N
N

N

HAL

open science

On the asymptotic theory of localized structures in a
thin two-dimensional Harris current sheet: plasmoids,
multiplasmoids and X points
A. Tur, P. Louarn, V. Yanovsky, D. Le Queau, Vincent Génot

» To cite this version:

A. Tur, P. Louarn, V. Yanovsky, D. Le Queau, Vincent Génot. On the asymptotic theory of localized
structures in a thin two-dimensional Harris current sheet: plasmoids, multiplasmoids and X points.

Journal of Plasma Physics, 2001, 66, pp.97-117. 10.1017/S002237780100112X . hal-00306244

HAL Id: hal-00306244
https://hal.science/hal-00306244v1
Submitted on 23 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00306244v1
https://hal.archives-ouvertes.fr

On the Asymptotic Theory of Localized
Structures in Thin 2-D Harris Current Sheet:
Plasmoids, Multi-Plasmoids and X-Points

A.TUR, P.LOUARN, V. YANOVSKY*
D. Le QUEAU, V.GENOT
Centre d’Etude Spatiale des Rayonnements, CNRS,
9, ave du Colonel-Roche B.P. 4346, 31028 Toulouse
Cedex 4 FRANCE
*Institute for Single Crystals, Nat. Acad. of Sci.
Ukraine, Lenine ave. 60 Kharkov 310001, UKRAINE

February 20, 2001

Abstract

We develop a new asymptotic method of resolution of the 2-D equilib-
rium equation of collisionless plasmas described by the Maxwell-Vlassov
equations. This method differs from the classical one proposed by K.
Schindler (" Earth’s magnetospheric processes, ed. by B. M. McCormac,
p-200, D.Reidel, MA,1972) since we consider free-boundary plasmas. Our
method is a generalization of usual multiscale asymptotic developments.
The first approximation asymptotic solutions are found from the solvabil-
ity conditions (elimination of increasing and singular terms) in the next
approximation. We apply the method to the mathematical description
of non linear structures that may form in neutral sheets. Particular so-
lutions describing localized plasmoids (O-point configuration) as well as
X-point magnetic configurations are obtained. We also find more general
solutions describing a finite number of ”magnetic islands” (multiplasmoid
solutions) separated by X points.

1 Introduction

Thin current layers are common structures in both laboratory and space plas-
mas. Since they largely contribute to the determination of the geometry of the
magnetic field, the question of their mathematical description is central in any
problems related to the study of the static state as well as the dynamics of the
plasma regions. Among the different types of current layers, those associated to
reversals of the magnetic field (neutral sheets) have a particular importance in
the physics of the environment of magnetized astrophysical objects. They are



indeed suspected to display a large variety of dynamical behaviors; the most
famous one - the magnetic reconnection - being considered as the standard pro-
cess of energy releases in natural magnetized plasma. The determination of
the structure and the understanding of the dynamics of the neutral sheets have
thus been the subjects of a considerable number of experimental, numerical and
theoretical studies (see e.g.,Refs [1] - [4] and references therein). A particular
emphasis has been put on the identification and the description of the local-
ized structures, such as plasmoids or "magnetic islands”, that could inherently
result from their dynamics. This is a very active field of space physics since
it is generally believed that the formation of plasmoids and of other localized
structures (flux ropes, for example) in the terrestrial magnetotail is one of the
consequences of substorms, the major form of explosive energy release in the
Earth magnetosphere. In the solar corona context, it is also suspected that sim-
ilar isolated structures could result from the reconfiguration of magnetic arches.
Nevertheless, if such structures have been observed by a number of space exper-
iments (see for example [5],[6] and references therein), only a few studies have
tackled the problem of their mathematical description. This is the main subject
of the present article. We will thus propose a new asymptotic procedure for the
resolution of the equilibrium equation of 2-D current sheets that will give useful
analytical expressions for describing localized magnetized structures.

In order to precise the originality of this procedure, let us briefly present
the existing theories. Using a standard coordinate system (the z (z) axis is
parallel (perpendicular) to the layer, y being in the direction of invariance of
the system), one obtains the classical 2-D equilibrium equation [7] :

AT = exp (—7) (1)

(where ¥ is proportional to the vector potential). In the rest of the paper, this
formula will be referred as the "Harris” equation. As explained in appendix
A, this equation can be derived form either MHD or kinetic considerations,
the Grad-Safranov equation being in this particular case formally equivalent
to the kinetic equation. Despite their formal equivalence, the two approaches
present important physical differences. The kinetic description is based on the
Maxwell-Vlassov system of equations and can be considered as exact in colli-
sionless plasmas if the fluctuations are neglected. X-point solutions will thus be
physically acceptable. In the framework of ideal MHD alone (without dissipa-
tion), the physical validity of such solutions would not be guaranteed.

Concerning the exact results, it has been shown that equation(1) associated
with Dirichlet’s conditions admits a unique solution in bounded domain [8].
Some particular solutions of equation(1) are also known in the theory of ana-
lytical functions (see for example [9]). A family of exact solutions can indeed
be obtained from the formula:



‘W’ (2)

(1+|W|2)2

‘2
¥ =—In8 (2)

(here z = z + iy temporary denotes the complex variable).

