields the expected extension.
Hence, ourExtend function first looks for concurrent events that can extendP , and

!a

?a !a

?a !a

(a)
!a

e0

?ae2 !a e3

?a !a !b

!b
e4

?b !a !b

!b
e1

?b !a

?a !a !b

!b

?b !a !b

(b)

Fig. 2. LES for∅-initialized FIFO channels with messages: (a){a} and (b){a, b}.

10



then creates new events only for the labels inA \ l(X) that were not matched by this
first step.

Extend(P, A)
X:=∅
for e ∈ E s.t. l(e) ∈ A and P ⊢ e do X:=X ∪ e

for a ∈ A \ l(X) s.t. M(P )
a
−→ do e:=NewEvent(a, P); X:=X ∪ {e}

for e ∈ X do C(E):=C(E) ∪ {P ∪ {e}}; M(C ∪ {e}):=→[M(P ), l(e)]
return {(P ∪ {e}, Σ) / e ∈ X}

Notice that in this algorithm,P is always a configuration:Extend explores the
configuration space of the LES.

However,Extend is not correct so far as it does not add any conflict whereas Fig-
ure 2(b) clearly shows the need for it. Missing conflicts are detected as follows. As-
sume thatEf in Figure 2(b) only containse0 ande1 without conflict so far. Extending
({e0}, !b) leads to configuration{e0, e1} with M({e0, e1}) = →[M({e0}), !b] = ab.
Next, extending({e1}, !a), leads to associatinge0 to {e1} which results to be impos-
sible since→[M({e1}), !a] = ba 6= M({e0, e1}). Hence, conflict must be added be-
tweene0 and e1 using theCheckConflict function below whenExtend detects the
problem.

CheckConf l i c t(P, PE)

for e ∈ E s.t. P ⊢ e and (M(P )
l(e)

6→ or M(P ∪ {e}) 6= →[M(P ), l(e)]) do
e′:=choose in Max≤(P )
E:=E \ {e′′ ∈ E / e ≤ e′′ and e′ ≤ e′′}
C(E):=C(E) \ {C ∈ C(E) / {e, e′} ∈ C}
PE:=(PE ∩ C(E)) ∪ {(P ′, Σ) / P ′ ∈ C(E), (e ∈ P ′, P ′ ⊢ e′)or (e′ ∈ P ′, P ′ ⊢ e)}
#:=# ∪ {〈e, e′〉, 〈e′, e〉}

end
return Sort(PE)

CheckConflict updatesPE since whenever one needs to add conflict between 2 events
e0 and e1, every configuration inC(E) that contains both events must be discarded
and every configuration that containse0 (resp.e1) has potentially mistaken extensions.
Notice that pending extensions(P, A) in PE are eventually sorted w.r.t increasing size
of P . This is due to a natural hypothesis made byExtend: if P is to be extended, then
all the extensions of anyP ′ ⊂ P are up-to-date.

Figure 2 depicts the marked LES obtained for LTS modeling FIFO queues in the
standard way (one state per queue content, and transitions w.r.t. FIFO policy) by ap-
plying our algorithm. They exactly correspond to the LES computed by the method
in [LI05].

4.3 Unfolding Synchronized Products of Components

Sections 4.1 and 4.2 present unfolding algorithms for single components. We now intro-
duce an algorithm for unfolding complex systems built from synchronized components.

Consider Petri netN in Figure 3(a). In our framework, each placepi is modeled by
a counter LES and each transitiontj by a synchronization vector between actions of

11



••

p1 t1 p2

•

p3 t2 p4

(a)
〈e−0 , f+

0 , ε, ε〉 i0

〈ε, f−
0 , g−

0 , h+
0 〉 i2

〈e−1 , f+
1 , ε, ε〉i1

〈ε, f−
1 , g−

0 , h+
1 〉i3

(b)

Fig. 3.A Petri netN (a) and a marked LES forN (b).

these counters. Since tokens in Petri nets are concurrent processes, we choose a(v0 =
2, k = 2) counter LESE1 for p1 since it initially contains 2 tokens. Similarly we choose
a (1, 1) counter LESE3 for p3. Placep2 is initially empty and can simultaneously
contain 2 tokens, thus we model it by a(0, 2) counter LESE2. Finally, we choose a
(0, 1) counter LESE4 for p4. In the case of unbounded places, one can choosek as the
number of entering edges.