This formula was probably proposed for the first time in [10]. Although it
looks quite general and seems useful for getting physical interesting solutions,
the practical interest of this formula is deceptive. Contrary to what is often
supposed, the function W (z) is indeed far from being arbitrary. It must satisfy
in any restricted domain of the complex plane the relation :

Aln‘W’ (z)‘ =0 (3)

meaning that W' (z) has no zero, pole and essential singularity. The function
W' (2) has thus to be an entire function without zero, which is a very strict
limitation. Any functions of this type have the form :

W' (2) = exp (g (2)) (4)

where g (z) is an arbitrary entire function. Such functions typically increase at
infinity (]z| — oo) as the same velocity as their derivatives (see for example
[11]). Thus, generally speaking, equation (2) gives solutions that increase at
infinity. They are then not very interesting from a physical point of view. Two
known physical solutions are the Bennet pinch and the periodic pinch solutions
(see for example,[4]). They correspond to the particular cases: g(z) = 0 and,
g(z) = z. Thus, if it is not excluded that other forms for g(z) could be physically
interesting, it seems unlikely that formula (2) leads to exact solutions describing
localized (non-periodical) structures embedded in the 1-D current sheet.

Let us now consider asymptotic methods of resolution of the equation (1).
Looking for solutions verifying: % > %., one can introduce a small parameter
€? in equation (1) by the scaling :

L
z— Lyx; z+— L,z; e:L—z;‘II—MI’—i—lan.

T

The equation (1) then writes:

02, 4 €202, W = exp (—7) (5)

An asymptotic scheme for this equation was proposed by K. Shindler [12]. It
is presented in details in [13] and widely used in works concerning the Earth



magnetotail [12] - [18]. K. Shindler uses a multiscale development of the equation
(5) by introducing a slow variable ez in the bounded (z,z) area. Starting from
the € = 0 solution of equation (5) (the well-known 1-D Harris sheet):

2
2ch

Vg=—-In——7F—
cosh” ¢pz

(6)
Schindler considers ¢y as an arbitrary function of the slow variable z : ¢o(z).
This type of development is valid if the upper and lower plasma boundaries (on
the two sides of the neutral sheet) have a fixed form. These boundaries are
defined by the zero order approximation function given by (6) supposed to be
fixed at all orders of the perturbation theory. A priori given plasma boundaries
thus entirely determine the zero approximation solution cg(z). This method is
particularly useful if the plasma boundaries can be determined at once as it is
the case in laboratory plasmas. In natural plasmas, one cannot know and fix
the form of the plasma boundaries in advance. This motivates the development
of a new asymptotic method for solving equation (5) in a free boundaries case.

2 New Asymptotic method for solving the ”Har-
ris” equation

2.1 Difficulties of the direct asymptotic development

In order to understand the difficulty of the direct asymptotic development of
equation (5), let us analyze the origin of its non-uniformities (see for example
[19]). Parts of this present analysis will be used later in the development of the
regularized asymptotic method.

In order to find solutions embedded in Harris sheet, let us make the following
change of variable:

2¢? (2, )

U=—In— "
cosh® zc (z, )

(7)

where ¢(z, z) is a new unknown function. One notes that if ¢(z, z) — const. for
* — F00, the solution will be localized in a Harris sheet. This change of variable
is formally exact. Nevertheless, in the frame of a theory of perturbations, ¢(z, z)
cannot be a completely arbitrary function. It must have no zero or singularity in
the domain of interest. In the rest of the paper, we will consider that the function
¢(z, 2) satisfies this property. Note also that if the function c(z, z) = co(z) is
a priori given and if the boundaries of the domain are defined by the equation:
WU = const., one goes back to Schindler’s development.

Substituting formula (7) in (5), one gets the following equation for the func-
tion ¢(z,z) :



2zc + sinh 2z¢\ Oc o [2 de 92w
—_—— ) —— = |- (1= h 2 7.
( cosh® z¢ > 0z 0z [c( zctan zc)] 92 € g2 (8)
where ng%' writes :
R 2 (zc)2 Oc 2 D) 52c
2z ==2l1 — | — = (1 — zctanh -—
0z2 ( + cosh 2zc <8a:) c (1 - zctanh zc) 922 9)

Introducing the two new functions :

2 Oc
= — (1 — zctanh — 1
w c( zctanh zc) )y (10)
¢ (2zc + sinh 2z¢)

(11)

~ 2cosh? zc (1 — zctanh zc)

(8) takes the form:

ow 0*v
—— +FW=-—— 12

0z * © Ba? (12)
The solution of (12) may be written in the form of a formal non-linear integro-
differential equation :

z Fd 2
c=cp +62/ gy 5P ([ Fdz) ) dzgx\f exp (—/Fdz) (13)
0

2(1 — zctanh zc

Let us note here that if €2 = 0, ¢y may be a function of z: ¢y = co(z). Writing
the direct asymptotic development as:

c=co(z)+ Z ¥ cay (2, 2) (14)
(n)

substituting it in equation (13) and writing ¥y = Clo(l — zco tanh 2z¢p) so that:

0
ng—aln‘POEF(Co). (15)

one observes that the integral in the exponent becomes simple. The development
takes the form:



’
’

z d z " " " 2
c:co(w)—ez/ - i - 2/ dz (l—z cotanh 2z co) 4.
0 (1—2'cotanhz’cy)” Jo
(16)

Let us analyze this expression in the domain:

|zeo] S1 am

The integrals in equation (16) cannot be calculated explicitly. This is, neverthe-
less, not necessary for illustrating the role of the singularities. In the domain
defined by (17), one has approximately :

1 — zco tanh zco ~ 1 — (2¢)° . (18)

Taking into account this approximation, we can easily calculate the integrals in
(16). One thus obtains:

(19)

This equation clearly illustrates the problems resulting from the simple direct
development. The most singular term in (19) writes:

e 4 1
2 15 7 T
Cy (.’L’) 15 1-— (ZCO)

c=cp(z)— (20)

The direct development thus gets non valid if 1 — (zco)2 ~ g2. The domain
of validity is then restricted to a very thin layer centered on the z = 0 plane
(corresponding to the condition: 1— (zco)” > €2 or (z¢o)” < 1). This is clearly
not appropriated to the description of 2-D structures presenting some thickness.
Our task will then be to construct another asymptotic development of (8) that
remains correct when 1 — (z¢o)” > &2.

Let us consider this question more explicitly. When 1— (z¢o)> = 0 (or, more
precisely, when 1 — (z¢o) tanh z¢y = 0), the equation that defines the plasma
boundaries no more depends on z. The boundaries are flat and coincide with
those defined in the case of 1-D Harris layer. The general result concerning the
unicity of the solution of the "Harris” equation (see introduction) thus states



that the unique possible solution within these flat boundaries must be the 1-
D Harris layer. The perturbations must then be zero which is only possible if
€ = 0. It is then logical that by approaching the boundary the direct asymptotic
development gets non-uniform. Another way to understand this difficulty is
to refer to the topology of the magnetic field. Isolated magnetic structures
correspond to 2-D vector fields in the domain 1 — (2¢p) tanh z¢g > 0 that have
a non-trivial topology (i.e. presenting elliptic and hyperbolic singular points).
The transition of these 2-D fields to a 1-D vector field in the domain defined
by the boundaries 1 — (zcp) tanh zcy = 0 is impossible in the frame of a theory
of perturbations because it changes the topology. However, we will see that it
is possible to construct an asymptotic development that remains correct when
1-— (z:co)2 > 0.

Moreover, one notes that if ¢y (z) decreases with the increasing of |z|, then
the next term in the development increases even more rapidly. This source of
non-uniformity in the direct development is connected to the existence of non-
zero solutions for the linear operator in the left part of equation (8). Denoting
this operator £ {cy}, the equation

,C{Co}C(l) =0 (21)

has indeed, in general, non-zero solutions. They will always lead to increasing
terms in the asymptotic development. In fixed boundary situations, the problem
is formulated in such a way that this difficulty does not appear. It is the main
difference between the two situations. As it is now demonstrated, it is never-
theless possible to eliminate the increasing terms. This puts new constraints on
the function ¢g ().

2.2 Regularization of the asymptotic development by a
generalized multiscale method

Let us look for a solution ¢ in the form of an asymptotic development where the
ascending terms systematically appear :

C:CO+5202 (IL',£1)+€4C4 (waglag%é\é) + - (22)

~

here, ¢y = const ~ 1 and: &1, &2,&2 are new variables:

& 2 F (2) + B1; B1 = Const. ~ 1.
& = e'Fy(z,z,6 (2)) + Be; By = Const. ~ 1. (23)

& etF, (z,2,&1 (2),&2(2,2,&1 (2))) + Ba; B, = Const. ~ 1.



The functions Fi, F3, F> are not known. They have to be determined from the
elimination of the singular terms. This method is a generalization of the usual
multiscale developments. It is used in the general theory of the asymptotic
developments of partial differential equations (see for example [20]).

Using (23), the derivative% writes :

9 9, 2dF1(2) 8 | 4 (0F, | ,0FdFi(2)) 8
52 02 % 4z o6 “\ 6z Ton dz )&
OF, ,dF,(z)0F, ,0F,8F, (OF,0FdF,(z)) 8
4 i 2 i 4¥ "4 Y2 67" 24Y" 2 - )
82 ' dz 06 ' C 0z 06 | 06 06 dz o8, H24)

+€

L0 g a0R 0 0R D
= az+6F1(z)6§1+6 P 6§2+s P aé;-i-é'( )+

We now substitute the asymptotic development (22) and expression for 2 (24)
in equation (8). Assuming that the development (22) is an asymptotic one, we
can also develop the non-linear coefficients in equation(8) into asymptotic series
in 2. As a result, the following formal series is obtained:

Zs2n£(2n) =0. (25)
(n)

A sufficient condition for satisfying this equation at the order n is that all
coefficients before the terms 2" are nul. This condition will give the equations
for the functions c3, cs,.... Then, it will be necessary to verify that (22) is indeed
an asymptotic development.