Let ea
i (resp.fa

i , ga
i andha

i ) denote theith event labeled bya ∈ {+,−} in E1 (resp.
E2, E3 andE4) w.r.t. causality. The semantics ofN is modeled in the synchronized
product ofE1, E2, E3 andE4 by the synchronization vectors〈−, +, ε, ε〉 for t1 and
〈ε,−,−, +〉 for t2.

Figure 3(b) depicts LESEN obtained forN using our unfolding algorithm. To each
event inEN is associated a tuple of components’ events by mappingλ : (E1 ∪ {ε})×
· · · × (En ∪ {ε}) → E, for instanceλ(i0) = 〈e−0 , f+

0 , ε, ε〉. Conflict and causality
relations inEN are defined from components’ ones. Basically, conflict appears when
a components’ event is used by two or more global events, e.g.g−0 in i2 and i3, and
causality inherits from components, e.g.f+

0 → f−
0 entails i0 → i2. Formally, let

〈e1, . . . , en〉#〈e′1, . . . , e
′
n〉 iff there existsi s.t. ei = e′i or ei#ie

′
i. The global causal-

ity and conflict relations are respectively the smallest partial order≤ and the smallest
symmetric and irreflexive relation# satisfying for every global eventse, e′, e′′:

– if e#e′ ande′ ≤ e′′ thene#e′′, and
– if λ(e)#λ(e′) thene#e′, and
– if there existsi s.t.(λ(e))i ≤i (λ(e′))i and we do not havee#e′ thene ≤ e′.

As Figure 3(b) shows, unfolding a synchronized product of LESs consists in associ-
ating components’ events into global events w.r.t. synchronization vectors, conflict and
causality relations. Since components’ LES maybe infinite we use an on-the-fly algo-
rithm that proceeds as follows.Init initializes every component (in particularPEi) and
extendsall their initially pending extensions(∅, Ai). This is necessary due to synchro-
nization. Next, extending(P, A) in the global LES consists, for every synchronization
vectorv ∈ A, in finding all tuples〈e1, . . . , en〉 of components’ events which are in-
stances ofv that extendP . A new global evente is created for each such instance
〈e1, . . . , en〉 and each conflict-free presetps of global events that match the presets of
everyei. Finally, every component such thatei 6= ε is extended since the successors of
ei may be needed to extend further.

Extend(P, A)
NewE := ∅
if (P = ∅)

12



E⊗:={〈e1, . . . , en〉 / 〈l(e1), . . . , l(en)〉 ∈ A and ei ∈ Min≤i
(Ei) ∪ {ε}}

else
E⊗:={〈e1, . . . , en〉 / 〈l(e1), . . . , l(en)〉 ∈ Aand∃e′ ∈ Max≤(P ), ∃i, ei ∈ (λ(e′))i•}

for 〈e1, . . . , en〉 ∈ E⊗ do
for ps ∈ {E′ ∈ 2E /∀e, e′ ∈ E′, e 6 #e′ and ∀i, (λ(E′))i = •ei} do

e := NewEvent(〈l(e1), . . . , l(en)〉, ps)
λ(e) := 〈e1, . . . , en〉
for i ∈ [1; n] s.t. l(ei) 6= ε and ei• = ∅ do PEi :=Extendi(PEi, Σi)
NewE := NewE ∪ {e}

end
end
return {(≥[e], Σ⊗) / e ∈ NewE}

In this algorithm, we denote by•e = Max≤((≥[e]) \ {e}) the preset ofe w.r.t.
causality, and bye• = Min≤((≤[e]) \ {e}) the postset ofe. Σi denotes the set of
actions of componenti. Notice thatExtendi(PEi, Σi) is a slight abuse of notations as
PEi is asetof pending extensions.