Let us now apply this procedure. We note :

2
fo = ——(1- zcptanhzc),
Co
dfo 2zcy + sinh 2zc¢g
Fo o gy o E0TTTTER

dz cosh? zeg

The first non-trivial equation is obtained from the condition of nullity of the
coefficient for ¢* (corresponding to : L4y = 0). This gives :

2f6 ’ ” 602 6202
— AR+ F, ) — = —+ 2
( 0 v ) 0&:1 Ox? (26)

Let us choose the function Fj(z) so that :

2 ! ! "
;OZ F,+F, =-)\? (27)
0




which guarantees the elimination of the singularities in the operator L) =
0. Putting without lack of generality A = 1, Fjcan be found from equation (27)

R =[5 [ s (28)

This integral has already been calculated approximately in chapter 2.1 (see
equation (19)). Keeping in Fi(z) the most singular term only:

14 1
Fiz)r————— 29
1( ) C(Z] 151—(2(,‘0)2 ( )
& writes:
e? 4 1
=--—— _ 1B 30
& 2151 — (zco)2 5 (30)

When (zco)® < 1, & turns to be the usual slow variable (shifted by the B;
constant).
Next, from equation (26) we obtain :

802 - 6202
%~ ot (3D
A known solution for (31) is :
MO 211'2 )
= 2o _z 32
Ca 2\/5_1 exp < 461 ( )

It is nevertheless clear that(31) admits a broader class of solutions writing :

! /'::0 u (93’) exp —M do (33)

W T3

However, any arbitrary functions u(z') cannot be used in equation(33). For
example, if u(w') is a polynom or a function that increases as z" when z —
00, then the equation(33) gives increasing solutions in the first approximation.
Here, we will only consider in details the simplest solution and some of its
generalization. For the more general cases, it would be necessary to apply
the same procedure than explained below and so to verify that it is possible



to eliminate the increasing terms in next approximations. This would lead to
rather cumbersome calculations.

Let us consider here the simplest case. ¢ takes an explicit form :

_1 ~1
My e 4 1 § z2 €2 4 1
c=c+e— B -5 —— exp|—— |B1—-5————>
BE ( T3 151—(zco)2> 47 G151 (aco)?
(34)

The difference between the direct development (20) and the present development(34)
is now clearly apparent. We already saw that the development (20) is not ap-
plicable if 1 — |zc0|2 ~ 2. Conversely, the development(34) is applicable with
the broader condition :

1 — |zco) > €2 (35)

‘We have also to impose the following condition for B; and Cj :

4
=B ———>1 36
{10 1 15C%N ( )

In the domain |zco| < 1, the equation (34) becomes simpler :

M() 1122
c=co+e® e ——— )+ 37

0 QVQﬁXp< 431) (37)
The important point concerning equation (37) comes from the fact that it is not
only applicable for small z. Its condition of applicability is indeed:

||<1 1 4
Z_co 15c2

(38)
as deduced from expression (30) or (34). Thus, for ¢¢ = 1, the domain of
applicability is |z| < 0,856 =~ 0,9 ~ 1. Note that in this domain one has also
the possibility to use the more simple equation (37).
The central question is now to check the validity of the asymptotic development(22).

To this end, one has to verify that the variables £, é} and the function My (&2, 52)
can be found in a way that eliminates the increasing terms in the next approxi-
mation. Let us here mention that unlike simpler problems, a unique £> function
is not sufficient to eliminate the increasing terms. In order to find £,£> and
My (&2, &2), it is necessary to study the development of equation (8) up to € .
This procedure is quite cumbersome and described in Appendix B. The result
18:

10



A €xXp (_B2 -Q (Za "L'))
e R

Cy — + (39)

where:

R=D+ (F) e exp (—Bo) [1 + (2c0) ] ( z’ 1) (1 + - (2¢0)” ) exp (—Q (2, 7))

152¢2 [1 B (200)2]2 2 coth? zco
(40)
3t [1 + (zco)2]
R 1 o]’ !
2
Lo 1264 L+ (e0)?] . "

1—
46 15%co¢t [1 - (Zco)ﬂ ’

R [1 + (zc0)2]
4_§f 152c2¢2 [1 _ (zco)zr;

Equations (39)- (41) are applicable for |zco|> < 1 — €2, Note also that two
signs (+) are possible in (39). This is an unexpected new feature of this type
of development. As discussed below, each sign will correspond to a different
topology of the magnetic field lines (X or O type singular points).

Let us now study with more details the limit of applicability of equations
(39) and (40) , i.e. when |zco|> < 1 — &2, As earlier, we consider that c¢o > 1,
and £10 2 1, (36). Let us minimize the expression in brackets in equation (41).

et [ Geo’] | - ~0.89 (42)

152682,
Thus, in the limit of applicability of equations (39)- (41), the decreasing of

ming 1 —

co(z, z) with respect to z is slower. One indeed gets approximately: exp (— ’”1%‘189)

instead of: exp (—%) . This means that for z < 0,89 ~ 1, the decreasing :

46
of the denominator in equation (39) then remains close to 1. As a result, the
limitation for D is :

2/, 4
exp <—z (1—c )> is defined by the same equation (27). The minimum value

11



D=F %exp (=B2) 21 (43)
However, even with values of z such that z < 0,93 = 1, the additional term in
the denominator (39) is small as compared to D and can be neglected. Thus,
in the domain z < 0,89 = 1, one can use the simplified expression given by
(37) instead of the complete equation given by (39). With this simplification,
the vector potential ¢ is given by equations (7) and (37). This describes the
localized solutions of equations (5) that we are looking for.

3 Study of localized solutions

First of all, let us notice that for obtaining the equations for variables £7,&5...in
explicit form, it is convenient to use (18). ;From this equation, one can indeed
analytically calculate the integrals that define the solutions. Taking into account
the analysis presented in previous sections, the expressions (7) and (37) can then
be used as a first order approximation of the solutions in the domain |zcp| < 1
(note that the singularity occurs at zcy = 1.18 >, thus outside this domain).
These solutions are characterized by three dimensionless constants cq, My, Bj.
They are of the first order in 2. B, is always positive, My can be either positive
or negative and, the function ¥ (7) being an even function of ¢, the sign of ¢
has no importance. We can thus assume: ¢y > 0. The constant B;defines the
characteristic space scale of the localized solution in dimensionless variables.
For x > 24/B; the solution rapidly tends to the Harris type solution. cg is
linked to the limit values of ¥ as £ — oo on the boundary plasma surfaces.
We will show later that ¢g is linked to the definition of the plasma density 7,
while |Mp| determine the maximum value of the perpendicular component of
the magnetic field Bz.

3.1 Isolated plasmoids and X points

Let us rewrite (7) as:

%exp (%) - s (44)

By developing the R.H.S of (44) near the origin: # = z = 0, one can show
that, for My > 0, the origin appears to be an elliptic point for the map-
ping of the magnetic field (O - point). For My < 0, the origin is an hyper-
bolic point which corresponds to an X-point mapping. The sign of My then

12



determines magnetic field configurations presenting different topologies. Ex-
amples corresponding to these two different topologies are given in figure 1
(Mp = 1, —1)ftbpFU4.5074in6.173in0pt Examples of plasmoid and X-point
configurations

The previous calculations have been performed using dimensionless variables.
To make the connection with physical quantities, the following substitutions
must be made :

az

axr
4
Fizo o (45)

T —

where a is given by (80) in Appendix A. Using the vector potential formula and
taking into account (7),(37) and (70), one finds the magnetic field component
B,and B,:

=l y’|\/8 no (T; + Te) —ta he— (46)
z

| yl| |M0 ar (aac)2 az az
= VvV + — - 1—c— he—
B, =+——4/87mnyg (T Z exp 4B, L2 cLz tan cLz

2 B )3 / 2
(47)
The plasma density is obtained from formula (74):
2 2
n(z,z) = 2 ¢ (48)

L2 cosh? ( Lz)

Where n is the plasma density in the Harris layer center (z = 0) for z — +oo0.
From (48), one gets:

L,
— = 49
V2 ’ (49)
So ¢y defines the plasma layer thickness in dimensionless variables. The mag-
netic field By verifies
B2
— = T; + T,
o no (T; + Te)

Then, the magnetic field B, can be written as:

caz
B, = —Bptanh 50
° (Co\/§> (50)

13



The plasma density takes the form :

2
c 1
n(z,z) = ng (—) Y ATVRY (51)
€/ cosh (Cz“—ji)

The parameter a being given by the formula :

Bo |e|uyi 2 (uyl)
a= = — 52
cTi\/2 PBoi \ V1, (52)
where: PByi is Larmor radius of ions in the magnetic field By,

Vr; is the thermal velocity of ions, and
Uy; is their current (diamagnetic) velocity.

It is clear from (85), that a determines the Harris layer thickness Ly :
_ PBoi V1,

V2 uyi

As it follows from (80), |Mp| determines the maximum value of the B, compo-
nent :

Ly (53)

a® Mo
LELZ (2B)3/2

|B,| = By (54)

and the difference between plasma density in plasmoid center and ng , see (51):

n (0) —no _ 42 | M|
) 200\/31

The characteristic horizontal scale L, of the structure is :

(55)

L, = Lov/Bipsy: <VT") (56)

uy,-

In other words, the plasmoid has an elliptical form, the ratio of its typical
horizontal and vertical scales being :

b o 1 oy (57)
L, V2B, L,
as it was assumed earlier.
Concerning the plasma boundaries, one sees that with |z| — oo, B, — 0.
One also gets :

14



T;
B, — —Bgtanh (Li) Ay = -, (58)

¥ — Incosh? <ﬁ) . (59)

As a result, a given value max | B, (00)| < By defines a plane |zo| = const. < Ly
that determines the plasma boundaries at infinity and the associated value of
v

¥ = ¥, = Incosh? (;—2{) (60)

This also defines the vector potential Ag on the magnetic surface that bounds
the plasma layer. In the absence of plasma in the exterior domain, ¥ or A;Zt
obey to the 2-D Laplace equation :

Aa Ay =0 (61)

and to the usual Grad-Shafranov boundary conditions at the magnetic surface
that bounds the plasma sheet

dAsTt  JAIt
ext __ 0 __ . Yy _ Y
A7 = A, = Const.; i = dn (62)

We do not examine in details the solution of the exterior problem. We simply
note that the solution will have the following form :

2 ~
A;zt = By (z — zp) tanh <i> + Ag (20) + Ay (2, z,€) (63)

where the function 4, (z, z, &) increases like In z for z >> zo and tends to zero as
|z] = oo or € — 0. If the distance from the plasma boundaries increases then,
the magnetic field tends to a constant value :

B = —Bytanh (“) . (64)
Ly

15



3.2 Multiplasmoids

More complex solutions can also be proposed. They correspond to multiple
plasmoids separated by X points. Let us consider the more general solutions of
the first approximation equation (31) and let us choose the following function

!
for u(z

U (:z:l) = Moﬁg b;0 (:1:' — CL'(),') (65)

where b;,and xg ; are constant parameters. Then, instead of (32) we obtain :

: (¢ ~an)’
cy = Mo sz. exp _l (66)

where &; has the form given in (30). The solvability conditions for the terms of
increasing order can be obtained in the same way as for the function (83), see
Appendix B. In order to do it, we have to replace c; given by (30) and appearing
in all formulae of the Appendix B by ¢z given by (66). The expression becomes
more complex. Nevertheless, the general scheme presented in the Appendix B
remains valid. New solutions are then obtained. Their mathematical expression
can be obtained using equations (7) and

, 2

N — .