Extend first checks that components’ events have not been extended yet before
doing so (ei• = ∅) since an event may be associated to many global events. The labeling
of global events and configurations are defined component-wise, and global conflict and
causality relations are computed as defined previously.

Using our algorithm, one can compute a marked unfoldingE⊗ of a synchronized
product of components as depicted in Figure 3. Furthermore,E⊗ can itself be used as a
component, giving raise to hierarchical unfolding of systems and components.

5 Experimental Results

We have implemented the algorithms and truncation techniques presented in this paper
in a tool called ESU. This tool is implemented in Objective Caml, and permits the
verification of termination, boundedness and quasi-liveness for synchronized products
of well-structured components. Components may be counters, queues or finite-state
(control) automata. For the particular case of bounded systems such as bounded Petri
nets, ESU is also able to compute reachability set.

To our knowledge, ESU is the first tool able to analyse infinite-state systems using
forward unfolding techniques. Hence, in order to evaluate the benefits of our approach
we have compared ESU with two tools for Petri nets: the PEP environment which pro-
vides an unfolding tool for bounded Petri nets [Pep], and thetool TINA which analyzes
arbitrary Petri nets using structural analysis techniquesand forward Karp-Miller reach-
ability analysis [Tin]. Petri nets are modeled in ESU by synchronized counter compo-
nents. Experiments were conducted on an Intel XEON 2.2 GHz station with 6 GB of
RAM. In the following tables,E (resp.Ecf , N , S) denotes the number of events in the
truncation (resp. of cutoff events, of nodes in TINA ’s tree, of markings in TINA ’s tree),
and a ‘–’ means that the analysis exhausted memory or did not finish within 10 minutes.

The Petri net depicted below represents a concurrent Producer/Consumer Petri Net
with n independent production lines andm machines on each line. The products from
thesen lines are combined into another product that is then stored in placeps. PEP’s

13



unfolder cannot analyze this Petri net as it is unbounded. ESU performs very well on
this example, but this is not very surprising as this Petri net is extremely concurrent.
Observe that the number of events in the truncation is approximately the number of
transitions in the Petri net.

ps

• • •

TINA ESU

m × n N T(s) E Ecf T(s)

3 × 3 49 0.01 10 4 0.01
5 × 5 4636 0.04 25 5 0.01
7 × 7 109424124.41 50 8 0.01
7 × 10 – – 71 8 0.03
10 × 10 – – 96 6 0.04
20 × 25 – – 491 11 1.4

We also experimented on a more challenging and well-known example: the swim-
ming pool. The swimming pool has much less explicit concurrency as most transitions
share places. We used TINA ’s bounded swimming pool Petri net which is a variant of
the classical one with an additional place that limits the number of clients [Tin]. In the
following table, the size denotes the number of resources inthe swimming pool.

PEP TINA ESU

Size E Ecf T(s) N S T(s) E Ecf T(s)

3 3759318009159.59 126 56 0.00 18 3 0.01
10 – – – 12012 3003 0.05 60 10 0.20
20 – – – 255024 53130 3.35 120 20 3.02
30 – – – 1669536 324632 44.74 180 30 20.64
40 – – – 65160481221759297.19 240 40 64.04

Future work will focus on improving and extending our methodto other frameworks
for the analysis of infinite state systems. In particular we plan to focus on abstraction
algorithms in order to build more compact and concurrent event structures that would
abstract away causality and conflict information that is irrelevant w.r.t. to a desired prop-
erty. We also plan to consider acceleration techniques as a tool for truncating unfold-
ings, hence enforcing the termination of our algorithms while preserving reachability
properties.

Acknowledgements.The authors wish to thank Igor Walukiewicz for insightful com-
ments and suggestions on a preliminary version of this paper.