Mo (w x‘”)

c:co+622\/Esz’eXP T B, (67)
i=1

Some examples of magnetic field configurations obtained from this formula are
presented in figure 2. Solution with b; > 0 describes a set of plasmoids with
amplitudes b; and centered at xp; . This corresponds to a multiplasmoid so-
lution. For arbitrary b; either negative or positive; multiplasmoid solutions
presenting a more or less sharp transition to hyperbolic X points are obtained.
ftbpFU4.5074in6.173in0ptExamples of multiplasmoid solutionsf,las2.ps

4 Conclusion

In this paper, we have proposed a new asymptotic scheme that allows to obtain
in a systematic way approximative solutions for the 2-D "Harris” equation. This
asymptotic development differs from the classic one proposed by K. Shindler by
the treatment of the boundary conditions. In contrast to Schindler’s work, we
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indeed analyze a free boundary situation or, more exactly, a situation for which
the plasma boundaries are not determined in advance. The plasma will be then
bounded by magnetic surfaces defined by the condition: ¥ = Const.; the form
of these surfaces being, however, uniquely determined by the solution itself and
the magnetic field value at infinity .Out of the plasma, the vector potential can
be deduced form the Laplace equation and, as usual for the Grad-Shafranov
equations, from the continuity of ¥ and its normal derivative at the plasma
boundaries.

The main difficulty of the problem relies on the fact that one has to sys-
tematically eliminate the increasing and the singular terms that appear in the
perturbation theory. From the elimination procedure, we found particular so-
lutions that describe localized plasmoids embedded in the sheet. The simplest
solution describing a plasmoid is characterized by three parameters : the mag-
netic field value at infinity, the typical horizontal scale and the plasma density
in the center of the plasmoid (or more exactly, its deviation from its value in the
center of the non-perturbed 1-D Harris layer). Another parameter is the maxi-
mum value of the perpendicular magnetic field component. The magnetic field
in the plasmoid center is zero and presents a singularity of elliptical type. Out
of plasma, the magnetic field is approximately constant. Both the pressure and
the plasma density have their maximum in the center of the plasmoid. In the
presence of orthogonal homogeneous electrical and magnetic fields, the system
of equations remains valid and will describe solutions moving along the layer
with the electrical drift velocity.

i From the solvability conditions, another solution corresponding to X point
magnetic field configurations has been obtained. As already mentioned, the use
of the complete Maxwell-Vlasov equations instead of the ideal MHD equation
guarantees the physical validity of this type of solutions. We also find more
general solutions that describe sets of plasmoids (multiplasmoid) separated by
X points.

The origin of the different topologies deserves some comments. With 2 =
0,the zero approximation equation describes a 1-D vector field. With 2 # 0
the perturbed equation describes a 2-D vector field in the plane (z,z). It means
that the perturbation does not conserve the dimensionality of the space and is
not a homomorphism (it is well-known that only homomorphism saves space
dimensionality). Since the perturbed equation describes a 2-D vector field in a
plane, its typical singularity are elliptical and/or hyperbolic points and this is
what was obtained from the asymptotic development.

Let us finally note that it is clear from (37) and (67) that we have only
examined a simple case of particular solutions. As a matter of fact, a wider
class of asymptotic solutions exists and depends on the form of the function
u(z'). However, for these different cases, it has not been verified that it is
actually possible to eliminate the increasing and singular terms in the next
approximation.
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5 Appendix A. Basic Equations

Let us consider a plasma in a constant magnetic field BS and a constant electrical
field E? , the system being invariant by translation along the y axis .We can
choose the vector potential A in following form :

A = (4 (2,2); 4y (2,2);0) (68)

Taking into account the Coulomb gauge :

0A
= = Ay = A, (2).
9z 0,—= (Z)
Since By = const,
0A,
BS =% = Const,— A, = Bgz (69)
The magnetic field writes :
0A, (z,2)\ ., 0. [0A,(z,2)
B = rotA = <—y872) B+ () K (70)
since
BVA,(z,2) =0

then the magnetic field lines are located on the magnetic surfaces Ay(z,z) =
U(z,z) = const.
(From the y-invariance follows the conservation of canonical momentum P,.

Py =mV, + ZAy (71)

Let us note here that if the plasma moves along the sheet with a constant
velocity u, = ug , the time will appear through the variable £ = x — ugt only.
The Lagrange function of non relativistic particles £ and energy £ write:

2
£ = mV + EVA—e@
2 q

2
Szm;/ +ed
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where ® - is a scalar potential

®=—FE2
(From the time dependance of the energy:

dE oL
dt = 0t

and the Lagrange equation, we obtain :

A second invariant W is then :

W= mV?2

+e® —ug (mV; + ZAI (2)) (72)

Since stationary solutions of the Vlasov equation are function of these two in-
variants (71) and (72), one gets :

f=fo(Py, W)

Choosing as usual fy as a Maxwell distribution function, we obtain the usual
Harris distribution function [7]:

W
ij = noj()ijTI'Tj%exp <uyJT77> = (73)
J
= nj(z,2) )m;2nT;% exp{ — [(vz — )’ + (vy — uyj)* + vf]
2T;
Here:

qjuy; Ay upA,; — c®
n; (z,z) = ng; exp <4) exp (q-i (74)
I I CT]' J CTj

where u,; correspond to the velocity of the current and the j subscript to the
electrons and the ions (j = e,4). The quasi- neutrality condition gives [7]:

Uye WUqyi
Nge = Noj; ; + Ty =0 (75)
e 1

and the additional conditions:
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”

—upAy (2) +c®(2)=0;9,,=0

® (2) = —Ejz; A, (2) = Byz;

0
_cE7
0

B’y

Ug =

where ug is obviously the electrical drift velocity.

(76)

Taking into account the quasi neutrality conditions (75), the plasma pressure

for the Harris distribution function is:

€ily; A
P =ny (T, +T; Cillyifly
o (T, + T3 exp (220 )
Maxwell equations give :
4 10E 4n ug OE
tB—- —J+-— = —~J— ——:
"o c + c Ot c c oz’
10A
E=--2" 1 kE,
c Ot Rt

As a result, we obtain the equation :

4
W%:_[

C

924, <

%A,
Oz?

Oz2

ug
c2

2
Yg

(77)

Since we study a non relativistic case -§ < 1, we can omit the term containing

c2

c2 -

the Ampere equation takes the form :
0?4, 9*A, 4mng |e] T.
- ( Oxz2 + o2 )~ ¢ t T; P

Then, using dimensionless variables :

CI;; 1 ’
U;x =azx;z = az;

Ay =

lef uyi

20
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2
%9. Calculating the current j, by using the Harris distribution function(77),

oT, (78)

(79)



. Varng leuy| VTe + T; _ /3T |uys| [Te +T;
c T; c vt T;

(80)

The equation (1) ("Harris” equation) is obtained.
In the rest of the paper, we will omit primes for dimensionless variables
z ,z . The magnetic field B is expressed by means of ¥ :

|uyl 6_‘1’
Uy; 0%

i| 0¥
B, = +2\/7rn0(Te+Ti)|uy|a—
Uy OT

B,

—2\/mng (T + 1) (81)

Considering again the Ampere equation (78), we can multiply equation (78)
by %1 and then %1. The resulting equations are clearly the x and z compo-
nents of the MHD equation:

ﬁ [rotB (4,) x B (4,)] = VP (4,) (82)

where the pressure P(A,) in (82) is defined by the Harris function (77).Thus,
for this particular case, the Ampere equation (78) and the MHD equilibrium
equation (82) coincide formally and correspond to the Grad-Shafranof equa-
tions. They must be solved in plasma domain confined by magnetic surfaces
¥ = const. Outside this domain, the plasma is absent and the vector poten-
tial ¥ has to be deduced from the Laplace equation and boundary conditions
corresponding to the continuity of ¥ and g—fl' at the plasma-vacuum boundary .

5.1 Appendix B. Elimination of increasing terms in £° ap-

proximation

Let us put the asymptotic development (22) and the expression (24) in the
equation (8) and write together the different terms of order 5. We will consider

My as a function of &3, &2, then the first approximation has the form :

Cy =

MO (@,5) exp( wz) (83)

2VE& 46

To met further solvability conditions we will find M, (52, {Nz) in factorized form
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Mo (52,52) = Mo (€2) Mo2 <§: (&2, =, Z)) (84)

After dividing equation by fo , we write the resulting equation in the following
form :

2f6 ’ ” 804 8264 N [02] L [Cz]
2F,+ F, ) — =0
( 0 ! * 1) 0&1 o T fo * fo (85)

Here, L [c2] denotes the linear terms in ¢ and N [c2] the non-linear ones:

L ! ’ " 2
i G sgee (i)
Yoo B ) L e _ﬁ>%

N 2 MO 62 1 132 X
(7)) S sa e e ()

1 .’1,'2 _1L[(,‘2]_ 2f(l)z ’ " 8M0
Erd e I el b

2 / ’ " BM 2 I~ ~" BM
+< f""F2+F2>—°+ fo: 5, 4 B, =4 (87)
0 652 f0 852

N 2 3 32 zt
My (F) (-2 -2+ 2
+Mo (F) <4£% 45%*1659

NE,(:Z] contains several groups of terms:
N [C,] _ N [C5] n Ny [C5] n N3 [C5]
fo fo fo fo
Mil%] 5 the contribution from the first term in the equation (9), % the

fo
contribution from the second term in (9) and, % the contribution from the

left part of the equation (8).

N [Cy] 2 (z¢o)? + cosh? zcg <3cz>2 . (88)
fo & focosh® z¢q oz )

M3z? z? (zco)” + cosh? zcg .