References

[AČJT00] P. A. Abdulla, K.Čer̄ans, B. Jonsson, and Y. K. Tsay. Algorithmic analysis of
programs with well quasi-ordered domains.Information and Computation, 160(1–
2):109–127, 2000.

14



[AIN00] P. A. Abdulla, S. P. Iyer, and A. Nylén. Unfoldings ofunbounded petri nets. InProc.
of 12th Int. Conf. on Computer Aided Verification (CAV’00), volume 1855 ofLecture
Notes in Computer Science, pages 495–507. Springer, 2000.

[AJKP98] P. A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled.A general approach to partial
order reductions in symbolic verification (extended abstract). In Proc. of 10th Int.
Conf. on Computer Aided Verification (CAV ’98), volume 1427 ofLecture Notes in
Computer Science, pages 379–390. Springer, 1998.

[Arn94] A. Arnold. Finite Transition Systems. Semantics of Communicating Systems. Pren-
tice Hall Int., 1994.

[CGP01] J-M. Couvreur, S. Grivet, and D. Poitrenaud. Unfolding of products of symmet-
rical petri nets. InProc. 22nd Int. Conf. on Application and Theory of Petri Nets
(ICATPN’01), volume 2075 ofLecture Notes in Computer Science, pages 121–143.
Springer, 2001.

[DJN04] J. Desel, G. Juhás, and C. Neumair. Finite unfoldings of unbounded petri nets. In
Proc. 25th Int. Conf. on Applications and Theory of Petri Nets (ICATPN’04), volume
3099 ofLecture Notes in Computer Science, pages 157–176. Springer, 2004.

[ER99] J. Esparza and S. Römer. An unfolding algorithm for synchronous products of tran-
sition systems. In10th Int. Conf. on Concurrency Theory (CONCUR’99), volume
1664 ofLecture Notes in Computer Science, pages 2–20. Springer, 1999.

[ERV02] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm.Formal Methods in System Design, 20(3):285–310, 2002.

[Fin90] A. Finkel. Reduction and covering of infinite reachability trees. Information and
Computation, 89(2):144–179, 1990.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!The-
oretical Computer Science, 256(1–2):63–92, 2001.

[God96] P. Godefroid.Partial-order methods for the verification of concurrent systems: An
approach to the state-explosion problem, volume 1032 ofLecture Notes in Computer
Science. Springer, New York, NY, USA, 1996.

[KK03] V. Khomenko and M. Koutny. Branching processes of high-level petri nets. InProc.
9th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), volume 2619 ofLecture Notes in Computer Science, pages 458–472.
Springer, 2003.

[LI05] Y. Lei and S. P. Iyer. An approach to unfolding asynchronous communication proto-
cols. InProc. 13th Int. Symp. on Formal Methods (FM’05), volume 3582 ofLecture
Notes in Computer Science, pages 334–349. Springer, 2005.

[Maz86] A. W. Mazurkiewicz. Trace theory. InAdvances in Petri Nets, volume 255 ofLecture
Notes in Computer Science, pages 279–324. Springer, 1986.

[McM95] K. L. McMillan. A technique of state space search based on unfolding. Formal
Methods in System Design, 6(1):45–45, 1995.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains,
part I. Theoretical Computer Science, 13:85–108, 1981.

[NRT95] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Transition systems, event struc-
tures and unfoldings.Information and Computation, 118(2):191–207, 1995.

[Pel93] D. Peled. All from one, one for all: on model checkingusing representatives. In
Proc. of the 5th Int. Conf. on Computer Aided Verification (CAV’93), volume 697 of
Lecture Notes in Computer Science, pages 409–423. Springer, 1993.

[Pep] PEP tool. Homepage:http://peptool.sourceforge.net/.
[Tin] T INA tool. Homepage:http://www.laas.fr/tina/.
[Val91] A. Valmari. Stubborn sets for reduced state space generation. InProc. of 10th Int.

Conf. on Applications and Theory of Petri Nets (ICATPN’90), number 483 in Lecture
Notes in Computer Science. Springer, 1991.

15