16&3¢ & (_251) (1 — zcop tanh zcg) cosh® z¢p
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N [C] 1dfy 0%

fo T Fodco 022

2
_ M, l(zco)2 + cosh? ch] exp ( z? ) (E - 1) ‘

(1 — zcp tanh zcg) cosh? z¢co a E 8coé %

N3[C] 1 0fo:\ o, (0fo ]  Oc2
%o —%[2<aco)Fl+(a—cO)Fl]CQa—a— (90)

 (2c0)? + cosh® zcy z? z?
4zcy F: F - — -1
ekt ¢o (1 — zcp tanh zcp) 1| &P 2€; 2&,

= (89)

M5
8¢2 cosh® zco

Taking into account (27) with A = 1, (85) takes the form :

2
%_804:N[Cz]+L[C’2] (91)
06 0z? fo fo

As we can see from (87) -(90), the right part contains a singularity at (zcg) ~

1 which lead to increasing terms. In order to eliminate them, we have to require

the right part to be equal to zero. In this case, for ¢4 , we can take simplest

solutions as in section 2.2 :

Mg ( 11,'2 )
c4 = —F~—=exp| —— 92
T avE 46, ®2)
When the right hand part of (91) is zero, we obtain an equation that can be
considered as the solvability condition :

N ~ 2flz ’ " 6M01 ({2) N2 3 3:1,'2 £L'4
0w () [ ) G e () (3 - S + ) ¢

~

1o OMo, (é> Mgl (é2) Mgz (fz) 2 2
+Mo1 (§2) (%Fb + F ) exp <— ° ) ( a: l

B E 1 — z¢p tanh zco)

B 8coéivEr

A EAT (-1 l(zco>2+cosh2zf:o]_

+ -
4coé1/EL 4¢1 ) (1 — zcp tanh 2¢p) cosh? z¢g
M2, (&) M2, ( & 2’
01 (é2) 02 <52> . ( 22 ) (E - 1) Ao F n (zco)2 + cosh? 2Co E
— X —_ | — A
461/& P 4¢1 ) cosh? zey o co (1 — zcp tanh zcg)
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‘We shall note that the term :

0 _ 0P (&)

06, 062
belong to the higher order equations. Let us define the F5 function by the
equation :

2f6 / " 2 3 3.’132 CLA
oz —(F) (2 -2 + 2 4
(Fhemm) = () (i - i+ o Y
For the function Mp; (£2) , we obtain from (93) :
oM,
D) 4 b (e) 0 (95)

This is the vanishing condition for the coefficient of My <§N2> in (93). As follows
from (95) :

Moy (€2) = Aexp (—&2) - (96)
(A = const.) From (94), one can find the function Fs:
_ [dz 2 (-N\2/( 3 3z? z?
=[5 ] 50) (g~ ) e

This integral will be calculated approximately as the integral (28). When cal-
culating integral (97) we shall take into account only the contribution from the
leading singularity. Others factors will be put out of the integral because they
are changing slowly when 0 < (zcg)” <1 — 2.

1 3 312 zt ) dz N2
P~ — (-5 - = —/f2F dz =
27 ae <4§% 4¢3 " 16ef) ) ;2 7° ( 1)

231526 \ & & agt (1—2c)® (14 2¢)°

As a result we obtain for £; :

&~

o [ (3 82 “’4)+Bz (99)

ca152¢2 [1 _ (zco)2]2
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Let us now define the function F by the equation :

- + 100
0 8co€? | (1 — zco tanh zcg) cosh? zeg (100)

4 (zco)® + cosh? zcg ( z? 1)
4coé (1 — zcp tanh zcg) cosh? zcy | \ 261

1 ! 2 h2 ”" 2
_ ; dzeoF. + (2c0)” + cosh” z¢g F ( z? 1)
4¢; cosh” zcy ¢o (1 — zcp tanh zcp) 2¢,

H (2;6—2 FNzl + FNz) = o l (2¢0)? + cosh? zcg

1 et [1 + (zcﬂ)z] < 3 322 2t ) 2

H=|F——exp[ B; — - — 3t 3z —
3 ? 5152 [1 _ (200)2]2 & & 4 4¢

Then for My (52) ,we obtain the equation :

~

dés
The solution of (101) has obviously the form :

dM, (E) i
N g, (s) o (101)

Mo, <§N2> - Eil)p (102)

In equations (101) and (100) two signs(+) are possible. As earlier, we solve
the equation (100) approximately. The main contribution in the integrals gives
the stronger singularity in the right hand part of the equation (100) (the term
with F"). Other terms correspond to weaker singularities when 0 < (200)2 <
1 —¢€2. Again, slowly varying terms will be put out of the integral and thus, we
obtain the approximative formulae :

2
: ) o [1+ (2co) ] (mz 1) 1 (zcp)” + cosh® zco x  (103)
2 = 26,
152 [1 - (zco)2} 2 \26 &ive cosh” z¢
) i 22 o [1 + (200)2] < 3 3z n z? ) n B.
exp - T e 2 3 4¢f .
2 g g " ’

4¢;  cd152 [1 _ (z00)2]2
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Formulae (96),(99),(102) and, (103) are valid in the domain 0 < (z¢o)” < 1—¢2as
well as formulae (30) and,(34). The formulae (96)and (102) together with (99)
and (103) allow to find the coefficient M, (84). This value M, eliminates
increasing terms in the next approximation. Finally, the first approximation
solutions are given by formulae (39) and (41)in section 2.2.
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